岩性油气藏地震预测技术与地震沉积学分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩性油气藏地震预测技术与地震沉积学分析应用研究—旨在应用地震沉积学分析方法及岩性油气藏地震预测技术,解决大牛地岩性油气藏勘探开发中面临的一些实际问题。
     论文第一部分是岩性油气藏地震预测技术应用研究,分析了井控提高分辨率、谱反演提高分辨率、子波分解与重构;高阶累量分析;有色反演;以及含气性检测等一系列配套技术的原理及应用效果。第二部分采用地震沉积学研究思路,通过单井沉积相标定将地层切片图—地震属性相图转换成沉积相平面图,从而进行有利岩性油气藏发育区预测。第三部分在前两部分研究基础上结合实际资料特点和地质任务设计了岩性油气藏预测技术路线和研究步骤并进行了具体研究,最后通过实钻井跟踪分析对预测效果给出验证。主要研究成果与结论如下:
     1、子波分解与重构技术是压制煤层强反射突出太2砂岩反射的有效技术;井控提高分辨率技术对波形及振幅相对关系保持较好,可用于波形、振幅、频率和相位类属性计算及波阻抗反演,但提高分辨率能力有限;谱反演技术提高分辨率能力强,但振幅相对关系保持度不如井控提高分辨率技术,处理结果只能用于波阻抗反演。
     2、检测储层含气后“高频衰减,低频增加”频谱特征的面积差值技术对含气性比较敏感、多解性较少,瞬时带宽技术对含气异常检测有作用,但存在一定多解性。
     3、不依赖模型层位不依赖子波提取的有色反演技术适合横向变化快的河流相岩性油气藏预测,储层边界较清楚,但反演结果是相对阻抗,加入低频信息后可用于砂体雕刻和砂体厚度预测,但其纵向分辨率较低。
     4、提出了一种基于地震资料高阶统计量分析的储层非均质性研究方法,该方法在大牛地D75区块储层非均值性研究中取得明显效果。
     5、以确定沉积等时面、建立等时地层格架为核心内容;以形成地层切片体、最小等时单元内属性提取为核心技术、以沉积微相划分和有利岩性油气藏发育区优选及相控砂体雕刻为核心目的的地震沉积学分析方法,是岩性油气藏预测的有效工具。
     6、D90井钻探结果证实了本文有利岩性油气藏发育区预测结果、太2段和盒1段波阻抗反演预测结果和储层厚度分布预测结果的正确性。
The application of seismic prediction technology and analysis of seismic sedimentology with lithology,aim at resolving the practical problems in lithologic reservoir exploration and development of Daniudi gas field by using seismic sedimentology analysis method and seismic prediction technology.
     The first part of the paper researches the application of a series of matching technology, including improving resolution under wells controlling, improving resolution by spectra inversion, subtracting coal seam by wavelet decomposition and reconstruction, detecting reservoir heterogeneity by high-order statistic of seismic data, inversion of seismic data by using colored inversion, and gas bearing detection. The second part uses seismic sedimentology analysis method to transform the strata slice graph (seismic attribute graph) to sedimentary facieses planar graph by calibrating the single well sedimentaty facies and to predict the beneficial developed area of lithologic reservoir. The third part designs technical route and research steps of predicting lithologic reservoir based on front two parts and combining with actual data and geological tasks, and finally verifies the prediction effect by tracking analysis of a following well. The main research results and conclusions are as follows:
     1. Wavelet decomposition and reconstruction technique is effective to highlight the sandstone reflection of Taier member by suppressing the strong reflection of coal seam. Resolution improving under wells controlling technique is effective to maintain the relativeness of waveform and amplitude although the ability of resolution improving is limited. It can be used for the attribute calculating of waveform, amplitude, frequency and phase. Spectral inversion technique is better in improving resolution and no better than the prior in maintaining the relativeness of amplitude. The processing results can only be used for acoustic impedance inversion.
     2. The spectrum signature of gas bearing reservoir is characterized by attenuating in high frequency and increasing in low frequency. The area differential technique is sensible to gas bearing reservoir and has little ambiguity. The instant bandwidth technique has ambiguity in detecting gas bearing abnormity although it is effective.
     3. The colored inversion technique, which is not dependent on the model horizon and wavelet extraction, is suitable for predicting lithologic reservoir in fluvial facieses which lateral changes is fast. The predicted border of reservoir is clear. The inversion result, which is relative impedance, can be used to sand body depicting and sand body thichness predicting after adding low frequency information. But the vertical resolution is relatively low.
     4. This paper presents a reservoir heterogeneity research method basing on the high-order cumulant analysis of seismic data. Theoretical model and actual data proved the high-order cumulant attribute is effective for detecting the reservoir horizontal heterogeneity.
