基于散焦显微图像的三维重构方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于体视显微镜(Stereo light microscope,SLM)的显微立体视觉系统已用于微操作、微装配等领域,作用之一是通过视觉反馈实现二维或三维的高精度自动定位,引导机械手完成指定的操作;作用之二是挖掘立体视觉中包含的三维深度信息,用于三维信息的测量。本文研究了SLM显微立体视觉的成像机理、图像预处理、图像配准和利用聚焦评价函数进行深度恢复等主要内容。研究的结果可用于小尺度对象的三维信息测量和微操作、微装配中的三维定位。
     本文研究的内容是使用单目显微镜进行物体表面的三维重构。由于显微镜景深有限,无法通过一幅图像得到完整清晰的物体表面信息,所以通过物体在Z坐标上的移动,显微镜对物体表面进行层层扫描,得到显微序列图像,同时得到每幅图像初步的Z坐标值;然后提取出每幅图像中的清晰区域,融合成一幅图像,得到一幅全聚焦图像;另一方面,将序列图像中的每幅图像清晰部分进行聚焦测度计算,通过对聚焦测度计算结果进行高斯插值得到每一点的深度;最后使用深度信息对显微样本进行三维重构,得到显微样本的三维模型。
     本文采用了显著边界特征匹配法,对图像进行自动配准,经过分析和实验表明此配准方法能够达到高精度图像融合的要求;其次,分析了小波算法在图像分解与重构中的原理及其融合规则,并在此基础上采用了一种全新的基于能量规则的小波融合序列图像的方法,在实验中表明了小波能量融合的方法能相当好的抑制图像融合失真问题;然后,本文使用计算图像熵的方法对图像清晰度进行评定,效果良好,同时加以均值和标准差两种评价标准对本文所有的融合实验结果进行了综合的评价,避免单一参量的片面性;最后,采用高斯插值算法来估计精确聚焦位置,从而得到显微样本的物体表面深度信息,进行图像的三维重构。
     本文提出了根据提取聚焦部分图像的小波参数,分析聚焦部分和模糊区域在小波变换域内图像能量分布密度的差异,以其高频部分与低频部分的比值为特征参照值,取其最大值为新的小波系数的融合规则。此方法能很好的判断、剔除成像中散焦部分及解决一些融合中的失真问题,比常规的基于区域的以像素点取最大值的小波融合方法有明显的优势。根据单目显微三维重构的特性,采用了高斯插值算法来估计精确聚焦位置,从而得到显微样本的物体表面上每一点的深度信息,得到目标物体的三维模型。
Micro stereovision based on stereo light microscope (SLM) is used insome Micro-domains such as micromanipulation, microassembly, etc.There are mainly two purposes of micro stereovision: the first is that it isused to auto position in micromanipulation and microassembly by thevision feedback and helps the mechanical hand to complete-the expectedoperation; the second is that it contains the 3D depth information which isused in the measurement of 3D attributes. In this paper, some importantissues correspondent with micro stereovision based on SLM are studied forsolving problems of micro positioning and micro measurement, such as themathematical description of the imaging process of SLM, the imagepreviously treatment, the image matching algorithm and a depth estimationalgorithm interpolates a small number of focus measure values to obtainaccurate depth estimates etc. Results derived from this paper can be used to3D measurements of objects with a small scale and 3D positioning inmicromanipulation, and microassembly.
     The main content of this paper is reconstructs the object surface to 3Dsurface use one-eye microscope. We can't obtain the clear and allinformation from one image because of the limitation of the microscopicfocal length. We displace the object in the Z axial so we can obtain a sequence of object images, then we pick-up the focus area in every imageand fusion them in a image. The sum-modified-Laplacian (SML) operatoris developed to provide local measures of the quality of image focus. Adepth estimation algorithm interpolates a small number of focus measurevalues to obtain accurate depth estimates information to reconstruct theobject surface to 3D surface.
     Firstly, the paper adopts the edge characteristic image registration, andthe practical experiments prove this auto-matching method is effective.Secondly, the research analyses the principle of image decomposition andreconstruction based on wavelet-pyramid method. From the former way thepaper proposes a new wavelet transform algorithm based on the energyfusion rules. And the new way can remove the defocused areas showed bythe experimental result. And through the entropy and others evaluation, thecomprehensive evaluation result was achieved. Thirdly, in order to obtain3D structures of the object to reconstruction the object surface to 3D image,Gaussian interpolation algorithm has been selected to interpolate a smallnumber of focus measure values to obtain accurate depth estimates.
