高功率激光装置光学元件“缺陷”分布与光束近场质量统计规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学元件上微米到毫米量级的灰尘、杂质、划痕、麻点以及亚表面缺陷等“缺陷”是影响高功率激光装置输出性能、制约负载能力提升的“瓶颈”因素。明确“缺陷”分布的表征参量,建立表征参量与装置输出光束近场质量之间的定量关系,并获得光学元件“缺陷”分布指标的分解方法,是目前高功率激光装置负载问题研究中的当务之急。基于上述需求,本论文主要进行了以下几方面的工作:
     一、定性研究了“缺陷”分布与光束近场质量的空域统计关系:建立了“缺陷”分布空域统计模型,抽象出两个重要的统计参量——“缺陷”总密度和分布幂指数;理论研究了光束近场强度分布的统计性质,得到了统计特征参量——强度平均值和强度对比度;数值分析了线性和非线性传输时“缺陷”分布的空域参量与光束近场质量的关系。结果表明,“缺陷”总密度的增加、分布幂指数的减小都会使近场强度对比度增加,近场质量变坏。
     二、明确了“缺陷”分布频域统计性质的表征参量——功率谱密度(Power SpectralDensity,简写为PSD);研究了“缺陷”分布PSD的系综平均,并基于“缺陷”分布空域模型研究了“缺陷”分布PSD系综平均与空域统计参量的关系。
     三、定量研究了“缺陷”分布与光束近场质量的频域统计关系:基于光传输理论,建立了弱调制假设下单一位置及多个位置“缺陷”分布的PSD与近场归一化强度调制PSD的理论关系,验证并讨论了不同传输条件时(线性介质、非线性介质、空间滤波器以及级联介质传输等)二者的具体关系。结果表明,弱调制下,传输后的近场归一化强度调制PSD与引起调制的“缺陷”分布PSD通过系统的传输因子联系,传输因子与系统的构型和运行状态相关。以原型装置助推段为例,基于传输因子研究了不同运行光强下“缺陷”分布对输出近场质量的影响规律。
     四、探索了基于传输因子的光学元件“缺陷”分布指标分解方法。以原型装置为例,分解了系统关键部位的“缺陷”分布PSD指标。
"Defects" on optics such as dust, impurities, scratches, pits and subsurface defects would affect the performance of high power solid-state laser system. It is the main limiting factor in increasing the load capacity of the laser. Finding proper parameters to describe the "defects" distribution, establishing a quantitative relationship between these parameters and near-field beam quality, and setting a method to obtain specifications of optics "defects" distribution are the most urgent things to do to increase the laser power. To achieve these goals, the major research work of this thesis can be listed as follows:
     1. Relationships between the "defects" distribution and the near-field beam quality were studied qualitatively in spatial domain: spatial statistical model of "defects"distribution was established, two important statistical parameters were abstracted, which were the total density of the "defects" and the power exponent of the "defects" distribution. Statistical property of the near-field intensity was studied theoretically, statistical parameters were obtained, which were the average intensity and the contrast of intensity. Relationships between the "defects" distribution and the near-field quality were researched numerically. The results showed that, the increase of the total density and decrease of the power exponent will increase the contrast of near-field intensity, which would cause the deterioration of the beam quality.
     2. Power Spectral Density (PSD) was utilized as the parameter to describe the "defects" statistical property in frequency domain. The relationship between the "defects" distribution PSD and one "defect" PSD was researched. Based on the spatial model of "defects" distribution, the relationships between "defects" PSD and spatial parameters were studied.
     3. Relationships between the "defects" distribution and the near-field beam quality were studied quantitatively in frequency domain: Based on the small modulation approximation, theoretical relation between the "defects" PSD and the near-field intensity PSD was established. Based on the theory of light propagation, the theoretical relation was validated in linear medium, nonlinear medium, and spatial filter. The results showed that, connection between the near-field intensity PSD and the "defects" distribution PSD was the propagation factor of system, this factor is related to system structure and operation parameters.
     4. Based on the theoretical relation between the "defects" distribution PSD and the near-field intensity PSD, methods to establish specifications of optics "defects" was obtained. Take TIL as an example, specifications of "defects" distribution PSD of key components of this system were deduced.
引文
[1].National Ignition Facility conceptual design report.UCRL-PROPI 17093,1994.
