小燃机热电冷联供与地下水源热泵耦合系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小燃机热电冷联供是分布式供能系统的主要实现形式,但由于部分负荷性能和满足用户需求剧烈变化时的灵活性差,其效率、经济性优势往往无法体现。地下水源热泵能效比高、部分负荷性能稳定,但其发展也受到水资源量等因素的制约。本文以克服两者各自技术和应用上的局限为出发点,提出了将其整合互补的创新型复合供能系统方案并开展了应用分析研究。论文的主要内容如下:
     (1)建立了分布式供能系统主要设备的热力、经济、排放数学模型并给出了系统综合评价中所采用的经济、节能、环保和调峰性能指标。
     (2)基于在设计阶段即可实现离散设备台数和容量优化并考虑运行特性的全工况优化配置方法,通过引入最小最大后悔值法考虑了负荷不确定性的鲁棒性。
     (3)针对北京市多种类型、规模的典型建筑,从经济、节能、环保、调峰、节水等角度出发,比较了复合供能系统以及其它六种分布式供能系统方案和五种分供方案的综合性能。
     (4)以天然气节能率为目标函数,对复合供能系统配置、节能性和经济性进行了优化计算,并与传统的经济最优和以热定电运行策略进行了对比。
     (5)研究了负荷不确定性对复合供能系统配置和经济性的影响。
     研究结果表明,将微小燃机热电冷联供和地下水源热泵组成复合供能系统,显著提高了联供系统应对剧烈变化、热电比高的典型用户需求的灵活性和经济、节能、环保效益,与单独的地下水源热泵系统相比,减少了一半以上的地下采水量,且在众多供能方案中,它也具有经济、节能、环保、调峰等方面的综合优势;在传统的经济最优和以热定电运行策略下,基于微小燃机的7种常见的分布式供能系统方案与“天然气联合循环电厂+燃气锅炉+电制冷机”模式相比均不节能,但若以满足节能率最大为原则,复合供能系统可实现节能;考虑负荷不确定性可以降低复合供能系统的优化配置在实际运行时的经济风险。
     本文研究的复合供能系统可为化石能源与可再生能源互补的能源利用技术发展提供一个新的选择。
CCHP based on micro turbines and small gas turbines is the main configuration form of distributed energy supply system. However, due to the poor part-load performance and the inflexibility when meeting user's energy demands which change dramatically, the efficiency and economic advantage of CCHP cannot be embodied often. Groundwater heat pump has the characteristics of high COP and good part-load performance, but it is restricted by factors such as water resources as well. In order to overcome the limitations of both technologies, the hybrid system which is the innovative integration of micro/small-tubine CCHP and groundwater heat pump has been proposed, and the analysis and research on it are carried out. The main contents of this thesis include:
     Firstly, the thermal, economic and emission models of main devices of CCHP system have been established. And the performance indexes of economic, energy saving, environmental protection and peak shaving in system comprehensive evaluation are given.
     Secondly, based on the optimal configuration method of full working conditions which considers the operational characteristics of equipments and can solve the difficulties in discrete optimization of equipment capacities and numbers at the design stage, a robust optimal configuration method of CCHP system is proposed to consider the uncertainty in energy demands.
     Thirdly, in regard to different types and sizes of two kinds of typical buildings in Beijing, the performance of economic, energy saving, environmental protection, peak shaving, electricity and natural gas price sensitivity of the usual seven CCHP schemes and five individual schemes are compared.
     Fourthly, in regard to the hybrid system, in addition to traditional following the electric load and the thermal load operational strategies, energy-saving-oriented is also introduced by selecting the energy saving rate of natural gas as objective function, and the influence of three strategies on system configuration, energy conservation and economy are discussed.
     Finally, the influence of uncertain energy demands on configuration and economical efficiency of hybrid system is also studied.
     The results show that the combination of micro/small-turbine CCHP and groudwater heat pump into a hybrid system can not only significantly improve the economical, energetic and environmental benefits of CCHP system and its flexibility coping with the typical user's energy demands which change dramatically and have high heat-to-power ratios, but also reduce more than half of the underground water extraction compared to the groundwater heat pump scheme. Among various energy supply schemes, hybrid system also has comprehensive advantages in many aspects, such as economic, energy saving, environmental protection, peak shaving, etc. Compared to the mode of "natural gas combined-cycle power plant plus gas boiler plus electric refrigerator", all the usual seven CCHP schemes and five individual schemes are not energy-efficient on natural gas utilization under traditional following the electric load and the thermal load operational strategies, but the hybrid system comprised of micro-tubine CCHP and groundwater heat pump can achieve energy saving under energy-saving-oriented. In addition, economic risks of the optimal configuration of hybrid system during the period of actual operation can be reduced after considering the uncertainty in energy demands.
