光束在级联非线性介质中的传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惯性约束聚变(Inertial Confinement Fusion,ICF)是受控核聚变的常用方法之一,属于当今国际上的重大前沿基础科研领域,对国防科技和未来能源开发有着极为重要的科学意义和应用价值。新一代ICF激光驱动器的主放大器均采用多程放大结构,放大器一般由八片左右的片状放大介质级联而成。因此,理解并掌握光束在级联非线性介质中的传输特性,从而避免光束在空间传输过程中产生过强的能量甚至造成元件损伤,对于ICF驱动器的设计与建造具有非常积极的意义。
     基于此,本文共分两个部分。
     第一部分,首先利用菲涅耳衍射原理和傅里叶变换方法,从理论上推导了高斯光束经过级联非线性介质光传输系统后,任意位置处出射光场振幅分布的解析表达式,并在理论分析的基础上进行了数值模拟计算;分析了解析解和数值计算结果之间的误差;研究了光场强度峰值大小、峰值出现的位置以及光束的束宽和调制因子等参量在级联介质中的变化关系;分析了介质之间不同的空间配置距离对光束传输性能的影响规律。研究表明,在介质排布过程中要尽量错开光强峰值位置,为避免破坏的产生,在实际应用中要对介质排布间距进行有效的优化。
     第二部分,通过数值计算的方法,对级联介质光传输系统的“热像”(hot image)效应进行了深入系统地研究,分析了“热像”的演变规律;研究了衍射物尺寸和介质排布间距对峰值光强的影响程度;得出了“热像”点的强度随介质排布间距的变化规律。研究表明,“热像”的强度与调制平面到介质入射面的距离基本上没有关系,但是与输入光束的强度和衍射物的半径有关;增大间距或者元件非周期性排列能够降低峰值光强,减轻非线性破坏的影响。
Inertial Confinement Fusion (ICF) which is one of the common methods of controlling nuclear fusion plays more important role in the development of new energy resources and national defense science. ICF laser driver consists of many amplifiers. In new-model laser driver, the main amplifier which commonly has many disk amplifier mediums is multi-pass amplifier system. To avoid element damage due to super-high optical power, it is very significant to research the characteristics of optical beam passing through cascade nonlinear elements for ICF driver's design and manufacture.
    The thesis consists of two parts.
    In the first part, the expression of Gaussian beam intensity after passing through cascade nonlinear element in arbitrary location is derived firstly by using Fresnel diffraction principle and Fourier transform method. Besides the theoretical analysis, the numerical result is introduced, and the difference between theoretical and numerical is analyzed. After this, the corresponding relations with the optical beam peak intensity, the peak power location, beam width and modulation factor in cascade elements have been studied, and then, the effect rule on the optical beam transmission characteristics induced by the space between nonlinear components has been discussed. Above studies indicate that the nonlinear element should keep away from peak intensity of optical beam by all means. It is necessary to optimize the space between nonlinear elements for avoiding element damage in practical application.