    [2].Moses E I,Campbell J H.Stolz C J.and Wuest C R.The National Ignition Facility:The World's Largest Optics and Laser System.UCRL-JC-151593,SPIE Proc.2003 Photonics West,January 2003.
    [3].Stolz C J.The National Ignition Facility:The world's largest optical system[C].UCRL-CONF-235653,2007.
    [4].Yamanaka C.Introduction to laser fusion[M].Switzerland,Harwood Academic Publisher,1990.
    [5].Andre M L.Status of the LMJ project[A].Solid-state Lasers for Application to ICF[C].Oct 1996:38-42.
    [6].国家高技术惯性约束聚变委员会,863-416-5专题专家组,神光-Ⅲ原型装置(TIL)概念设计报告,第三版,2000(内部数据).
    [7].McMordie J A.Conceptual Design of 100TW Solid State Laser System[R],Proceedings of SPIE,1995:2633.
    [8].Kiriliov G A.Development of a high-power 300 kJ neodymium laser[A].Solid-state Lasers for Application to ICF[C].Oct 1996;43-47.
    [9].National research council,national academy of sciences,second review of the department of energy's inertial confinement fusion program,final report(national academy press,Washington D.C.,1990).
    [10].神光-Ⅲ主机装置初步设计报告书[M].四川绵阳:中国工程物理研究院激光聚变研究中心,2006:2.
    [11].彭翰生,张小民,范滇元,朱健强.高功率固体激光装置的发展与工程科学问题[J].中国工程科学,2001,3(3).
    [12].Lindl J.Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J].Phys.Plasmas,1995;2(11):3933-4023
    [13].张小民.宽带高功率激光系统总体与关键技术研究[D].博士学位论文.上海:复旦大学,2006.
    [14].神光-Ⅲ原型装置科学技术总结报告[M].四川绵阳:中国工程物理研究院激光聚变研究中心,2007.
    [15].张小民.内部报告[R].四川绵阳:中国工程物理研究院,2007.
    [16].Feit M D,Rubenchik A M.Influence of subsurface cracks on laser induced subsurface damage[R].UCRL-CONF-153481,2003.
    [17].Williams W H,Auerbam J M,Hunt J T,et al.NIF Optics Phase Gradient Specification[R],UCRL-ID-127297,1997.
    [18].Lawson J K,Auerbach J M,English R E,Henesian M A.NIF Optical Specifications-The Importance of the RMS Gradien[R],UCRL-JC-130032,1998.
    [19].粟敬钦,魏晓峰,马驰等.激光束低频畸变波前模型的计算机模拟[J].强激光与粒子束,2000,12(s1):163-166.
    [20].邓青华,张小民,景峰等.光学元件低频位相噪声的空间尺度[J].强激光与粒子束,2002,14(4):508-510.
    [21].邓青华,张小民,景峰等.激光束低频位相误差叠加规律研究[J].强激光与粒子束,2002,14(1):81-84.
    [22].Simmons W W,Hunt J T,Warren W E.Ligth propagation through large laser systems[J].IEEE J Q E,1981;QE 17(9):1727-1744.
    [23].Aikens D M,Wolfe C R,and Lawson J K.The use of Power Spectral Density(PSD) functions in specifying optics for the National Ignition Facility[C].Proceedings of SPIE,1995;2576:281-292.
    [24].Williams W H,Auerbach J M,Henesian M A,Lawson J K,Hunt J T,Sacks R A,Widmayer C C.Modeling Characterization of the National Ignition Facility Focal Spot[R].UCRL-JC-127907,1998.
    [25].Williams W H,Auerbach J M,Henesian M A,et al.The NIF's basic focal spot for temporally flat pulses[A].Supplement to Proceedings of SPIE,1999;3492:22-38.
    [26].粟敬钦.ICF驱动器激光束聚焦特性的研究[D].博士学位论文.四川成都:四川大学,2001.
    [27].Lawson J K,Wolfe C R,Manes K R,Trenholme J B,Aikens D M,English R E.Specification of optical components using the power spectral density function[R].Proceedings of SPIE,1995;2536:38-50.
    [28].Lawson J K,Aikens D M,Wang,D Y,Williams W H.Optical Specifications—Their Role in the National Ignition Facility[R].UCRL-JC-137699,2000.
    [29].Stowers I F,Patton H G."Damage history of Argus,a 4 TW Nd-Glass system".UCRL-80419.Symposium on Optical materials for high power lasers,Boulder,CO,4 Oct 1977.
