纳米过渡金属—胶体前体,网络,和催化剂
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,烷基铝对过渡金属盐的“还原稳定法”被成功用于制备纳米单金属和双金属胶体,该方法主要有两个优点:(1)不需要表面活性剂即可制得高分散过渡金属胶体;(2)制得的纳米颗粒表面存在高活性烷基铝基团,可以进一步通过化学改性改善纳米颗粒的分散性能,或者构建二维或二维的纳米粒子网络。
     本论文将“还原稳定法”的起始原料由过渡金属盐扩展至低价态过渡金属配合物,制得具有烷基铝保护基团的单分散(<15%)过渡金属胶体(铂,镍,铂钉),通过改变分应条件可以对胶体的粒径在一定范围内进行控制。基于烷基铝路线,提出了制备单分散镍胶体的烷基硼路线。
     由于制得的金属铂和金属镍胶体表面存在具有反应活性的烷基铝或烷基硼基团,可以通过醇解反应进一步构建铂和镍的纳米粒子网络。采用不同分子长度的二元醇交联剂可以达到控制粒子间距的目的。
     基于“前体概念”(Precursor concept),烷基铝稳定的铂和铂钉胶体被用于制备碳载电化学催化剂。本工作采用薄膜旋转圆盘电极法(Thin-film rotating disk electrode)对催化剂的一氧化碳和甲醇电化学氧化活性进行了考察,并对胶体表面烷基铝保护层于电化学活性的影响进行了探讨。
     此外,本论文对温控相转移催化过程中原位生成的铑胶体进行了研究,发现生成的铑胶体在进一步的反应循环中表现出奥斯特瓦德熟化(Ostwald ripening)特征,其不稳定性可能是造成催化体系多次循环后失活的原因。
Previous work has shown that aluminium trialkyls can be used successfully to prepare colloidal mono- and bimetallic nanoparticles by "reductive stabilization". Two major advantages of this methodology are that: (1) no surfactant is required for the preparation of nearly monodisperse transition metal colloids, and (2) these nanoparticles have highly reactive organo-Al groups as colloidal stabilizers, which can then be chemically modified to tailor their dispersion characteristics and even to develop 2-D or 3-D nanoparticle networks.The present work extends the "reductive stabilization" to low-valeht organometallics with the aim of obtaining monodisperse transition metal colloids (Pt, Ni, Pt-Ru) having reactive protective shells. The size-selective syntheses of these transition metal colloids were explored.By analogy with the aluminium organic route, organoborane compounds were applied to the preparation of Ni colloids stabilized by B-organic shells.The reactive organo-Al or organo-B groups in the stabilizers of Pt and Ni colloids allow nanoparticle networks to be formed via protonolytic action of bifunctional "spacers". Control of the inter-particle distance can be achieved by using spacer molecules with different lengths.Based on the "precursor concept", Pt and Pt-Ru colloid precursors stabilized by Al-organyls were used to prepare fuel cell catalysts on Vulcan XC-72. The electrochemical activity in the oxidation of CO or methanol was investigated by the thin-film rotating disk electrode (RDE) method. In particular, leaching effect, i.e., the removal of Al protective shells, was discovered.With respect to homogeneous catalysis, the thermoregulated Rh complex catalyst was shown to form colloidal Rh after the repeated catalytic cycles. Ultimately, as a result of Ostwald ripening, the colloids grow and form metal precipitates, causing them to lose their activity.
引文
[1] J. S. Bradley, in Clusters and Colloids: From Theory to Applications (Ed.: G.Schmid), VCH, Weinheim, 1994, pp. 459.
    [2] H. Bonnemann, W. Brijoux, R. Brinkmann, R. Fretzen, T. Joussen, R. Koppler, B. Korall, P. Neiteler, J. Richter, J Mol Catal 1994, 86, 129.
    [3] H. Bonnemann, U. Kreibig, J. Hormes, in Handbook of Surfaces and Interfaces of Materials, Vol. 3 (Ed.: H. S. Nalwa), Academic Press, Los Angeles, 2001, pp. 1.
    [4] H. Bonnemann, R. M. Richards, Eur J Inorg Chem 2001, 2455.
    [5] H. Bonnemann, R. Richards, in Catalysis and Electrocatalysis at Nanoparticle Surfaces (Eds.: A. Wieckowski, M. Savinova), Marcel Dekker,New York, 2003, pp. 343.
    [6] H. Bonnemann, K. S. Nagabhushana, in Nanotechnology in Catalysis, Vol. 1 (Eds.: B. Zhou, S. Hennans, G. Somorjai), Kluwer Academic/Plenum Publishers, 2004, p. Chaper 6 & 11.