     Based on the different energy distributions of the low-frequencyband and the high-frequency band, which are achieved by discrete waveletstransform, an original method for wavelet coefficient combination isproposed in this paper. It takes the ratio of the two bands as a characteristicvalue and the maximum value is chosen as an integration rule for determining new wavelet coefficients. This method can remove thedefocused areas and reduce the distortion of the fused images. Finally, theadvantage of the proposed fusion approach is demonstrated clearly bypractical experiments, by comparison with conventional area based pixelselection method. Because of the characteristic of acquire images use onesensor, Gaussian interpolation algorithm has been selected to interpolate asmall number of focus measure values to obtain accurate depth estimates to3D reconstruction.
引文
[1] 姜志国,韩冬兵,谢凤英,袁天云.基于全自动显微镜的图像新技术研究[J].中国体视学与图像分析,2004,9(1):31-36
    [2] 章毓晋.图像理解与计算机视觉[M].北京:清华大学出版社,2000
    [3] L.G. Roberts. Machine perception of three-dimensional solids, In Optical and Electro-optical Information Processing, J.T.Tippett etal. MIT Press, 1985
    [4] D. Marr. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information[M]. H.Freeman and Company, 1982.
    [5] 贾云得.机器视觉[M].北京科学出版社,2000
    [6] 游素亚,徐光佑.立体视觉的研究与进展[J].中国图像图形学报,1997,2(1):17-23.
    [7] 刘江华,陈佳品,程君实.双目视觉平台的研究[J].机器人技术与应用,2002,1:36-40.
    [8] D. Gurwitz, E. Sadot. More on the benefit of a third eye machine stereo perception[J]. Proc, of Int. Conf. Pattern Recognition, 1986:9 66-968.
    [9] 邱茂林,马颂德,李毅.计算机视觉中摄像机标定综述[J].自动化学报,1999,26(1):43-55.
    [10] Hiroshi Ishikawa. Multi-scale feature selection in stereo[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1999, June 23 -25, Fort Collins, Colorado, 1999:1-7.
    [11] 罗成平,龚沛增.图像匹配技术[J].微型电脑应用,2000,16(3):26-30。
    [12] 朱心雄.自由曲曲面造型技术[M].北京:科学出版社,2000.
    [13] 来新民,黄田,曾子平,林忠钦。基于NURBS的散乱数据点自由曲面重构[J].计算机辅助设计与图形学学报,1999,11(3):433-436
    [14] 柯映林,周儒荣.实现3D离散点优化三角划分的三维算法[J].计算机辅助设计与图形学学报,1994,6(4):241-248
    [15] J.E. Eldund. VLSI implementation of a focal plane image processor[J]. IEEE Trans. on VLSIS ystems, 1996, 4(3):322-335.
    [16] Sano T, Nagahata H, Yamamoto H. Automatic micromanipulation system using stereoscopic microscope[A].I EEE Instrumentation and Measurement Technology Conference[C]. 1999:327-331
    [17] 陈璐云,李玉和,李庆祥.微器件装配系统机器视觉的实现[J].仪器仪表学报,2001,22(3):257-258
    [18] D.M. Freeman, C. Q. Davis. Using video microscopy to characterize micromechanics of Biological and Manmade Micromachines [J]. Technical Digest of the 1996 Solid-State Sensor and Actuator Workshop, Hilton Head Isl., June 3-6, 1996, 161-167
    [19] G. E LaVigne, S. L. Miller. A performance analysis system for MEMS using automated imaging methods [J]. IEEE international Test Conference. Washington DC, Oct. 18-23, 1998, 442-44
    [20] C.Q. Davis, D. M. Freeman. Using a light microscope to measure motions with nanometer accuracy[J]. Optical Engineering, 1998:1299-1304.
    [21] 徐征,刘冲,王立鼎等.实时显微立体成像系统中闪烁问题的分析和解决[J].仪器仪表 学报增刊,2001,22(4):206-209
    [22] 王英翘,徐征,刘冲等.一种基于操纵杆控制微操作系统三维运动的方法[J].光学精密工程,2001,9(6):553-556.