    [30].Hunt J T.National Ignition Facility Performance Review 1999[R].UCRL-ID-138120-99,1999.
    [31].Spaeth M L,Manes K R,Widmayer C C,Williams W H,Whitman P K,Henesian M A,Stowers I F,Honig J.The national ignition facility wavefront requirements and optical architecture[C].Proceedings of SPIE,2004;5341:25-42.
    [32].刘红婕.高功率激光束中高频位相畸变特性的研究[D].硕士学位论文.四川绵阳:中国工程物理研究院,2005.
    [33].胡东霞.高功率固体激光系统波前校正技术优化研究[D].硕士学位论文.四川绵阳:中国工程物理研究院,2003.
    [34].神光Ⅲ原型装置概念设计报告[R].四川绵阳:中国工程物理研究院,2000.
    [35].神光Ⅲ原型装置首束达标研究总结报告集[R].四川绵阳:中国工程物理研究院,2006.
    [36].谢良平.ICF驱动器光束非线性热像效应研究[D].硕士学位论文.陕西西安:西北工业大学, 2004.
    [37].林晓东.ICF固体驱动器中的小尺度自聚焦效应研究[D].硕士学位论文.四川成都:四川大学,2002.
    [38].王逍.三阶非线性效应对ICF激光驱动器中光束均匀性的影响[D].硕士学位论文.四川成都:四川大学,2003.
    [39].Hunt J T,Manes K R,and Renard P A.Hot images from obscurations[J].Appl.Opt,1993;32:5973-5982.
    [40].张春玲.高功率固体激光装置中散射点对激光传输的影响.硕士学位论文.四川成都:电子科技大学,2006.
    [41].Hopper R W and Uhlmann D R.Mechanism of inclusion damage in laser glass[J].Journal of applied physics,1970;41(10):4023-4037.
    [42].陈飞,孟绍贤.光学材料破坏机理[J].物理学进展,1998;18(2):187-206.
    [43].Demos S G et al.Mechanisms to explain damage growth in optical materials.Proc of SPIE,2000;4347:277-284.
    [44].Feit M D,Hrubesh L W,Rubenchik A M,Wong J.Scaling relations for laser damage initiation craters[C].Proceedings of SPIE,2001,4347:316-323.
    [45].Stowers I F.Optical Cleanliness Specifications and Cleanliness Verification[R].UCRL-JC-132939,1999.
    [46].Stowers I F,Ravizza D L.The Particle Cleanliness Validation System[R].UCRL-JC-145932,2001.
    [47].彭志涛,景峰,刘兰琴,朱启华,张波,张昆,刘华,张清泉,程晓峰,蒋东镔,刘红婕,彭翰生.自聚焦激光束光束质量评价的功率谱密度方法[J].物理学报,2003;52(1):87-90.
    [48].'Optics and optical instruments—indications in optical drawings," in Draft International Standard ISO 10110 Part 8:Surface Texture(International Organization for Standardization,ISO/TC 172/SC 1/WG 2,Geneva,Switzerland).
    [49].Goodman J W.Statistical Optics[M].New York:John Wiley & Sons,Inc.,1985.
    [50].戚康男,秦克诚,程路.统计光学导论[M].江苏南京:南开大学出版社,1987.
    [51].粟敬钦.高功率固体激光系统光脉冲传输模拟计算的研究[D].博士后出站报告.四川绵阳:中国工程物理研究院,2003.
    [52].Williams W H,Renard PA,Manes K R,et al.UCRL-LR-105821-96-1,1996.
    [53].Sacks R A,Henesian M A,Haney S W,and Trenholme J B.the PROP92 fourier beam propagation code.UCRL-LR- 105821-96-4,1996:207-213.
    [54].薛年喜.Matlab在数字信号处理中的应用[M].北京:清华大学出版社,.
    [55].范滇元.用光线矩阵元表达的光学传递函数[J].光学学报,1981:1(5):395-400.
    [56].苏显渝,李继陶.信息光学[M].北京:科学出版社,2003:42-44.
    [57].Bespalov V I,Talanov V I.filamentary structure of light beams in nonlinear liquids[J].JETP Lett,1966;3(12):307-310.
    [58].赵虹,张朝燕.二阶矩阵的n次方和n次方根[J].数学的实践与认识,2006,36(1):239-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700