两种耕作制度下油菜菌核病的发生规律及生防菌盾壳霉应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜菌核病是由核盘菌(Sclerotinia sclerotiorum)引起的油菜上最重要的病害之一,常年损失达10-30%。近些年,由于免耕制度的推行,油菜菌核病的发生呈上升趋势。但是因为抗病品种的缺乏和化学农药引起的食品安全问题,人们越来越重视通过农业措施和生物农药的途径来控制该病害。本文研究了免耕模式中,湖北省两种耕作制度(棉花—油菜连作田和水稻—油菜连作田中)对油菜菌核病发生规律的影响,并通过室内、田间试验评估了盾壳霉制剂的防治效果。为轻简化耕作模式下,使用水旱轮作和生物防治油菜菌核病的技术提供思路。
     通过室内模拟两种类型田,研究了不同土壤深度菌核的存活动态。结果表明:温室条件下,1-9cm深度的土壤中,菌核连续18个月的存活率均为100%;室内淹水条件下,秋季试验中(平均温度为30.1℃)的菌核存活时间为20d,冬季试验中(平均温度为4.8℃),菌核存活时间为45d。通过2008-2010年对武穴市、黄冈市两种类型田(棉花—油菜连作田和水稻—油菜连作田中)中油菜菌核病的发生动态调查,结果表明:棉花—油菜连作田的子囊盘数量明显高于水稻—油菜连作田。水旱轮作可以有效控制病害,除了2009年黄冈市棉花—油菜连作田病害的发生比水稻—油菜连作田偏轻,其他年份所有田块均发现前者比后者发生重。
     三年的调查结果表明:棉花—油菜连作田子囊盘初现于3月上旬,高峰期为3月下旬或4月初。油菜菌核病在两种类型田的发生动态基本一致,病叶初现于3月中旬,病茎初现于3月末或4月初。对两种类型田油菜菌核病的发病率与花期5个气象因子(日最低气温、日最高气温、日平均气温、日降雨量和降雨日数)进行相关性分析,结果表明发病率与这些气象因子均无显著相关性(P<0.05)。
     室内盆栽防治试验结果表明:107孢子/ml盾壳霉对病叶率的防效为60%、对茎秆的病指防效为68.8%。田间土壤施用盾壳霉对菌核萌发抑制试验表明:1×106个孢子/ml的盾壳霉对核盘菌菌核萌发子囊盘抑制效果明显,但随着菌核基数的依次增大,抑制效果逐渐减弱。三年的小区试验(2008-2010年)结果表明:105孢子/ml、106孢子/ml、107孢子/ml的盾壳霉孢子溶液对油菜菌核病的病指防效和病株降低率会随着浓度的提高而具有增强的趋势。一般情况下,105孢子/ml的盾壳霉病指防效和病株降低率显著低于106孢子/ml、107孢子/ml(P<0.05),106孢子/ml和107孢子/ml的防效差异不显著(P<0.05)。盾壳霉106孢子/ml、107孢子/ml的病指防效和病株降低率中,至少有一个与化学药剂无显著差异或显著高于化学药剂(P<0.05)。
     通过三年(2008-2010年)盾壳霉防治油菜菌核病的田间示范试验,结果表明:苗期喷雾106孢子/ml-107孢子/ml的盾壳霉制剂效果不理想,平均病指防效为12.8%,平均病株降低率为0。花期喷雾效果较好,除了2008年孝感市示范区的病株降低率为1级,其他示范区的平均病指防效和病株降低率都可达到2级或3级。
     上述研究结果表明,水旱轮作可以一定程度上减轻油菜菌核病的发生,盾壳霉制剂对防治油菜菌核病具有巨大的生防潜力。
Sclerotinia stem rot of oilseed rape (SSR) is one of the most common fungal disease of rapeseed with losses of 10%-30% frequently reported. In these years, losses caused by SSR in this area have increased because of the lightened and simpilfied cultivation(LSC). There are no sclerotinia-resistant rape varieties and control is reliant on use of fungicides which have been known to have adverse effects on food. Therefore, the concerns about pesticide residues have prompted interest in agricultural measures and biological control. In order to characterize epidemics of SSR in field and evaluate the efficacy of Coniothyrium minitans in two types fields (cotton-rapeseed succession fields and rice-rapeseed succession fields) in Hubei province under LSC, we investigated the occurrence of SSR in fields, efficacy of C. minitans in suppression of SSR.