     The hybrid system studied in this thesis can provide a new option to the development of energy utilization technology which complement between fossil energy and renewable energy.
引文
[1]杜建一,王云,徐建中.分布式能源系统与微型燃气轮机的发展与应用[J].工程热物理学报,2004,(05):786-788.
    [2]徐建中,隋军,金红光.分布式能源系统现状及趋势[J].太阳能,2004,(4):14-16.
    [3]翁一武,翁史烈,苏明.以微型燃气轮机为核心的分布式供能系统[J].中国电力,2003,36(3):1-4.
    [4]蔡睿贤,张娜.关于分布式能源系统的思考[J].科技导报(北京),2005,23(9):7-8.
    [5]张万坤,陆震,等.天然气热、电、冷联产系统及其在国内外的应用现状[J].流体机械,2002,30(12):50-53.
    [6]刘道平,马博,等.分布式供能技术的发展现状与展望[J].能源研究与信息,2002,18(1):1-9.
    [7]胡学浩.分布式发电(电源)技术及其并网问题[J].电工技术杂志,2004,(10):1-5.
    [8]翁史烈,翁一武,苏明.燃气轮机分布式供能系统的特点和应用[J].航空发动机,2006,32(1):9-12.
    [9]李永兵,岳建华,沈炳耘.冷热电分布式供能系统的应用和发展[J].燃气轮机技术,2008,21(3):4-7.
    [10]朱剑红.建筑节能:潜力到底有多大[J].中州建设,2005,(6):8-9.
    [11]U.S. Environmental Protection Agency Combined Heat and Power Partnership. Catalog of CHP Technologies.2008. (Accessed at www.epa.gov/chp/documents/catalog_chptech_full.pdf)
    [12]谢诺琳,孙志高.冷热电联产系统性能评价指标研究[J].建筑热能通风空调,,2008,27(04):81-83.
    [13]Siddiqui a S, Marnay C, Firestone R M, et al. Distributed generation with heat recovery and storage[J]. Journal of Energy Engineering-Asce,2007,133(3):181-210.
    [14]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告;2008.
    [15]程群英,罗明智,阳晴,等.地源热泵及其相关问题讨论[J].建筑热能通风空调,2005,24(6):30-32,39.
    [16]李元普,L eegebert,等.美国土-气型地源热泵技术在中国的推广[J].节能与环保,2002,(12):20-23.
    [17]孙建平,王景刚,张子平.地源热泵系统运行特性的分析[J].华北电力大学学报,2004,31(5):52-55.
    [18]潘金文,李冰.对地源热泵技术在空调工程应用中一些问题的探讨[J].工程建设与设计, 2004,(4):21-23.
    [19]张远东,万育生.我国地下水源热泵应用现状和监管措施探讨[J].中国水利,2009,(21期).
    [20]孙凤岭,陈超,冯磊.地下水源热泵空调系统及其工程设计[J].建筑热能通风空调,2005,24(4):58-62.
    [21]刘立才,张远东,李世君,等.冷热负荷失衡条件下采能区地温场的模拟研究[J].太阳能学报,2008,29(9):1072-1077.
    [22]桂江波,徐玉党,黎栩.三种商业常用地源热泵系统经济性评价[J].地热能,2004,(3):11-14.
    [23]韩晓平.未来20年中国能源技术发展方向之一--分布式能源及相关技术[J].沈阳工程学院学报:自然科学版,2005,(3):13-15,29.
    [24]Yokoyama R, Hasegawa Y, Ito K. A MILP decomposition approach to large scale optimization in structural design of energy supply systems[J]. Energy Conversion and Management,2002, 43(6):771-790.
    [25]李赞,黄兴华.冷热电三联供系统配置与运行策略的优化[J].动力工程,2006,26(6):894-898.
    [26]Yokoyama R, Ito K. Optimal design of gas turbine cogeneration plants in consideration of discreteness of equipment capabilities, Vienna, Austria, Jun 13-17,2004 [C]. Asme-Amer Soc Mechanical Eng, p.336-343.
    [27]刘爱国.我国南方地区燃气轮机分布式供能系统的研究[D].北京:中国科学院研究生院(工程热物理研究所),2009.
    [28]黄兴华,李赞.联供系统设备配置与运行策略集成优化研究[J].太阳能学报,2008,29(1):24-28.
    [29]Piacentino A, Cardona F. On thermoeconomics of energy systems at variable load conditions: Integrated optimization of plant design and operation[J]. Energy Conversion and Management, 2007,48(8):2341-2355.
    [30]刘丽红,袁益超,刘聿拯.分布式供能的现状与发展[J].热力发电,2006,35(8):4-7.