     5. The analysis method of seismic sedimentlogy is an effective tool of lithology reservoir prediction. The core content is determining the sedimentary isochronous surface and establishing isochronous stratigraphic framework. The core technology is forming strata slice cube and extracting attribute in minimal isochronous unit. The core purpose is dividing sedimentary micro-faces, optimization of beneficial developed area of lithologic reservoir, and sand body depicting under sedimentary facies control.
     6. The drilling result of D90 well proves the validity of favorable developed area of lithology reservoir predictions, the acoustic impedance inversion results of Taier member and Heyi member, and reservoir thickness distributing prediction.
引文
A. H., Balch. Color sonagrams - A new dimension in seismic data interpretation. Geophysics, Soc. of Expl. Geophys., 1971, 36: 1074-1098.
    Alistair R. Brown. Seismic attributes and their classification. The Leading Edge, 1996, 10: 1090.
    Alistair R. Brown. Understanding seismic attributes. Geophysics, 2001, 66(1): 47–48.
    A. Grossman, J. Morlet. Decomposition of hardy function into square integrable wavelets of constant shape. SIAM J Math. Anal., 1984, 15: 723-726.
    A. Grossman, J. Morlet. Cycle-octave and related transforms in seismic signals analysis. Geoexploration, 1985, 23: 85-102.
    Bahorich, M. S., and Farmer, S. L. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. 65th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1995: 93-96.
    Bruce S. Hart. Validating seismic attribute studies: Beyond statistics. The Leading Edge, 2002, 10: 1016-1021.
    Brown A.R,Dahm C.G,Graebner R J . A stratigraphic case history using three-dimensional seismic data in the Gulf of Thailand [ J ]. Geophysical Prospecting ,1981,29 (3) :327~349
    Barnes, A. E. Genetic classification of complex seismic trace attributes. 67th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1997: 1151-1154.
    Cooke, D., Ball, V., Muryanto, T., O'Donnell, G. and Sena, A. What is the best seismic attribute for quantitative seismic reservoir characterization. 69th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1999: 1588-1591.
    CharlesH.Blumentritt, Kurt J.Marfurt,and E.Charlotte Sullivan. Volume-based curvature computations illuminate fracture orientations—Early to mid-Paleozoic,Central Basin Platform, west Texas
    Dalley, R. M., Gevers, E. C. A., Stampfli, G. M., Davies, D. J., Gastaldi, C. N., Ruijtenberg, P. A. and Vermeer, G. J. O. Dip and azimuth displays for 3D seismic interpretation. First Break, 1989, 7(3): 86-95.
    Friedmen M,,Sunders J.E.,1978,Principles of sedimentology,Wiley, New York,p729 John Eastwood. The attribute explosion. The Leading Edge, 2002, 10:994
    Li,Y., Goodway, B. and Downton,J.,2003, Recent advances in application of AVO to carbonate reservoirs:Recorder,25,No.9,23-26.
    Liu,Y. and Schmitt,D.R.,2003,Amplitude and AVO responses of a single thin bed: GEOPHYSICS, Soc. of EXPL.Geophys.,68,1161-1168.
    Luo, Y., Higgs, W. G. and Kowalik, W. S. Edge detection and stratigraphic analysis using 3-D seismic data. 66th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1996: 324-327.
    Lyell C.,1837,Principles of Geology,London;Jhn Murry.
    Ma,J.,2003,Generalized elastic impedance, 73rd Ann. Internat.Mtg.:Soc. Of Expl.Geophys.,254-257.
    Martinez R D. Wave propagation effects on amplitude variation with offset measurements: A modeling study. GEOPHYSICS,1995,58(4):534-543.
    Milkereit, B. Decomposition and inversion of seismic data - An instantaneous slowness approach. Geophys. Prosp., Eur. Assn. Geosci. Eng., 1987, 35: 875-894.
    N. A., Anstey. Presidential address - How do we know we are right. Geophys. Prosp., Eur. Assn. Geosci. Eng., 1973, 21: 407-411.
    Per Avseth, Tapan Mukerji, Gary Mavko. Quantitative seismic interpretation [J].Cambridge University, 2005
    Quincy Chen and Steve Sidney. Seismic attribute technology for reservoir forecasting and monitoring. The Leading Edge, 1997, 16(5): 445-456
    Radovich, B. J. and Oliveros, R. B. 3-D sequence interpretation of seismic instantaneous attributes from the Gorgon Field. The Leading Edge, 1998, 17(09): 1286-1293.
    Rosa A L,Ulrych T J. Processing via spectral modeling. Geophysics,1991,56 (8):1244~1 251
    Scheuer, T. E. and Oldenburg, D. W. Local phase velocity from complex seismic data. Geophysics, 1988, 53: 1503-1511.
