高功率激光束中高频位相畸变特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率激光束焦斑特性是影响聚变物理实验的关键因素之一。焦斑特性主要取决于聚焦前的光束位相分布,其中低频位相畸变主要决定焦斑主瓣,中高频位相畸变主要决定焦斑旁瓣。有关低频位相畸变的研究很多,通过低频位相畸变的研究我们掌握了它的传输规律、与焦斑主瓣的关系,还通过限制光学元件低频位相噪声以及利用变形镜对它采取了主动控制措施。对中高频位相畸变来说,由于其传输性质复杂,还没有掌握它的传输规律,以及它与焦斑旁瓣的关系,更无法对它采取控制措施。
     高功率激光束中高频位相畸变主要来源于装置中成百上千个光学元件,如果不加以控制,经过叠加和非线性增长在打靶聚焦时会引起高强度的焦斑旁瓣,高强度的旁瓣打在靶洞边沿会形成等离子体堵孔而导致实验失败。同时高通量运行时中高频位相畸变还有引起自聚焦导致光学元件破坏的风险。因此通过研究高功率激光束中高频位相畸变的传输性质及其对焦斑旁瓣的影响,找到有效控制中高频位相畸变的措施,对实现ICF驱动器打靶是非常有意义的。本文研究的主要内容和主要进步点有以下几个方面:
     (1) 基于B-T理论,通过高功率激光束位相畸变的空间频率非线性增长特性的研究,以及装置打靶对焦斑的物理要求,建立了高中低频位相畸变的划分方法。并根据这种划分方法,划分了神光Ⅲ原型装置高中低频位相畸变的范围。
     (2) 由于实际装置中中高频位相畸变的传输物理过程比较复杂,首先将问题简单化处理,建立了一个简单的局部中高频位相畸变的模型,研究了局部位相畸变对近场调制的影响规律。然后根据神光Ⅲ原型装置的实际情况数值模拟了由光学元件引入的位相畸变对光束近场的影响,并通过分析级间B积分和空间滤波器小孔对近场均匀性的作用,讨论了控制光束近场均匀性的主要措施。
     (3) 基于波前畸变PSD的定义和光束近远场之间的傅立叶变换关系,通过对正弦函数波前的解析分析,得到了在中高频位相畸变的幅度满足Φ<<2时,中高频位相畸变PSD与焦斑旁瓣具有非常好的近似关系,并且这个关系只取决于中高频位相畸变的幅度Φ,与空间频率没有关系。还用数值的方法验证了这个结论是正确的。
     (4) 基于B-T理论研究了各种空间频率成分位相噪声在频谱面上的非线性增长特性,并研究了表征位相畸变各种空间频率成分分布的PSD的线性传输和非线性传输规律。在满足B-T理论成立的条件时,得到了中高频位相畸变传输前后的PSD满足的解析关系式。还从波前PSD的定义出发,用解析的方法分析了中高频位相畸变PSD的叠加规律,初步研究了用部分相干叠加方法、并基于PSD的光学元件技术指标分解技术。
It is well known through many finished physics experiments that the characteristic of focal spot is one of the most crucial factors which determine whether ignition can realize or not. Properties of focal spot are mainly determined by the quality of the beam before focused. In brief, the main of focal spot lies on the low frequency components of wavefront while the tail of it lies on the middle-high frequency components of wavefront. Many researches about the low frequency components of wavefront have come to very useful conclusions, however, for the middle-high components , relatively less work has been done and no useful results have been derived about its nonlinear propagation or its relation with the tail of the focal spot because of its complex transmission. The middle-high frequency components of wavefront in high-power laser system mainly come from hundreds of optics because even extremely small fluctuations on the surface of optics may become negligible by hundreds of addition and nonlinear transmission. The unwanted results from it include pinhole closure and nonlinear small-scale self-focusing which originate from high-intensity tail of the focal spot and nonlinear transmission of the middle-high frequency under high-intensity. So it is very useful to study the transmission of the middle-high frequency and its impact on the tail of the focal spot. The contents are mainly divided into five sections as follows:(1) Dividing the spatial frequency of the phase errors into several districts and making sure the district to study. First, the B-T theory, its assumptions and analysis of phase error's propagation are introduced. Then, basing on the nonlinear propagation of different spatial frequency and the requirements of ICF for the main focal spot, we divide the spatial frequency components of phase errors into several districts for the SG-Ⅲ system and make sure the emphasis to study.