    [23] 孙立宁,陈立国,刘品宽.微操作机器人显微视觉系统若干问题[J].光学精密工程,2002,10(2):171-175
    [24] S.K. Nayar. Shape from focus system [J]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Champaign, Illinois, 1992,302-308.
    [25] W.E.L.Grimson. Surface Consistency constrsints in Vision [J]. CVGIP, 1983, 24:28-51
    [26] D. Terzopoulos. The computer of visible: Surface Representations [J]. IEEE Trans. on PAMI, 1988, 10(40):417-438.
    [27] G.Farin. Triangular Bernstein-Bezier patches [J]. CAGD, 1986, 13:83-127.
    [28] 孙家广,杨长贵.计算机图形学(新版)[M].北京:清华大学出版社,1998.
    [29] 曹毓秀,孙延奎,唐龙,唐泽圣.三角域Bezier曲面若干算法研究[J].清华大学学报(自然科学版)2001,41(7):83-86.
    [30] W. Sun, C. Bradley, Y. F. Zhang, H. T. Loh. Cloud data modeling employing a unified, non-redundant triangular mesh[J]. Computer-Aided Design, 2001, 33:183-193
    [31] G. Farin. Curves and surfaces for computer aided geometric design: A practical guide. Academic Press[M], 1992
    [32] B.R. Piper. Visually smooth interpolation with triangular B-B patches [M]. Geometric Modeling: Algorithms and Trends. G.Farin, Siam, Philadelphia, USA, 1987.
    [33] 邱阳,白立芬,李庆祥.基于边缘和区域联合匹配的立体视觉新方法[J].仪器仪表学报,2001,22(3.增刊):255-257.
    [34] 章毓晋.图像工程:图像处理和分析(M].北京:清华大学出版社,2000.
    [35] 阎徉福,高岳,苏学刚,魏建中,王仲春,一种多重图像融合系统的电配准技术[J],光学技术,1999(3),14-16
    [36] 马慧军等,色素痣三维结构的实现与研究[J],CT理论与应用研究,2002,vol.11,no.1,pp.26-29,
    [37] J.B.A. Maintz, M.A. Viergever, A survey of medical image registration [J], Med. Image Anal. vol.2 (1) (1998) 1-36.
    [38] R.J. Althof, M.G.J. Wind, J.T. Dobbins, A rapid and automatic image registration algorithm with sub pixel accuracy [J], IEEE Trans. Med. Imaging vol. 16 (3) (1997) 308-316.
    [39] A. Rosendfeld, M. Thurston, Edge and curve detection for visual scene analysis [J], IEEE Trans. Comput. vol.20 (1971) 562-569.
    [40] 李勤,单细胞微弱荧光图像探测及其融合处理研究,博士学位论文,北京理工大学,1998
    [41] Z. Zhang, R.S. Blum, A categorization of multiscale decomposition-based image fusion schemes with a performance study for a digital camera application[J], Proc. IEEE 87 (8) (1999) 1315-1326
    [42] T. Ranchin, L. Wald, Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation [J], Photogram. Eng. Remote Sensing vol.66 (1) (2000) 49-61.
    [43] H. Li, B.S. Manjunath, S.K. Mitra, Multisensor image fusion using the wavelet transform [J], Graphical Models Image Process. vol.57 (3) (1995) 235-245.
    [44] D. Marr, Vision, Freeman [M], San Francisco, CA, 1982.
    
    [45] P.J. Burt, E. Adelson, The Laplacian pyramid as a compact image code [J], IEEE Trans. Comput. vol.31 (1983) 532 - 540.
    [46] P.J. Burt, E. Adelson, The Laplacian pyramid as a compact image code [J], IEEE Trans. Comput. vol.31 (1983) 532 - 540.
    [47] J. Kautsky, J. Flusser, B. Zitova, S. Simberova, A new wavelet-based measure of image focus [J], Pattern Recognition Letters, vol.23, pp.1785-1794, 2002.
    
    [48] T. Lindeberg, Scale-Space Theory in Computer Vision, Kluwer, Norwell, MA, 1994.