    [7] J. S. Bradley, G. Schmid, in Nanoparticles: From Theory to Application (Ed.: G. Schmid), VCH: Weinheim, 2004, pp. 186.
    [8] T. Vad, H. G. Haubold, N. Waldofner, H. Bonnemann, J Appl Crystallogr 2002, 35, 459.
    [9] H. Bonnemann, N. Waldofner, H. G. Haubold, T. Vad, Chem Mater 2002, 14,1115.
    [10] E. Gaffet, M. Tachikart, O. ElKedim, R. Rahouadj, Mater Charact 1996, 36, 185.
    [11] A. Amulyavichus, A. Daugvila, R. Davidonis, C. Sipavichus, Fiz Met Metalloved+1998,85, 111.
    [12] G. Schmid, Chem Rev 1992, 92, 1709.
    [13] N. Toshima, T. Yonezawa, New J Chem 1998, 22, 1179.
    [14] D. V. Goia, E. Matijevic, New J Chem 1998, 22, 1203.
    [15] C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu Rev Mater Sci 2000, 30,545.
    [16] G. Schmid, Clusters and Colloids: From Theory to Applications, VCH:Weinheim, 1994.
    [17] J. D. Aiken, R. G. Finke, J Mol Catal a-Chem 1999, 145, 1.
    
    [18] B. L. Cushing, V. L. Kolesnichenko, C. J. O'Connor, Chem Rev 2004, 104,3893.
    [19] M. Faraday, Phil Trans Roy Soc 1857, 147, 145.
    [20] J. Turkevich, P. C. Stevenson, J. Hillier, Discuss Faraday Soc 1951, 55.
    [21] J. Turkevich, G. Kim, Science 1970, 169, 873.
    [22] J. Turkevich, Gold Bull 1985, 18, 86.
    [23] G. Schmid, Nanostruct Mater 1995, 6, 15.
    [24] H. Bonnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joussen, B. Korall,Angew Chem Int Edit 1991, 30, 1312.
    [25] H. Bonnemann, W. Brijoux, T. Joussen, 1993.
    [26] H. Bonnemann, W. Brijoux, in Advanced Catalysts and Nanostructured Materials: Modern Synthetic Methods (Ed.: W. R. Moser), Academic Press,Inc., 1996, pp. 165.
    [27] H. Bonnemann, G. Braun, W. Brijoux, R. Brinkmann, A. S. Tilling, K. Seevogel, K. Siepen, J Organomet Chem 1996, 520, 143.
    [28] H. Bonnemann, W. Brijoux, in Active Metals: Preparation, Characterization,Applications (Ed.: A. Furstner), VCH Weinheim: New York, 1996, pp. 339.
    [29] H. Bonnemann, W. Brijoux, R. Brinkman, J. Richter, US Pat. 849482, 1997.
    [30] T. J. Schmidt, M. Noeske, H. A. Gasteiger, R. J. Behm, P. Britz, W. Brijoux,H. Bonnemann, Langmuir 1997, 13, 2591.
    [31] K. Angermund, M. Buhl, E. Dinjus, U. Endruschat, F. Gassner, H. G. Haubold, J. Hormes, G. Kohl, F. T. Mauschick, H. Modrow, R. Mortel, R. Mynott, B. Tesche, T. Vad, N. Waldofner, H. Bonnemann, Angew Chem Int Edit 2002, 41,4041.
    [32] K. Angermund, M. Buhl, U. Endruschat, F. T. Mauschick, R. Mortel, R. Mynott, B. Tesche, N. Waldofner, H. Bonnemann, G. Koehl, H. Modrow, J.Hormes, E. Dinjus, F. Gassner, H. G. Haubold, T. Vad, M. Kaupp, J Phys Chem B 2003, 707, 7507.
    [33] H. Bonnemann, W. Brijoux, R. Brinkmann, U. Endruschat, W. Hofstadt, K. Angermund, Rev Roum Chim 1999, 44, 1003.
    [34] P. H. Hess, P. H. Parker, J Appl Polym Sci 1966, 10, 1915.
    [35] J. R. Thomas, J Appl Phys 1966, 37, 2914.
    [36] T. W. Smith, US Pat. 4252671,1981.
    [37] T. W. Smith, US Pat. 4252672,1981.
    
    [38] C. H. Griffiths, M. P. Ohoro, T. W. Smith, JAppl Phys 1979, 50, 7108.
    [39] S. R. Hoon, M. Kilner, G. J. Russell, B. K. Tanner, J Magn Magn Mater 1983,39, 107.