(2) Studying the transmission properties of the middle-high frequency components of phase error on the basis of B-T theory. We first study the transmission properties of a local phase error and draw a conclusion that none of the phase errors undergo apparent nonlinear increase except for those whose main spatial frequency components are in the high-gain district. Then, using numerical simulation, we study the impacts of phase error on the near field of the beam in practice and analyze the relation between the A B and the near-field contrast. Finally, we analyze the impacts of pinholes and different resources of phase error on the near field modulation.(3) Impacts of middle-high frequency components of phase error on the tail of focalspot. First, we discuss the relation between the tail of the focal spot and PSD, which describes the
    middle-high frequency phase error, by both analytical and numerical ways. The results show that not spatial frequency but the amplitude of the phase error determines whether the PSD describes the tail of the focal spot completely or not and that the PSD can describe the tail of the focal spot only if the amplitude is small enough.(4) We discuss the regularities of linear and nonlinear transmission of PSD, and using B-T theory, we acquire the analytical expression of PSD after and before the transmission of the phase error.(5) Considering the method by which the low-frequency wavefront RMS is added, we believe that it is useful to add the PSD by the method of partly coherent addition. And basing on the above analysis, we put forward the basic way of decomposing the specifications of optics for the middle-high frequency phase errors.
引文
[1] 郑志坚,ICF基本概念[R],《惯性约束聚变与强激光技术》,(内部资料),1990年
    [2] C. B. Tarter, Inertial Fusion and Higher Energy Density Science in the United States[R], Proc. 2001 Conf.
    [3] W. F. Krupke, Solid State Lasers for Application to Inertial Confinement Fusion (ICF)[R], Proc. SPIE 2633, 1995
    [4] J. A. Palsner, J. R. Murray, The National Ignition Facility for Inertial Confinement Fusion[R], UCRL-JC-IZS6S9, 1997
    [5] J. A. Paisner, J. D. Boyes, S. A. Kumpan, et al. Conceptual design of the national ignition facility_Solid state lasers for Application to ICF[R], June 1995 2-12
    [6] T. S. Perry, B. H. Wilde. NIF System-Design Requirements Nuclear-Weapons Physics Experiments [R]. UCRL-ID-120738, 1995
    [7] 彭翰生,张小民,范滇元,朱健强,高功率固体激光装置的发展与工程科学问题[J],中国工程科学,Vol.3,No.3(2001)
    [8] 郑志坚,ICF实验物理及方法概论[R],2003年暑期讲习班,乐山
    [9] B. M. Van Wonterghem, J. R. Murry, D. R. Speck, et al. Performance of the NIF prototype Beamlet[R], UCRL-JC-115580, 1994
    [10] 中物院激光聚变研究中心激光技术工程部,高功率固体激光驱动器参考文献汇编—美国国家点火装置四束出光实验资料集,2005
    [11] Laboratory Microfusion Capability Phase-Ⅱ Study, prepared by Interscience, Inc. for the Inertial Fusion Division Office of Research and Advanced Technology, ISI-TM9005281, May 31, 1990.