    In the second part, the formation of the "hot image" has been studied by numerical simulation. The variation effect of hot-image is researched. Then, by analyzing the effect of diffraction beam size and space between mediums to peak intensity, the regulation of the intensity of the "hot image" with different space between mediums has been indicated. It is shown that the intensity of the "hot image" is independent of the distance between modulate plane and input plane of
引文
[1] 王乃彦,聚变能及其未来[M].北京:清华大学出版社,2001
    [2] 马振国,能量危机与受控核聚变[J].大自然探索,13(49):20-26,1994
    [3] 王淦昌,取之不尽用之不竭的理想能源—激光惯性约束核聚变[J].现代物理知识,S1:1-4,1996
    [4] 范滇元,贺贤土,惯性约束聚变能源与激光驱动器[J].大自然探索,18(67):31-35.1999
    [5] Chiyoe Yamonaka, Yoshiaki Kato, Yosukazu Izawa, et al. Nd-doped phosphate glass laser systems for laser-fusion research[J]. IEEE J. Quant. Electron., QE-17(9): 1639-1649, 1981
    [6] M. Tabak, et al. Ignition and high gain with ultra powerful lasers[J]. Phys. Plasma, 1: 1626-1634, 1994
    [7] J. A. Paisner, J. R. Murray. The National Ignition Facility for Inertial Confinement Fusion[R]. Lawrence Livermore National Laboratory, Livermore, CA, UCRL-JC-IZS6S9, 1997
    [8] J. A. Paisner. Utiiity of the National Ignition Facility[R]. Lawrence Livermore National Laboratory, Livermore,CA,NIF-LLNL-94-240, UCRL-PROP-117384, 1994
    [9] 中物院核化所强激光技术室,惯性约束聚变—驱动源技术译文集(1),1996
    [10] W. H. Lowdermilk. Status of the national ignition facility project[C]SPIE, 3047: 16, 1997
    [11] L. A. Michel. Status of the LMJ project[C]. Proceeding SPIE, 3047: 38-42, 1997
    [12] J. A. Mc Mordie, et al. Conceptual design of 100TW solid state laser system[C]. SPIE, 2633, 1995
    [13] Gennadi A. Kirillov. Development of a high-power 300kJ neodymium laser[C]. SPIE, 3047: 43, 1997
    [14] Yujun Zhao. Development of ICF laser driver technology in China[C]. SPIE, 3047: 54, 1997
    [15] 国家高技术惯性约束聚变委员会,863-416-5专题专家组,神光—Ⅲ原型装置(TIL)概念设计报告,第三版,2000
    [16] J.A. Paisner, E. M. Campbell, W. J. Hogan, et al. The National Ignition Facility Project[J]. Fusion Technology, 26: 755-761, 1994
    [17] W. H. Lowdermilk, J. E. Murray. The Multipass amplifier: theory and numerical analysis[J]. Appl. Phys., 51(5): 2436-2444, 1980
    [18] J. E. Muuray. Off-axis multi-pass as a large aperture driver stage for fusion lasers[J]. Appl. Opti., 20(5):826-834, 1981
    [19] 彭翰生,张小民,范滇元等。高功率固体激光装置的发展与工程科学问题[J].中国工程科学,3(3),2001
    [20] W. H. Lowdermilk, J. E. Murray. The Multipass amplifier: theory and numerical analysis[J]. Appl. Phys., 51(5,): 2436-2444, 1980
    [21] 范滇元.高功率多程放大器[J].激光,7(9):1-6,1980
    [22] J.E. Murray. Off-axis multipass amplifier as a lager aperture driver stage for fusion lasers[J]. Appl. Opt., 20(5): 826-834, 1981
    [23] L. M. Frantz, J. S. Nodvik. Theory of pulse propagation in a laser amplifier[J]. Appl. Phy., 34(8): 2346-2349, 1963
    [24] B. M. Van Wonterghem, C. E. Barker, J. R. Murray, et al. System description and initial performance results for beamlet[R]. UCRL-LR-105821-95-1:1-17, 1995
    [25] J.T. Hunt, K. R Manes, P. A. Renard, et al. Hot Images from Obscurations[J]. Appl. Opt., 32(30): 5973-5982, 1993
    [26] 景峰,张小民,朱启华等。钕玻璃介质中强激光束传输特性的初步研究[J].强激光与粒子束,12(5):551-555,2000