    [40] T. W. Smith, US Pat. 4252673, 1981.
    [41] T. W. Smith, US Pat 4252674, 1981.
    [42] T. W. Smith, US Pat 4252678,1981.
    [43] H. Bonnemann, W. Brijoux, R. Brinkmann, N. Matoussevitch, N. Waldofner,N. Palina, H. Modrow, Inorg Chim Acta 2003, 350, 617.
    [44] C. Amiens, D. Decaro, B. Chaudret, J. S. Bradley, R. Mazel, C. Roucau, J Am Chem Soc 1993, 115, 11638.
    [45] D. Decaro, H. Wally, C. Amiens, B. Chaudret, J Chem Soc Chem Comm 1994,1891.
    [46] A. Rodriguez, C. Amiens, B. Chaudret, M. J. Casanove, P. Lecante, J. S.Bradley, Chem Mater 1996, 8, 1978.
    [47] M. Bardaji, O. Vidoni, A. Rodriguez, C. Amiens, B. Chaudret, M. J.Casanove, P. Lecante, New J Chem 1997, 21, 1243.
    [48] C. Pan, F. Dassenoy, M. J. Casanove, K. Philippot, C. Amiens, P. Lecante, A.Mosset, B. Chaudret, J Phys Chem B 1999,103, 10098.
    [49] T. Ould-Ely, C. Amiens, B. Chaudret, E. Snoeck, M. Verelst, M. Respaud, J.ML Broto, Chem Mater 1999, 11, 526.
    [50] F. Dassenoy, M. J. Casanove, P. Lecante, M. Verelst, E. Snoeck, A. Mosset,T. O. Ely, C. Amiens, B. Chaudret, J Chem Phys 2000, 112, 8137.
    [51] C. Pan, K. Pelzer, K. Philippot, B. Chaudret, F. Dassenoy, P. Lecante, M. J.Casanove, J Am Chem Soc 2001, 123, 7584.
    [52] K. Soulantica, A. Maisonnat, M. C. Fromen, M. J. Casanove, B. Chaudret,Angew Chem Int Edit 2003, 42, 1945.
    [53] K. Philippot, B. Chaudret, Cr Chim 2003, 6, 1019.
    [54] K. Pelzer, O. Vidoni, K. Philippot, B. Chaudret, V. Colliere, Adv. Funct.Mater. 2003, 13, 118.
    [55] K. Pelzer, K. Philippot, B. Chaudret, Z Phys Chem 2003, 217, 1539.
    [56] L. J. de Jongh, Kluwer Academic, Dordrecht, The Netherlands, 1994.
    [57] V. K. Lamer, R. H. Dinegar, J Am Chem Soc 1950, 72, 4847.
    [58] H. Reiss, J Chem Phys 1951, 19, 482.
    [59] Y. De Smet, L. Deriemaeker, R. Finsy, Langmuir 1997, 13, 6884.
    
    [60] C. B. Murray, D. J. Norris, M. G. Bawendi, J Am Chem Soc 1993, 115, 8706.
    [61] R. Pranke, J. Rothe, J. Pollmann, J. Hormes, H. Bonnemann, W. Brijoux, T.Hindenburg, J Am Chem. Soc 1996, 118, 12090.
    [62] G. Schmid, Inorganic Synthesis 1990, 27, 214.
    [63] G. Schmid, Endeavour 1990,14, 172.
    [64] G. Schmid, R. Pfeil, R. Boese, F. Bandermann, S, Meyer, G. H. M. Calis, W.A. Vandervelden, Chem Ber-Recl 1981, 114, 3634.
    [65] R. E. Benfield, J. A. Creighton, D. G. Eadon, G. Schmid, Z Phys D Atom Mol Cl 1989, 12, 533.
    [66] G. Schmid, Inorganic Syntheses 1990, 27, 214.
    [67] G. Schmid, Struct Bond 1985, 62,51.
    [68] M. N. Vargaftik, V. P. Zagorodnikov, I.I. Moiseev, B Acad Sci Ussr Ch+1983,32, 1096.
    [69] M. N. Vargaftik, V. P. Zagorodnikov, I. P. Stolyarov, I. I. Moiseev, V. A.Likholobov, D. I. Kochubey, A. L. Chuvilin, V. I. Zaikovsky, K. I. Zamaraev,G. I. Timofeeva, J Chem Soc Chem Comm 1985, 937.