    [12] E. Moses, The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies[J], Fusion Science and Technology, 43, 420, 2003
    [13] J. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive[R], Springer-Verlag 1998
    [14] Michel L. Andre, Status of the LMJ project[R], SPIE Vol. 3047, 38~42
    [15] J. A. McMordie, Conceptual Design of 100TW Solid State Laser System[R], SPIE Vol. 2633, 1995
    [16] Gennadi A. Kirillov, Development of a high-power 300-kJ neodymium laser[R], SPIE Vol. 3047 43~53
    [17] 范滇元,激光驱动技术与光传输[R],2003年暑期讲习班,乐山
    [18] 国家高技术惯性约束聚变委员会,863-416-5专题专家组,神光-Ⅲ原型装置(TIL)概念设计报告,第三版,2000(内部资料)
    [19] 彭翰生,ICF驱动器的发展历史[R],2003年暑期讲习班,乐山
    [20] Joshua E. Rothenberg, Jerome M. Auerbach, Shamasundar, et al. Focal spot conditioning for indirect drive on the NIF[R], Supplement to Proceedings of SPIE, Vol. 3492 65~77
    [21] W. Williams, J. M. Auerbach, Mark A. Henesian, et al., Modeling Characterization of the National Ignition Facility Focal Spot[R] , UCRL-JC-127907, Lawrence Livermore National Laboratory, Livermore, 1998
    [22] Wade H. Williams, Jerome M. Auerbach, Mark A. Henesian, et al., The NIF's basic focal spot for temporally flat pulses[R], Supplement to Proceedings of SPIE, Vol. 3492 22~38, 1998
    [23] 粟敬钦,ICF驱动器激光束聚焦特性的研究,博士学位论文,2001
    [24] J. K. Lawson, D. M. Aikens, R. E. English, et al. Surface Figure and Roughness Tolerances for NIF Optics and Interpretation of the Gradient, P-V Wavefront and RMS Specifications[R], UCRL-JC-134534, 1999
    [25] W. Williams, J. Auerbam J. Hunt, L. Lawson, et al., NIF Optics Phase Gradient Specification[R], UCRL-ID- 127297, Lawrence Livermore National Laboratory, Livermore, 1997
    [26] J. K. Lawson, J. M. Auerbach, R. E. English, Jr., M. A. Henesian, NIF Optical Specifications- The Importance of the RMS Gradien[R], UCRL-JC-130032, 1998
    [27] J. K. Lawson, D. A. Aikens, R. E. English et al., Power Spectral Density Specifications for High-Power Laser Systems[R], UCRL-JC-123105, Lawrence Livermore National Laboratory, Livermore, 1996
    [28] H. Tobben, G. Ringel, F. Kratz, D. -R. Schmitt. The use of power spectral density (PSD) to specify optical surfaces[R], Proc. SPIE 1996 Vol. 2775 pp240-250
    [29] D. M. Aikens, C. R. Wolfe, J. K. Lawson. The use of power spectral density (PSD) functions in specifying optics for the National Ignition Facility[R], Proc. SPIE 1995 Vol. 2576 pp281-292
    [30] J. H. Campbell, R. Hawley-Fedder, C. J. Stolz et al. NIF Optical Materials and Fabrication Technologies overview[R], UCRL-CONF-155471, Lawrence Livermore National Laboratory, Livermore, 2004
    [31] M. L. Spaeth, K. R. Manes, C. C. Widmayer et al. The National Ignition Facility wavefront requirements and optical architecture [R], UCRL-CONF-155442, 2004
    [32] J. M. Auerbach, David Eimerl, David Milam and Peter W. Milonni, Perturbation theory for electric-field amplitude and phase ripple transfer in frequency doubling and tripling[J], Applied Optics, Vol. 36, No. 3, 606~612
    [33] M. Rotter, K. Jancaitis, C. Marshall et al. Pump-Induced Wavefront Distortion in Prototypical NIF/LMJ Amplifiers-Modeling and Comparison with Experiments [R]. UCRL-JC-130044, 1998
    [34] V. I. Bespanlov, V. I. Tanalov, Filamentary structure of light beams in nonlinear liquids[J], JETP Lett., vol. 3, 1966
    [35] 沈元壤,《非线性光学原理》[M],科学出版社,1987