     Firstly, the survival of sclerotinia in different depth of soil in the indoor test simulation was studied. The results showed the sclerotinias were buried in the depth of 1-9cm have 100% survival for 18 consecutive months. The sclerotinias survived 20 days under flooded condition in indoor in autumn, survived 45 days under flooded condition in indoor in winter. The occurrence of SSR in field was investigated during 2008-2010 growing seasons in Wuxue County and Huanggang County. In cotton-rapeseed succession fields, the number of apothecia was generally higher than in rice-rape succession fields, and the subsequent disease severity on leaf and stem was obviously higher except Huanggang County in 2009.
     The study demonstrated that apothecia in cotton-rapeseed succession fields was appeared in early March, peak time was in late march or early April. The occurrence of SSR had no obvious difference with above two types of fields. Disease appeared on leaf in fields in mid-March, disease appeared on stem in end of March or early April. The correlation analysis between disease incidence and 5 climatic factors (daily minimum temperature, maximum temperature, daily average temperature, daily rainfall and rainy days) during the blooming period showed that there was no statistic difference (P<0.05).
     Laboratory tests showed disease suppression on leaf and stem with applications of C. minitans at 107 conidia/ml was 60%,68.8%respectively. Inhibitory effect on sclerotinia germination with applications of C. minitans at 106 conidia/ml was obviously. But with increasing concentration of the sclerotinia, inhibitory effect was decreased. The field studies indicated that with increased spore concentrations of C. minitans (C. minitans at concentrations of 105,106, or 107 conidia/ml), efficacy was increased in the both types of succession fields. Efficacy of C. minitans at concentrations of 105 conidia/ml was significantly lower than that of 106, or 107 conidia/ml in most conditions (P<0.05). Efficacy of C. minitans between 105 conidia/ml and 106 conidia/ml has not significant difference (P<0.05). There was at least one efficacy between 106 conidia/ml and 107 conidia/ml has not significant difference with fungicide or be significantly higer than fungicide (P<0.05).
     In demonstration field trials (2008-2010), control effect by C. minitans sprayed in seedling stage at concentrations of 106 to 107 conidia/ml was not good, mean disease index control effect was 12.8%, mean disease incidence effect was 0. Efficacy of C. minitans at 106conidia/ml-107 conidia/ml sprayed at early bloom was much better. The level of control effect in all demonstration field trials was 2 or 3 level.
     Based on the results of this studys, paddy-upland rotation can reduce SSR, Coniothyrium minitans was an effective antagonist and biocontrol agent of the plant pathogen Sclerotinia sclerotiorum.
引文
1.常彭阳.赣抚平原油菜菌核病发病程度预测模型.江西农业学报,1999,11(4):51-54
    2.陈茂林,刘才南,杨代凤等.油菜菌核病病原及流行规律的确定.内蒙古农业技,2000,增刊:165-167
    3.陈士华,寒地春油菜菌核病的流行分析与监测防御体系.[硕士学位论文].福建:福建农林图书馆,2004