    Spencer T W. Seismic wave attenuation in nonresolvable cyclic stratification. Geophysics,1977,42(5):939~949
    Stark TJ. Unwrapping instantaneous phase to generate a relative geologic time volume [J ]. Expanded Abstracts of 73rd Annual International SEG Meeting , 2003, 1707~1 710
    Stark T J. Relative geologic time (age) volumes—Relating every seismic sample to a geologically reasonable horizon[J ]. The Leading Edge , 2004 , 23 (10) : 928~932
    Taner, M. T., Koehler, F. and Sheriff, R. E. Complex seismic trace analysis. Geophysics, Soc. of Expl. Geophys., 1979, 44: 1041-1063.
    Taner, M. T., Schuelke, J. S., O' Doherty, R. and Baysal, E. Seismic attributes revisited. 64th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1994: 1104-1106.
    Tingdahl K,de Groot P, HegglandR.Semi2automated object detection in 3D seismic data [ EB/OL].http://www2.dgb-group.com/images/stories/PDF/offshore_ 2001_tingdahl_obj. pdf. Vail P R,Mitchum R M,ThompsonⅢS.Global cycles of relative changes of sealevel[J] .AAPG Memoir26,1977,51-212
    Vail P R .Seismic stratigraphy interpretation procedure[J] .AAPG Studies in Geology 27,1988,1-10
    Zeng Hongliu ,Backus M M ,Barrow K T ,et al. Facies mapping from three dimensional seismic data :potential and guidelines from a tertiary sandstone-shale sequence model , Powerhorn Field [ J ]. AAP G Bulletin , 1996 , 80 (1) :16~46
    Zeng Hongliu , Backus M M , Barrow K T , et al . Stratal slicing , Part I : Realistic 32Dseismic model[J ]. Geophysics ,1998 ,63 (2) :502~513 12 Zeng Hongliu , Henry S C , Riola J P. Stratal slicing , Part II : Real 32D seismic data [J ]. Geophysics ,1998 , 63 (2) : 514~521
    Zeng Hongliu , Hentz T F , Wood L J . Strata slicing of Miocene2Pliocene sediments in Vermilion Block Shoal area , off shore Louisiana [ J ]. The Leading Edge ,2001 ,20 (4) :408~418
    Zeng Hongliu. Ambrose W A. Seismic sedimentology and regional depositional systems in Mioceno Norte , Maracaibo , Venezuela [ J ]. The Leading Edge , 2001 ,20 (11) :1260~1269
    Zeng Hongliu. Stratal slicing makes seismic imaging of depositional systems easier.[EB/OL]. Zeng Hongliu , Hentz T F ,High-frequency sequence stratigraphy from seismic sedimentology : Applied to Miocene,Vermilion Blook 50,Tiger Shoal area,offshore Louisiana. AAPG Bulletin,2004,88(2):153~174
    Aki & Richards PG(美)著,李钦祖,邹其嘉译,《定量地震学—理论和方法》,地震出版社,1987
    Arnold,R.and Chiburis,E.,1998, AVO–研究现状及未来发展,《第68届勘探地球物理学家学会论文集》, 248-250.
    Barnes,A., 1999,地震属性:过去、现在、未来,《第69届勘探地球物理学家学会论文集》, 892-895.
    John B.Sangree and Robert M.Sneider著,杨贝德,黄宗范等译,《层序地层学》,石油地球物理勘探局,1990
    戴永寿,郑德玲,魏磊,霍志勇.高阶统计量地震子波估计建模.石油地球物理勘探,2006,41(5):514~518,540
    董春梅,张宪国,林承焰,地震沉积学的概念、方法和技术,沉积学报,2006,(5),84-90
    董春梅,张宪国,林承焰.有关地震沉积学若干问题的探讨,石油地球物理勘探, 2006年04期,15,63-67,150
    高云,宋维琪,刘仕友,杨凯.地震资料高阶累积量相关法砂体预测,地震地质,2007,29(1):88~94
    高静怀,汪文秉,朱光明等,小波变换与信号瞬时特征分析,《地球物理学报》,1997,40(6): 821-832
    杜金虎等,《中国东部裂谷盆地层岩性油气藏》,地质出版社,2007
    顾家裕;张兴阳;油气沉积学发展回顾和应用现状,沉积学报,2003(1):37-141
    Hongliu Zeng,T.F.Hentz,胡廷惠朱莜敏刘东.地震沉积学的高精度层序地层学应用:以路易斯安那近海老虎滩地区50号中新统弗米利恩区块为例,世界地震译丛2007,(3)56-75
    黄锋,李志荣,唐玲等.利用吗地震资料进行沉积相分析,物探与化探计算技术,2003,25(3),197-200
    胡广书.数字信号处理—理论、算法与实践[M].北京:清华大学出版社,2000:462-463
    纪有亮.陆相断陷湖层序地层学[M] .北京:石油工业出版社,1996.