    [70] M. N. Vargaftik, V. P. Zagorodnikov, I. P. Stolarov, I.I. Moiseev, D. I.Kochubey, V. A. Likholobov, A. L. Chuvilin, K. I. Zamaraev, J Mol Catal 1989, 53, 315.
    [71] M. N. Vargaftik, I. I. Moiseev, D. I. Kochubey, K. I. Zamaraev, Faraday Discuss 1991, 13.
    [72] V. V. Volkov, G. Vantendeloo, M. N. Vargaftik, I. P. Stolyarov, I.I. Moiseev,Mendeleev Commun 1993, 187.
    [73] I. I. Moiseev, T. A. Stromnova, M. N. Vargaftik, J Mol Catal 1994, 86,71.
    [74] I.I. Moiseev, M. N. Vargaftik, V. V. Volkov, G. A. Tsirkov, N. V.Cherkashina, V. M. Novotortsev, O. G. Ellert, I. A. Petrunenko, A. L.Chuvilin, A. V. Kvit, Mendeleev Commun 1995, 87.
    [75] M. K. Starchevsky, S. L. Hladiy, Y. A. Pazdersky, M. N. Vargaftik, I.I.Moiseev, J Mol Catal a-Chem 1999,146, 229.
    [76] L. A. Abramova, S. P. Baranov, A. A. Dulov, M. N. Vargaftik, I.I. Moiseev,Dokl Chem 2001, 377, 80.
    [77] I. P. Stolyarov, Y. V. Gaugash, G. N. Kryukova, D. I. Kochubei, M. N.Vargaftik, I.I. Moiseev, Russ Chem B+ 2004, 53, 1194.
    [78] M. A. Watzky, R. G. Finke, Chem Mater 1997, 9, 3083.
    
    [79] M. A. Watzky, R. G. Finite, J Am Chem Soc 1997,119, 10382.
    [80] K. S. Weddle, J. D. Aiken, R. G. Finke, J Am Chem Soc 1998, 120, 5653.
    [81] J. D. Aiken, R. G. Finke, J Am Chem Soc 1998, 120, 9545.
    [82] J. D. Aiken, R. G. Finke, J Am Chem Soc 1999, 121, 8803.
    [83] J. D. Aiken, R. G. Finke, Chem Mater 1999, 11, 1035.
    [84] J. A. Widegren, J. D. Aiken, S. Ozkar, R. G. Finke, Chem Mater 2001, 13,312.
    [85] S. Ozkar, R. G. Finke, Langmuir 2002, 18, 7653.
    [86] S. Ozkar, R. G. Finke, J Am Chem Soc 2002, 124, 5796.
    [87] S. Ozkar, R. G. Finke, Langmuir 2003, 19, 6247.
    [88] S. Ozkar, R. G. Finke, J Organomet Chem 2004, 689, 493.
    [89] B. J. Hornstein, R. G. Finke, Chem Mater 2004, 16, 139.
    [90] R. G. Finke, S. Ozkar, Coordin Chem Rev 2004, 248, 135.
    [91] B. Bogdanovic, M. Felderhoff, S. Kaskel, A. Pommerin, K. Schlichte, F.Schuth, Adv Mater 2003, 75, 1012.
    [92] M. Fichtner, O. Fuhr, O. Kircher, J. Rothe, Nanotechnology 2003, 14, 778.
    [93] M. D. Bentzon, J. Vanwonterghem, S. Morup, A. Tholen, Philos Mag B 1989,60, 169.
    [94] M. D. Bentzon, A. R. Tholen, Ultramicroscopy 1991, 38, 105.
    [95] C. Sanchez, F. Ribot, New J Chem 1994, 18, 1007.
    [96] P. Judeinstein, C. Sanchez, J. Mater. Chem. 1996, 6, 511.
    [97] C. Sanchez, G. J. D. A. Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer, V. Cabuil,Chem Mater 2001, 13, 3061.
    [98] H. Bonnemann, K. S. Nagabhushana, in Encyclopedia of Nanoscience and Nanotechnology, Vol. 1 (Ed.: H. S. Nalwa), American Scientific Publishers,2004, pp. 777.
    [99] J. L. Pellegatta, C. Blandy, R. Choukroun, C. Lorber, B. Chaudret, P. Lecante,E. Snoeck, New J Chem 2003, 27, 1528.
    [100] A. Borsla, A. M. Wilhelm, H. Delmas, Catal Today 2001, 66, 389.
    [101] L. M. Bronstein, D. M. Chernyshov, I. O. Volkov, M. G. Ezernitskaya, P. M.Valetsky, V. G. Matveeva, E. M. Sulman, J Catal 2000, 196, 302.