    4.崔学勤,武志荣,寇从贤等.油菜菌核病子囊盘密度与发病率的关系.湖北农业学,1999,4:32-33
    5.冯兰萍,张谷丰,张夕林.油菜菌核病发生规律、影响因子和油菜损失率测定.植物保护,1999,1:24-26
    6.高俊明,王双双,刘慧平等.菌核重寄生菌盾壳霉生物学特性研究.山西农业大学学报,2002,1:22-25
    7.黄永菊,陈军,李云昌.甘蓝型油菜菌核病抗(耐)性的遗传研究、抗性遗传属性与配合力分析.中国油料作物学报,2000,22(4):1-4
    8.姜道宏,李国庆,付艳平等.盾壳霉控制油菜菌核病菌再侵染及其叶面存活动态的研究.植物病理学报,2000,30(1):60-65
    9.姜道宏,李国庆,易先宏等.盾壳霉所产抗细菌物质的特性.植物病理学报,1998,28(1):29-32
    10.李国庆,王道本,张顺和等.菌核寄生菌盾壳霉的研究、生物学生性及在湖北省的自然分布.华中农业大学学报,1995,14(2):125-129
    11.李国庆,韦善君,缪华军等.油菜花期喷施盾壳霉分生孢子防治油菜菌核病的效果及机制研究.中国植物病理学会2004年学术年会论文集,2004,494-495
    12.李金秀,陈文瑞,秦芸.油菜土壤中与核盘菌菌核存活有关的真菌.四川农业大学学报,1997,15(1):1-5
    13.李荣禧,杨宝胜,严人沛等.小盾壳霉防治向日葵菌核病的初步研究.见刘仪主编,植物病害研究与防治.中国农业技出版社,1998,520-522
    14.李玉斌.向日葵菌核病子囊孢子传播距离初步研究.植物保护,1994,20(1):12-13
    15.刘胜毅,周必文.油料作物病原菌核上寄生菌及其防治病害研究述评.国外农学:油料作物,1992,2:1-7
    16.刘振忠,徐梅,辛惠普等.春油菜菌核病预测模型研究.黑龙江八一农垦大学学报,1999,11(2):15-17
    17.罗宽,任新国,周必文等.油菜菌核病菌菌核上寄生真菌的研究.中国油料,1987,3:40-44
    18.潘以楼,汪智渊,吴汉章.油菜菌核病菌对多菌灵的抗药性,1997,19(3):67-71
    19.潘以楼,吴汉章,杨敬辉等.油菜菌核病菌(Sclerotinia sclerot iorum)抗多菌灵菌株的检测方法及其在江苏的分布,1998,14(3):159-163
    20.邱秀珍,叶华斌,袁鸣凤.油菜菌核病的发生规律及其防治技术.现代农业技,2010,4:226-229
    21.师俊玲,堵国成,陈坚.盾壳霉在油菜菌核病菌生物防治中的应用.中国生物工程杂志,2003,23(4):27-31
    22.师俊玲,李寅,钱华丽等.盾壳霉CCI,CCM203020的生长特性及其应用潜力.应用与环境生物学报,2004,10:798-802
    23.唐仁华.依靠政策和技加快湖北优质油菜产业发展.湖北农业学,2006,45(4):393-395
    24.吴纯仁.油菜菌核病菌致病机理及其抗(耐)病性筛选方法的研究.[博士学位论文].武汉:华中农业大学,1989
    25.杨敬辉,潘以楼,朱桂海等.油菜菌核病菌对多菌灵和乙霉威的抗药性机理.植物保护学报,2004,31:74-78
    26.杨龙.生防菌盾壳霉防治油菜菌核病的生态学基础及其应用研究.[博士学位论文].武汉:华中农业大学图书馆,2009
    27.杨谦,T. R. V. Fox.核盘菌对多菌灵抗药性及其发展.东北林业大学学报,1995,23(5):9-12
    28.杨新美.油菜菌核病(Sclerotinia sclerotiorum)在我国的寄主范围及生态特性的调查研究.植物病理学报,1959,5(2):111-122
    29.游景茂,付艳苹,谢甲涛等.核盘菌子囊抱子直接侵染油菜叶片初步研究.国植物病理学会2009年学术年会论文集.2009:166
    30.余夕辉,何木兰,田间环境与油菜菌核病发生程度的关系研究.安徽农学通报,2008,14(11):185-186
    31.张姝,韩巨才.植病生防菌小盾壳霉的两种商品制剂.农药,2007,46(12):846-846
    32.张夕林,张谷丰,杨燕涛等.油菜菌核病发生规律及其测报技术研究初报.植保技术与推广,1998,18(6):9-10
    33.张永杰.小盾壳霉对核盘菌的生防机制及其生态相容性研究.[硕士学位论文].太谷:山西农业大学,2005
    34.张永泰,李爱民,惠飞虎等.气候条件对油菜菌核病的影响及防治阈值.植物保护学报,1999,26(2):127-128
    35. Abawi G S, Grogan R G. Source of primary inoculum and effects of temperature and moisture on infection of beans by Whetzelinia sclerotiorum. Phytopathology,1975a, 65:300-309
    36. Abawi G S, Polach F J, Molin W T. Infection of bean by ascospores of Whetzelinia sclerotiorum. Phytopathology,1975b,65:673-678
    37. Adams P B, Ayers W A. Ecology of Sclerotinia species. Phytopathology,1979,69(8): 896-899
    38. Ahmed A H M, Tribe H T. Biological control of white rot of onion (Sclerotium cepivorum) by Coniothyrium minitans. Plant Pathology,1977,26:75-78
    39. Bennett A J, Leifert C, Whipps J M. Survival of Coniothyrium minitans associated with sclerotia of Sclerotinia sclerotiorum in soils. Soil Biology and Biochemisty, 2006,38:164-172
    40. Boland G J. Hall R. Index of Planthosts of Selerotinia selerotiorum. Can. J. Plant Pathol.,1994,16:93-108
    41. Budge S P, Whipps J M. Glasshouse trials of Coniothyrium minitans and Trichoderma species for the biological control of Sclerotinia sclerotiorum in celery and lettuce. Plant Pathology,1991,40:59-66