    [31]李朝振,石玉美,黄兴华.负荷不确定性对三联供系统配置和经济性的影响[J].暖通空调,2009,(07期).
    [32]Yokoyama R, Ito K. Robust Optimal Design of a Gas Turbine Cogeneration Plant Based on Minimax Regret Criterion,1999 [C].44th ASME Gas Turbine and Aeroengine Technical Congress, Exposition and Users Symposium, Paper No.99-GT-128, p.1-8.
    [33]Macchi E, Campanari S. Future potential developments of micro-turbine generators-Hybrid cycles and tri-generation; proceedings of the Seminar on Micro-Turbine Generators, London, England, Dec,2000 [C]. Professional Engineering Publishing Ltd, p.43-66.
    [34]Kilkis B I, Kilkis S, Asme. Exergetic optimization of generated electric power split in a heat pump coupled poly-generation system; proceedings of the ASME Energy Sustainability Conference, Long Beach, CA, Jun 27-30,2007 [C]. p.211-218.
    [35]黄锦涛,丰镇平,袁劲松.分布式冷热电联供系统经济性分析[J].沈阳工程学院学报:自然科学版,2005,1(1):17-21.
    [36]陆伟.城市能源环境中分布式供能系统优化配置研究[D].北京:中国科学院研究生院(工程热物理研究所),2007.
    [37]王志伟.微型燃气轮机冷热电联供系统的研究与优化[D]:华北电力大学(河北),2007.
    [38]陈霖新,张大中.燃气冷热电联供的节能效益分析研究(一)[J].工厂动力,2006,(1):6-16,23.
    [39]江亿主编.天然气热电冷联供技术及应用[M].北京:中国建筑工业出版社,2008.5.
    [40]Ennio Cardona, Antonio Piacentino, Cardona F. Matching economical, energetic and environmental benefits:An analysis for hybrid CHCP-heat pump systems[J]. Energy Conversion and Management,2006.
    [41]赵士杭.新概念的微型燃气轮机的发展[J].燃气轮机技术,2001,(02期).
    [42]刁正纲.微型燃气轮机走向商业化[J].燃气轮机技术,2000,(04期).
    [43]魏兵,王志伟,李莉,等.微型燃气轮机与冷热电联供系统[J].山西能源与节能,2006,(04期).
    [44]左远志,杨晓西,丁静.微型燃气轮机的生产厂商与性能影响因素[J].煤气与热力,2007,(03期).
    [45]杨兴成,王占义.锅炉负荷变化对运行效率的影响及控制[J].应用能源技术,2001,(2):21-22.
    [46]Li H W, Nalim R, Haldi P A. Thermal-economic optimization of a distributed multi-generation energy system-A case study of Beijing[J]. Applied Thermal Engineering,2006,26(7): 709-719.
    [47]杨少丽,李培生.风冷热泵一机三用的应用及案例[J].中国建设信息供热制冷,2007,(08期).
    [48]何耀东,何青.两种快速发展的地源热泵技术经济性对比分析及节能技术[J].建筑节能,2007,(03期).
    [49]水、地源热泵在江苏[J].机电信息市场部,2005,(21期).
    [50]沈翔昊.成都地区地埋管地源热泵技术经济分析[J].现代商贸工业,2009,(17期).
    [51]薛志峰,刘晓华,付林,等.一种评价能源利用方式的新方法[J].太阳能学报,2006,27(4): 349-355.
    [52]Wu D W, Wang R Z. Combined cooling, heating and power:A review[J]. Progress in Energy and Combustion Science,2006,32(5-6):459-495.
    [53]Patterson W. World energy assessment-Energy and challenge of sustainability[J]. Science, 2001,294(5545):1287-1288.
    [54]张君瑛,吴喜平,沈凯,等.冷热电三联供供能系统的清洁发展机制项目分析[J].上海海事大学学报,2008,29(4):60-64.
    [55]顾宇桂,韩新阳,代红才,等.线损率计算方法探讨[J].电力技术经济,2008,20(4):34-37.
    [56]关于公布2009年中国区域电网基准线排放因子的公告.国家发展改革委应对气候变化司,2009. (Accessed at http://qhs.ndrc.gov.cn/aifziz/t20090703 289357.htm)
    [57]Heinkenschloss M. Projected sequential quadratic programming methods[J]. Siam Journal on Optimization,1996,6(2):373-417.
    [58]Yokoyama R, Ito K. Optimal design of energy supply systems based on relative robustness criterion[J]. Energy Conversion and Management,2002,43(4):499-514.
    [59]北京市发展和改革委员会.(Accessed at http://www.bjpc.gov.cn)
    [60]曲云霞,张林华,方肇洪,等.地下水源热泵及其设计方法[J].可再生能源,2002,(6):11-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700