聚氨酯生物材料的合成及表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究聚碳酸酯聚氨酯的结构与性能,改善其血液相容性。本文以碳酸二苯酯、1,6-己二醇制备出脂肪族聚碳酸酯二醇,采用熔融一步法和溶液预聚体法制备出聚碳酸酯型聚氨酯弹性体(PCNU)。考察了不同聚合温度、反应时间和体系浓度对聚合反应的影响,得出了优化反应条件。对聚合产物采用IR、GPC、DSC、TG、SAXS和力学分析等多种手段进行了表征,结果表明:聚合物呈现部分相分离的两相结构,热分解存在明显的两个阶段; 考察了不同组成,不同聚碳酸酯二醇分子量(所提分子量本文中均指相对分子质量)对产物力学性能的影响,结果表明:所有的聚合物均符合应用于人体力学性能上的要求,当分子量为2000时,材料表现出了较好的拉伸强度和断裂伸长率。
    采用改进的溶液预聚体法制备了有机硅微交联聚碳酸酯型聚氨酯(PDMS-PCNU),考察了不同聚合温度、反应时间和体系浓度对聚合反应的影响,得出了优化反应条件。对合成产物采用了IR、DSC、TG、SAXS等多种手段进行了表征,结果表明聚合物仍存在不明显的两个玻璃化转变区,多官能度有机硅的交联使聚合物相分离程度减小,随着用量的加大,两个分解阶段变得不明显,聚合物的最高分解温度有所提高。
    采用聚乙二醇为原料,设计和合成了两种新的化合物二甲氨基端羟基聚乙二醇和磺胺两性离子端羟基聚乙二醇,对每步合成产物用IR、NMR进行了表征,结果表明与预定结构一致,分析讨论了各步反应的合成条件与影响因素。将合成的化合物用官能团接枝的方法构建在PCNU表面,用两种途径实现了磺胺两性离子端基的聚乙二醇在聚氨酯表面的固定。用化学分析电子能谱(ESCA)分析了聚合物的表面元素,采用Gaussion函数拟合了C1s和N1s的高分辩谱。结果表明,成功的在PCNU的表面构建了末端带有磺铵两性离子结构的聚乙二醇。这种结构将有利于改善PCNU的抗凝血性能。
Polycarbonate diol was synthesized using diphenyl carbonate and 1,6-hexanediol. It was then used to prepared polycarbonate urethane(PCNU) with 4,4ˊ-methylene diphenyl diisocyanate and 1,4-butanediol by melting one-shot method and solution two-shot method in order to study its structure and improve its blood compatibility. Effects of polymerization conditions on the properties of the polymer were studied, including the reaction temperature, time and concentration of the system, and the optimum conditions were reached. The polymer was characterized by IR,GPC,DSC,TG,SAXS and tensile experiments, results showed there were two glass transitions and it was the partial micro-phase segregation structure, However, the phase segregation degree was affected by the soft segment relative molecular mass, composition and polymeric methods. Those results agreed with that from SAXS. TG results showed there were two obvious stages on its thermodecomposition, which was the same with other polyurethanes. The effects of composition and the soft segment relative molecular mass on mechanical properties were studied. The results showed all polymers met with the requirement of polyurethane as biomaterials in vivo. When the soft segment relative molecular mass was 2000, the polymers had larger tensile strength and elongation, and the solution two-shot method was better than melting one-shot method.
    The micro-crosslinked PDMS-PCNU was prepared by improved melting one-shot method. Effects of polymerization conditions such as the reaction temperature, time and concentration of the system on the properties of the polymer were studied, and the optimum conditions were reached. The products were characterized by IR,DSC,TG and SAXS. Results suggested that there were two glass transitions but unobvious, and the phase segregation degree was reduced by crossing of multi-functional organic siloxane polymer. Results agreed with that from SAXS. From TG diagram there were still two stages when a litter multi-functional organic siloxane polymer jointed. As the quantity increased, the boundary became unobvious and the highest decomposition temperature was reached.
    The two new compounds of dimethyl amido hydroxy polyethylene glycol and the hydroxyl polyethylene glycol with sulfoammonium amphoteric ion were devised and synthesized by two paths using polyethylene glycol. The each step products were characterized by IR and 1H-NMR, Results agreed with devised structure, and the synthetic conditions and the effect factors were analyzed. The compounds were grafted in the surface of PCNU by functional reactions. The superficial elements were analyzed by electron spectroscopy for chemical (ESCA), and the ESCA of C1s and N1s were fitted by Gaussion function. Results suggested that the object product were successfully synthesized. These polymers would be beneficial to improve the blood compatibility.
引文
1 Boretos JH, Pierce WS. Segmented polyurethane: a new elastomer for biomedical applidcations. Science, 1967,158:1481-148.
    2 Hayashi Kazuko, Yamashita Iwao, Yamamoto Noboru, et.al. Artificial Blood Vessel. JP60242857,1985.
    3 许戈文,许红.医用聚氨酯,医用高分子通讯,1989(2):17-20.