    [49] B. Garguet-Duport, J. Girel, J. Chassery, J.G Pautou, The use of multiresolution analysis and wavelets transform for merging SPOT panchromatic and multispectral image data [J], Photogram. Eng. Remote Sensing vol.62 (9) (1996) 1057 - 1066.
    [50] C. Schmid, R. Mohr, C. Bauckhage, Evaluation of interest points [J], Int. J. Comput. Vision 37 (2) (2000) 151 -172.
    [51] E.J. Stollnitz, T.D. DeRose, D.H. Salesin, Wavelets for computer graphics: a primer, part 1[J], IEEE Comput. Graphics Appl. vol.15 (3) (1995) 76 - 84.
    [52] G Piella, A region-based multi-resolution image fusion algorithm [J], ISIF Fusion 2002 conference, Annapolis, July, 2002.
    [53] 陈晓钟,孙华燕. 基于能量特征的图像目标检测[J], 红外与激光工程, vol.30, no.1, pp. 30-36, Feb.2001.
    [54] E.H. Adelson, C.H. Anderson, J.R. Bergen, P.J. Burt, J. Ogden, Pyramid methods in image processing [J], RCA Eng. vol.29 (6) (1984) 33-41.
    [55] J.L. Starck, F. Murtagh, A. Bijaoui, Image Processing and Data Analysis: the Multiscale Approach [M], Cambridge, University Press, Cambridge, 2000.
    [56] Donoho, D.L., I.M. Johnstone, Ideal de-noising in an orthonormal basis chosen from a library of bases [J], C.R.A.S. Paris, Ser. I, t. 319, pp. 1317-1322.
    [57] Bi, L., Dai, X.R., Sun, Q.Y., Construction of compactly supported M-band wavelet [J]. Appl. Comput. Harmon. Anal. 1999, vol.6 (2), 113-131.
    [58] Bruno, G.D., Girel, J., Chassery, J.M., Pautou, G., The use of multi-resolution analysis and wavelet transform for merging spot panchromatic and multispectral imagery data [J]. Photogrammetr. Eng. Remote Sens. 1996, vol.62 (9), 1057-1066.
    [59] Chibani, Y., Houacine, A., Redundant versus orthogonal wavelet decomposition for multisensor image fusion [J]. Pattern Recognit. 2003, vol36, 879-887.
    [60] Chui, C.K., Lian, J.A., Construction of compactly supported symmetric and anti-symmetric orthogonal wavelets with scale = 3[J]. Appl. Comput. Harmon. Anal. 1995. vol.3 (1), 21-52.
    [61] Ehlers, M., Multi-sensor Fusion Techniques in Remote Sensing [J]. ISPRS J. Photogrammetr. Remote Sens. 1991. 46 (3), 19-30.
    [62] Han, B., Symmetric orthonormal scaling functions and wavelets with dilation factor [J]. Adv. Comput. 1998. Math. 8, 221-247.
    [63] Li, J., Liu, Z.J., Data fusion for remote sensing imagery based on feature [J]. Chin. J. Remote Sens. 1998.vol.2 (2), 103-107.
    [64] Nunez, J., Otazu, X., Fors, O., Prades, A., Pala, V, Arbiol, R., Multiresolution-based imagery fusion with additive wavelet decomposition [J]. IEEE Trans. Geosci. Remote Sens. 1999.vol.37 (3), 1204-1211.
    [65] Ranchin, T, Wald, L., Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation [J]. Photogrammetr. Eng. Remote Sens. 2000.vol.66 (1), 49-61.
    [66] Shi, W.Z., Zhu, C.Q., Zhu, C.Y., Yang, X.M., Multi-band wavelet for fusing SPOT panchromatic and multispectral images [J]. PE&RS, 2003. vol.69 (5), 513-520.
    [67] A.Pentland, "A new sense for depth of field[J]," IEEE Trans. Pattern Analysis and Machine Intell., Vol.9, no.4, pp. 523-531,July 1987
    [68] S.K. Nayar, Shape from Focus System for Rough Surfaces, Proc. Image Understanding Workshop, San Diego, January, 2002
    [69] 熊四昌、杨涌、胡东.显微材料测量的新方法[J].轻工机械,2006,24(4):120-123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700