    42. Campbell W A. A new species of Coniothyrium parasitic on selerotia. Mycologia, 1947,39:90-195.
    43. Cheng J, Jiang D,Yi X, Yi X, et al. Production, survival and efficacy of Coniothyrium minitans conidia produced in shaken liquid culture. FE MS Microbiology Letters,2003,127-131
    44. Duncan R W, Fernando W G D, Rashid K Y. Time and burial depth influencing the viability and bacterial colonization of sclerotia of Sclerotinia sclerotiorum. Soil Biology and Biochemistry,2006,38:275-284
    45. Gabor G, Zoltan K, Laszlo F, et al. Expression of cmgl, an Ex o-1,3-Glucanase Gene from Coniothyrium minitans, Increases during Sclerotial Parasitism. Applied and Environmental Microbiology,2001,67 (2):865-871
    46. Gerlagh M, Goossen-van de Gejin H M, Fokkema N J et al. Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum-infected crops. Phytopathology,1999,89:141-147
    47. Godoy G, Steadman J R, Dickman M B, et al. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiological and Molecular Plant Pathology,1990,37:179-191
    48. Gracia-Garza J A, Reeleder R D, Paulitz T C. Degradation of sclerotia of Sclerotinia sclerotiorum by fungus gnats (Bradysia coprophila) and the biocontrol fungus Trichoderma spp. Soil Biology and Biochemistry,1997,29:123-129
    49. Grendene A. Marciano P. Interaction between Sclerotinia sclerotiorum and Coniothyrium minitans strains with different aggressiveness. Phytoparasitica,1999, 27(3):201-206
    50. Gugel R K, Morrall R A A. Inoculum-disease relationship in sclerotinia stem rot of rapeseed in Saskatchewan. Canadian Journal of Plant Pathology,1986,8:89-96
    51. Hoes J A. and Huang H C. Sclerotinia sclerotiorum:viability and separation of sclerotia from soil. Phytopathology,1975,65:1431-1432.
    52. Huang H C, Bremer E, Hynes R K, et, al. Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum. Biological Control,2000,18:270-276
    53. Huang H C, Erickson R S. Overwintering of Coniothyrium minitans, a mycoparasite of Sclerotinia sclerotiorum, on the Canadian prairies. Australasian Plant Pathology, 2002,31:291-293
    54. Huang H C. Control of Sclerotinia wilt of sunflower hyperparasite. Plant Pathology, 1980,2:26-32
    55. Jones D, Gordon A H, Bacon J S D. Cooperative action by endo-and exo-β-(1,3) glucanases from parasitic fungi in the degradation of cell wall glucans of Sclerotinia sclerotiorum. Journal of Biochemistry,1974,140:47-55
    56. Kesarwani M, Azam M, Natarajan K, et, al. Oxalate decarboxylase from Collybia velutipes:Molecular cloning and its over-expression to confer resistance to fungal infection in transgenic tobacco and tomato. Journal of Biological Chemistry,2000, 275:7230-7238
    57. Kora C, McDonald M R, Boland G J. Epidemiology of sclerotinia rot of carrot caused by Sclerotinia sclerotiorum,Can. J. Plant Pathology,2005,27:245-258..