    贾振远,蔡忠贤.层序与旋回.地球科学-中国地质大学学报.1997,22(5):449-558.
    姜在兴,《沉积学》,石油工业出版社,2003
    框立春等,《油气层序地层学新进展》,石油工业出版社,2006
    李庆忠,《走向精确的勘探道路》,石油工业出版社,1999
    李庆忠,《岩性油气田勘探》,中国海洋大学出版社,2005
    陆基孟主编,《地震勘探原理》,山东东营:石油大学出版社,1993
    李宏兵,曹宏等,小波尺度域含气储层地震波衰减特征,《地球物理学报》,2004,47(5): 892-898
    李宏兵,曹宏等,应用小波尺度域地震波衰减属性检测气层,《石油地球物理勘学,2007,18(1):71-73,77
    李杏莉,王彦春,基于地震资料高阶统计量的含气储层非均质性研究,《石油地球物理勘探》,2009,44(3): 314~318
    陆永潮,杜学斌,陈平,向奎,李涛.精细勘探的主要方法体系—地震沉积学研究,石油实验地质, 2008(1),5-9
    牛嘉玉等,《岩性和地层油气藏-地质与勘探》,中国石油大学出版社,2007
    Per Avseth(挪),Tapan Mukerji(美),Gary Mavko(美)著,李来林等译,陈小宏校,《定量地震解释》,石油工业出版社,2009
    Sherif, R.E. (美),Geldart, L.P. (加)初英等译.勘探地震学.北京:石油工业出版社,1999
    石玉梅,刘天放,谢桂生.三阶累积量法在断层检测和落差估计中的应用.地质与勘探,2001,37(4):73~75
    石殿祥,李岩.基于高阶累积量的非最小相位地震子波提取.石油地球物理勘探,1999,34(5):491~499
    唐斌,尹成.基于高阶统计的非最小相位地震子波恢复.地球物理学报,2001,44(3):404~410
    魏嘉.地质建模技术[J ].勘探地球物理进展, 2007,30(1):1~6
    魏嘉.定量地震解释离我们有多远[J ].勘探地球物理进展,2006 ,29 (6) :433~437
    王家豪,王华等.层序地层学应用于古地貌分析.地球科学-中国地质大学学报.2003,28(4):425-430
    王永刚,乐友喜,张军华.《地震属性分析技术》,中国石油大学出版社,2006
    王书明,朱培民,李宏伟,等.地球物里学中的高阶统计量方法[M].北京:科学出版社,2006
    吴如山,安艺敬,主编.李裕澈,卢寿德等译.《地震波散射与衰减》,地震出版社,1993
    马在田,曹景忠,王家林,等编.《计算地球物理学概论》,同济大学出版社,1997
    刘企英.《利用地震信息进行油气预测》.石油工业出版社,1994
    吴因业等,《中国层序地层学导论》,石油工业出版社,2005
    辛可锋,李振春,王永刚等.地层等效吸收系数反演.石油物探,2001 ,40 (4) :14~20
    徐怀大.层序地层学原理[M] .北京:石油工业出版社,1993.
    熊晓军,尹成,张白林,丁峰,李大卫.高阶统计量油气检测方法.地球物理学报,2004,47(5):920~927
    刑贞贞,韩立国,等.高阶统计量方法在地震信号分析中的应用.吉林大学学报(地球科学版),2007,37
    许伯勋,白旭滨,于常青,《地震勘探信息技术》,地质出版社,2001
    姚逢昌,甘利灯,地震反演的应用与限制.石油勘探与开发,2000,27(2):53~56
    殷八斤,《AVO技术的理论与实践》,石油工业出版社,1996
    尹成,伍志明,邓怀群.高阶统计量方法在地震勘探中的应用.地球物理学进展,2003,18(3):546~550
    于兴河,《碎屑岩西油气储层沉积学》,石油工业出版社,2008
    印兴耀,韩文功等,《地震技术新进展》(上、下),中国石油大学出版社,2006
    朱筱敏.层序地层学[M] .北京:石油工业出版社,1999
    郑晓东, AVO曲线拟合滤波.地质信息技术,1990,6(1):1-14
    张贤达,《时间序列分析-高阶统计量方法》,清华大学出版社,1996
    赵澄林,朱筱敏,《沉积岩石学》,石油工业出版社,2005
    张厚福,张万选主编,《石油地质学》,石油工业出版社,1997
    赵政章,赵贤正,王英民等,《储层地震预测理论与实践》,科学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700