    [36] Fleck J A, Jr Morris J R, Bliss E S, Small-scale self-focusing effects in a high power glass laser amplifier[J], IEEE J Quant Elec., Vol. QE-14, No. 5, 353~363, 1978
    [37] A. J. Campillo, S. L. Shapiro, and B. R. Suydam, Periodic breakup of optical beams due to self-focusing[J], Appl. Phys. Lett., 23(1973) 628-630
    [38] W. W. Simmons, Aberrations and Focusability in Large Solid State Laser systems[R], SPIE, Vol. 2536, 1981
    [39] 粟敬钦,魏晓峰,马驰等,激光束低频畸变波前模型的计算机模拟[J],强激光与粒子束,2000,Vol.12,No.s1,pp163~166
    [40] 邓青华,张小民,景峰等,光学元件低频位相噪声的空间尺度[J],强激光与粒子束,2002,Vol.14,No.4.pp508~510
    [41] 邓青华,张小民,景峰等,激光束低频位相误差叠加规律研究[J],强激光与粒子束,2002,Vol.14,No.1.pp81~84
    [42] 胡东霞,高功率固体激光系统波前校正技术优化研究,硕士学位论文,2003
    [43] J. M. Elson, J. M. Bennett. Calculation of the power spectral density from surface profile data[J], Appl. Opt. 1995 Vol. 34 No. 1 pp201-208
    [44] C. R. Wolfe, J. K. Lawson. The Measurement and Analysis of Wavefront Structure from Large Aperture ICF Optics[R], UCRL-JC-121148, Lawrence Livermore National Laboratory, Livermore, 1995
    [45] D. M. Aikens. The origin and evolution of the optics specification for the National Ignition Facility[R], Proc. SPIE 1995 Vol. 2536 pp2-12
    [46] Dave Aikens, Andre Roussel, Michael Bray. Derivation of preliminary specifications for transmitted wavefront and surface roughness for large optics used in Inertial Confinement Fusion[R], UCRL-ID-121339, 1995
    [47] 许乔,顾元元,柴林.大口径光学元件功率谱密度检测[J],光学学报,2001,vol 11,No.3,pp344-347
    [48] Zhang Rongzhu, Yang Chunlin, Xu Qiao. Analysis on wavefront modulation by PSD[R],强激光与粒子束,vol 16,No.8,pp1021-1024
    [49] 袁静,魏晓峰,粟敬钦等,产生旁瓣的激光波前功率谱密度与焦斑性能分析[J],强激光与粒子束,2000,vol 12,No.s1,pp153-157
    [50] J. K. Lawson, C. R. Wolfe, K. R. Manes, et al. Specification of optical components using the power spectral density function[R], Proc. SPIE 1995 Vol. 2536 pp38-50
    [51] R. Sacks, J. Auerbaeh, E. Bliss et al. Application of adaptive optics for controlling the NIF laser performance and spot size [R]. SPIE Vol. 3492, 1997: 343-354
    [52] R. Zacharias, E. Bliss, M. Feldman et al. The National Ignition Facility (NIF) wavefront control system [R]. SPIE Vol. 3492, 1997: 678-692
    [53] 林晓东,ICF固体驱动器中的小尺度自聚焦效应研究,硕士学位论文,2002
    [54] 王逍,三阶非线性效应对ICF激光驱动器中光束均匀性的影响,硕士学位论文,2003
    [55] D. W. Camp, M. R. Kozlowski, T. M. Shcehan et al. Subsurface damage and polishing compound affect the 355-μm laser damage threshold of fused silica surfaces [R]. UCRL-JC-129301, 1997
    [56] M. Bray, G. Chabassier, Localised wavefront deformations: propagation in non-linear media [R]. SPIE Vol. 3492, 1997: 480-494
    [57] W. W. Simmons, S. Guch, F. Rainer, J. E. Murray. High-energy Spatial Filter for Removal of Small-scale Beam Instabilities in High-Power Lasers[J], IEEE J. Quantum Electron. QE-11, 300(1975)
    [58] J. T. Hunt, J. A. Glaze, W. W. Simmons, et al. Suppression of Self-focusing Through Low Pass Spatial Filtering and Relay Imaging[R], UCRL-79904, 1977
    [59] C. C. Widmayer, J. M. Auerbach, R. B. Ehrlich, et al. Producing National Ignition Facility(NIF)-Quality Beams on the Nova and Beamlet Lasers[R], UCRL-JC-124937(1996)
    [60] J. E. Murray and D. Milam, Spatial Filter Issues[R], UCRL-JC-129751, 1996
    [61] 邓青华,多程放大系统低频静态位相误差校正研究,硕士学位论文,2002
    [62] 戴亚平,光学表面评价参数—功率谱密度的传输性质分析,博士学位论文,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700