    [27] N. B. Baranova, N. E. Bykovskii, B. Ya. Zel'doyich, et al. Diffraction and self-focusing during amplification of high-power light pulses[C]. Soy. J. Quan. Elec., 4: 1362-1366, 1975
    [28] W. H. Williams, P. A. Renard, K. R. Manes, et al. Modeling of self-focusing experiments by beam propagation codes[R]. UCRL-LR-105821-96-1:1-7, 1996
    [29] C. C. Widmayer, D. Milam, S. P. deSzoeke, et al. Nonlinear formation of holographic images of obscurations in laser beams[J]. Appl. Opt., 36(36): 9342-9347, 1997
    [30] C. C. Widmayer, M. R. Nickels, D. Milam, et al. Nonlinear formation of holographic images of obscurations in laser beams[J]. Appl. Opt., 37(21): 4801-4805, 1998
    [31] C. C. Widmayer, L. R. Jones, D. Milam, et al. Measurement of the nonlinear coefficient of carbon disulfideusing holographic self-focusing[J]. Non. Opt. Phys. & Mate., 7(4): 563-570, 1998
    [32] M.D. Feit, C. C. Widmayer, W. H. Williams, et al. The NIF's assessment of the optical damage threat for fiat-in-time pulses[C]. Proc. SPIE 3492 Suppl.: 39-48, 1999
    [33] M.D. Feit, W. H. Williams, C. C. Widmayer, et al. The NIF's assessment of the optical damage threat for shaped ICF pulses[C]. Proc. SPIE 3492 Suppl.: 61-64, 1999
    [34] Y. G. Francois, M. D. Feit, M. R. Kozlowski, et at. Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles[J]. Appl. Opt., 39(21): 3654-3663, 2000
    [35] S.C. Wen. D.Y. Fan. Small-scale self-focusing of intense laser beams in nonlinear media with loss[J]. Chinese Journal Of Lasers., B9-4: 356, 2000
    [36] 林晓东,ICF固体驱动器中的小尺度自聚焦效应研究,硕士学位论文,2002
    [37] 粟敬钦,景峰,谢良平等.强激光束非线性“热像”效应的理论分析[J].中国国防科学技术报告,2002
    [38] 谢良平,赵建林,粟敬钦等.位相调制产生“热像”效应理论研究[J].物理学报,53(7),2004
    [39] 王逍,三阶非线性效应对ICF激光驱动器中光束均匀性的影响,硕士学位论文,2003
    [40] V.I. Bespanlov, V, I. Tanalov. Filamentary structure of light beams in nonlinear liquids[C]. JETP Lett.,3, 1966
    [41] J. A. Fleck, Status of laser computer code development[R]. UCRL-50021-71: 29-30, 1971
    [42] J. A. Fleck, Jr., J. R. Morris, E. S. Bliss, Small-scale self-focusing effects in a high power glass laser amplifier[J]. IEEE J. Ouan. Elec., QE-14(5): 353-363, 1978
    [43] W. W. Simmons, J. T. Hunt, W. E. Warren, et at. Light propagation through lager laser systems[J]. IEEE J.Ouan. Elec., QE-17(9): 1727-1743, 1981
    [44] 胡巍,傅喜泉,郭弘等.Bespalov-Talanov理论在高功率激光器中的应用研究(内部资料),华南师范大学传输光学实验室,2000
    [45] T. R. Taha, M. J. Ablowitz. Analytical and numerical aspects of certain nonlinear evolution equations, Ⅱ. Numerical, nonlinear Schrodinger equation[J]. J. of comp. Phys., 55: 203-230, 1984
    [46] J. T. Hunt, W. E. Warren. Light propagation through large systems[J]. IEEE J. Quan. Elec., QE-17: 1727-1743, 1981
    [47] R.A. Sacks, M. A. Henesian, S. W. Haney, et al. The PROP92 fourier beam propagation code[R]. UCRL-LR-105821-96-4: 1-7, 1996
    [48] 粟敬钦.高功率固体激光系统光脉冲传输模拟计算的研究(博士后研究工作报告),绵阳:中国工程物理研究院,第二章,2003
    [49] 游璞,于国萍.光学[M].北京:高等教育出版社,2003.7
    [50] Govind P. Agrawal, Nonlinear Fiber Optics (Third Edition)[M]. Beijing: Publishing House of Electronics Industry, 129-163, 2002
    [51] 王仕墦,信息光学理论与应用[M].北京:北京邮电大学出版社,2004.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700