    [102] H. Bonnemann, R. Richards, in Synthetic Methods of Organometallic and Inorganic Chemistry, Vol. 10 (Ed.: W. A. Herrmann), Thieme Medical Publishers, New York, 2002, pp. 209.
    
    [103] F. Launay, A. Roucoux, H. Patin, Tetrahedron Lett 1998, 39, 1353.
    [104] D. G. Duff, A. Baiker, Stud Surf Sci Catal 1995, 91, 505.
    [105] M. Chauhan, B. J. Hauck, L. P. Keller, P. Boudjouk, J Organomet Chem 2002,645, 1.
    [106] J. Stein, L. N. Lewis, Y. Gao, R. A. Scott, J Am Chem Soc 1999, 121, 3693.
    [107] L. N. Lewis, N. Lewis, R. J. Uriarte, Adv Chem Ser 1992, 541.
    [108] M. T. Reetz, E. Westermann, Angew Chem Int Edit 2000, 39, 165.
    [109] J. Le Bars, U. Specht, J. S. Bradley, D. G. Blackmond, Langmuir 1999, 15,7621.
    [110] J. A. Widegren, R. G. Finke, J Mol Catal a-Chem 2003, 198, 317.
    [111] M. T. Reetz, J. G. de Vries, Chem Commun 2004, 1559.
    [112] Y. Na, S. Park, S. B. Han, H. Han, S. Ko, S. Chang, J Am Chem Soc 2004,126, 250.
    [113] B. P. S. Chauhan, J. S. Rathore, M. Chauhan, A. Krawicz, J Am Chem Soc 2003, 125, 2876.
    [114] J. A. Widegren, M. A. Bennett, R. G. Finke, J Am Chem Soc 2003, 125,10301.
    [115] D. P. Dissanayake, J. H. Lunsford, J Catal 2003, 214, 113.
    [116] K. Temple, F. Jakle, J. B. Sheridan, I. Manners, J Am Chem Soc 2001, 123,1355.
    [117] Z. L. Jin, X. L. Zheng, B. Fell, J Mol Catal a-Chem 1997, 116, 55.
    [118] Z. L. Jin, Y. Y. Yan, H. P. Zuo, B. Fell, J Prak Chem-Chem Ztg 1996, 338,124.
    [119] Y.H.Wang, J.Y.Jiang, Z.L.Jin, Catal Surv Asia 2004, 8, 119.
    [120] Z. L. Jin, Y. H. Wang, X. L. Zheng, in Aqueous-Phase Organometallic Catalysis: Concepts and Applications, 2nd ed. (Eds.: B. Cornils, W. A.Herrmann), Wiley-VCH Verlag GmbH, 2004, pp. 391.
    [121] X. L. Zheng, J. Y. Jiang, X. Z. Liu, Z. L. Jin, Catal Today 1998, 44, 175.
    [122] T. J. Schmidt, M. Noeske, H. A. Gasteiger, R. J. Behm, P. Britz, H.Bonnemann, J Electrochem Soc 1998,145, 925.
    [123] H. Bonnemann, W. Brijoux, A. S. Tilling, K. Siepen, Top Catal 1997, 4, 217.
    [124] K. Kordesch, G. Simader, Fuel Cells, their Applications, VCH, Weinheim,1996.
    [125] X. M. Ren, M. S. Wilson, S. Gottesfeld, J Electrochem Soc 1996, 143, L12.
    
    [126] H. F. Oetjen, V. M. Schmidt, U. Stimming, F. Trila, J Electrochem Soc 1996,143, 3838.
    [127] H. A. Gasteiger, N. M. Markovic, P. N. Ross,J Phys Chem-Us 1995, 99,8290.
    [128] S. Wasmus, W. Vielstich, J Appl Electrochem 1993, 23, 120.
    [129] U. A. Paulus, U. Endruschat, G. J. Feldmeyer, T. J. Schmidt, H. Bonnemann, R. J. Behm, J Catal 2000, 195, 383.
    [130] H. Bonnemann, R. Brinkmann, P. Britz, U. Endruschat, R. Mortel, U. A. Paulus, G. J. Feldmeyer, T. J. Schmidt, H. A. Gasteiger, R. J. Behm, J New Mat Elect Syst 2000, 3, 199.
    [131] H. Bonnemann, in Extended Abstracts of the 3rd Int. Symposium on New Materials for Electrochemical Systems (Ed.: O. Savadogo), Ecole Polytechnique de Montreal, Canada, 1999.
    [132] M. Gotz, H. Wendt, Electrochim Acta 1998, 43, 3637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700