    58. Li G Q,Wei S J., Jiang, D.H., et al. Control of selerotinia stem rot of canola by aerial applications of Coniothyrium minitans. In:Young cS, Hughes KJd, eds. Proceeding of Sclerotinia 2001-The X1 International Sclerotinia Workshop, York 8th-12 th July 2001, York, England:Central Science Laboratory, York, England.2001,97-98:147
    59. Li G Q, Huang H C, Acharya S N, Erickson R S. Effectiveness of Coniothyrium minitans and Trichoderma atroviride in suppression of sclerotinia blossom blight of alfalfa. Plant Pathology,2005,54:204-211
    60. Li G Q, Huang H C, Acharya S N. Importance of pollen and senescent petals in the suppression of Sclerotinia sclerotiorum. Biocontrol Science and Technology,2003b 13,495-505
    61. Li G Q, Huang H C, MiaoH J, et al. Biological control of selerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans. European Journal of Plant Pathology,2006,114:345-355
    62. Li G Q., Jiang, D.H., Zhu, B, et al.Oxalic acid production.in hypovirulent and stains of Sclerotinia sclerotiorum. In:Proceedings of Internation Symposium on Rapeseed Science (Liu Houli and Fu Tingdong eds), Science Press (New York) 2001. pp261-271
    63. Marciano P, di Lenna P, Margo P. Oxalic acid, cell-wall degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiological and Molecular Plant Pathology,1983,22: 339-345
    64. McLaren D L, Huang H C, Rimmer S R. Control of apothecial production of Sclerotinia sclerotiorum by Coniothyrium minitans and Talaromyces flavus. Plant Disease,1996,80:1373-1378
    65. McQuilken M P, Budge S P, Whipps J M. Biological control of Sclerotinia sclerotiorum by film-coating Coniothrium minitans on to sunflower seed and sclerotia. Plant Pathology,1997,46:919-929
    66. McQuilken M P, Budge S P, Whipps J M. Effects of culture media and environmental factors on conidial germination, pycnidial production and hyphal extension of Coniothyrium minitans. Mycological Researeh,1997,101:11-17
    67. McQuilken M P, Budge S P, Whipps J M. Production, survival and evaluation of liquid culture-produced inocula of Coniothyrium minitans against Sclerotinia sclerotiorum. Biocontrol Science and Technology,1997,7:23-36
    68. McQuilken M P, Gemmell J, Whipps J M. Some Nutritional Factors Affecting Production of Biomass and Antifungal Metabolites of Coniothyrium minitans. Biocontrol Science and Technology,2002,12:443-454
    69. McQuilken M P, Mitchell S J, Budge S P, et, al. Effect of Coniothyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorum in field-grown oilseed rape. Plant Pathology,1995a,44:883-896
    70. McQuilken M P, Whipps J M. Production, survival and evaluation of solid-substrate inocula of Coniothyrium minitans against Sclerotinia sclerotiorum. European Journal of Plant Pathology,1995b,101:101-110
    71. Moore W D. Flooding as a means of destroying the sclerotia of Sclerotinia sclerotiorum. Phytopathology,1949,39:920-927
    72. Partridge D E, Sutton T B, Jordan D L, et, al. Management of sclerotinia blight of peanut with the biological control agent Coniothyrium minitans. Plant Disease,2006, 90:957-963
    73. Phillips A J L. Fungi assoeiated with selerotia of Sclerotinia selerotiorum in South Africa and their effeets on the Pathogen. Phytophylactica,1989,21:135-139
    74. Purdy L H. Sclerotinia sclerotiorum:history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology,1979,69:875-880
    75. Rabeendran N, Jones E E, Moot D J et, al. Biocontrol of Sclerotinia lettuce drop by Coniothyrium minitans and Trichoderma hamatum. Biological Control,2006,39: 352-362
    76. Riou C, Freyssinet G, Fevre M. Production of cell wall degrading enzymes by the Phytopathogenic fungus Scelorntia sclertiorum. Applied and Environmental,1991, 57:1478-1484
    77. Tribe H T. On the parasitism of Sclerotinia trifoliorum by Coniothyrium minitans. Transactions of the British Mycological Society,1957,40:489-499
    78. Trutmann P, Keane P J, Merriman P R. Reduction of sclerotial inoculum of Sclerotinia sclerotiorum with Coniothyrium minitans. Soil Biology and Biochemistry,1980,12: 461-465
    79. Tukington T K and Morrall R A A. Use of petal infestation to forecast sclerotinia stem rot of Canola:The influence of inoculum variation over the flowering and canopy density. The American phytopathological society,1993,682-689
    80. Turner G J, Tribe H T. Preliminary field plot trails on biological control of Sclerotinia trifoliorum by Coniothyrium minitans. Plant Pathology,1975,24:109-113
    81. Vrije T de, Antoine N, Buitelaar R H. The fungal biocontrol agent Coniothyrium minitans:production by solid-state fermentation, application and marketing. Appl Microbiol Biotechnol,2001,56:58-68
    82. Whipps J M and Gerlagh M. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycological Research,1992,96(11):897-907.
    83. Whipps J M, Budge S P, Mitchell S J. Observations on sclerotial mycoparasites of Sclerotinia sclerotiorum. Mycological Research,1993a,97:697-700
    84. Whipps J M, Lumsden R D. Commercial use of fungi as plant disease biological control agents:status and prospects. In:Butt T, Jackson C and Magan N eds., Fungal Biocontrol Agents:Progress, Problems and Potential, Wallingford:CABI Publishing, 2001,9-22
    85. Whipps J M, Sreenivasaprasad S, Muthumeenakshi S, et, al. Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism. European Journal of Plant Pathology,2008,121:323-330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700