    4 Young Ha Kim, Dong Keun Han, Ki Dong Park,et.al. Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept. Biomaterials, 2003,24:2213-2223.
    5 王传华,王彭延,赵明等.氯乙烯动脉导管对血液组织因子活性影响的研究.中国生物医学工程学报,1999,18(2):231-233.
    6 何风春,范清宇.惰性微孔聚四氨乙烯引导神经再生的远期效果,第四军医大学学报,1999,20(12):1097-1101.
    7 刘建伟,陈元维,唐昌伟等.PET 膜的接校改性及其血液相容性研究,四川大学学报(工程科学版),2004,36(1):41-44.
    8 牟善松,屠美,周长忍等.硅橡胶/经基磷灰石生物材料的制备及血液相容性,暨南大学学报(自然科学版),2003,24(3):89-92.
    9 许海燕,孔桦等. 抗凝血高分子材料的研究进展及其在心血管外科中的应用. 高分子材料科学与工程. 2001,17:167-171.
    10 Gary T.Howard. Biodegradation of polyurethane: a review. International Biodeterioration & Biodegradation, 2002,49,245-252
    11 Lelah MD, Cooper SL, Polyurethanes in Medicine. BocaRaton, FL:CRC Press, 1986.
    12 Szycher M, Siciliano AA, Reed Am. Polyurethane elastomers in medicine. In: Dumitriu S, editor. Polymeric biomaterials. New York:Marcel Dekker,Inc.; 1994. P233-244.
    13 Stockes K, McVenes R, Anderson JM. Polyurethane elastomer biostability. J Biomater Appl 1995,9,321-354.
    14 Stokes K, Cobian K. Polyether polyurethanes for implantable pacemaker leads. Biomaterials 1982; 3:225–231.
    15 Szycher M. Biostability of polyurethane elastomers: A critical review. J Biomater Appl 1988; 3:297–302.
    16 Stokes K. Polyether polyurethanes: Biostable or not? J Biomater Appl 1988,3:228–259.
    17 王春仁.生物材料表面血浆蛋白的吸附.国外医学生物医学工程分册,1995,18(6)334-339.
    18 董侠.血液相容性材料的合成原理和方法.青岛大学学报,2000,15(4):32-35.
    19 林思聪.蛋白质的天然构象与高分子生物材料的生物相容性,高分子通报,1998,(1):1-10.
    20 李保强,胡巧玲,方征平等. 组织工程用聚氨酯的研究进展, 高分子通报,2003,2:1-7.
    21 Mutsuhisa Furukawaa, Tetsuro Shiibaa, Shigeru Muratab. Mechanical properties and hydrolytic stability of polyesterurethane elastomers with alkyl side groups. Polymer, 1999,40:1791–1798.
    22 R.Jahangir, C.B.McCloskey, W.G.Mc Clung. The influence of protein adsorption and surface modifying macromolecules on the hydrolytic degradation of a poly(ether-urethane) by cholesterol esterase. Biomaterials, 2003,24:121-130.
    23 Alexander M.Seifalian, Henryk J.salacinski, Alok Tiwari, et.al. In vivo biostability of a poly(carbonate-urea)urethane graft. Biomaterials, 2003,24:2549-2557.
    24 王洪祚,杨延武.抗凝血高分子,功能高分子学报.1989,2:81-86.
    25 Nakajima, Kunming International Symposium on Polymericbiomaterial, Preprint, 1988, 4.
    26 Szycher M, Siciliano AA, An assessment of 2,4-TDA formation from Surgitek polyurethane foam under simulated physiological conditions. J Biomed Mater Appl, 1991,5,323-338.
    27 Mazzu Al, Smith Cp. Determination of extractable methylene dianiline in thermoplastic polyyrethanes by HPLC. J Biomed Mater Res 1984,18,961-968.
    28 计剑,邱永兴,俞小洁等.抗凝血聚氨酯材料的研究进展,功能高分子学报,1995,18(2):225-235.
    29 Mutsuhisa Furukawaa, Tetsuro Shiibaa, Shigeru Muratab. Mechanical properties and hydrolytic stability of polyesterurethane elastomers with alkyl side groups. Polymer, 1999,40:1791–1798.
    30 Darren J.Martin, Gordon F.Meijs, Gordon M.Renwick, et.al. The effect of average soft segment length on morphology and properties of a series of polyurethane Elastomers. Ⅰ. Characterization of the series. Journal of Applied Polymer Science, 1996,62:1377-1386.
    31 Tzong-Liu Wang, Tar-hwa Hsieh. Effect of polyol structure and molecular weight on the thermal stability of segmented poly(urethaneureas). Polymer degradation and stability. 1997,55, 95-102.
    32 Darren J.Martin, Gordon F.Meijs, Pathiraya A.Gunatillake, et.al. The influence of composition ratio on the morphology of biomedical polyurethanes. Journal of Applied Polymer Science, 1999,71:937-952.
    33 Darren J.Martin, Gordon F.Meijs, Pathiraya A.Gunatillake, et.al. The effect of average soft segment length on morphology and properties of a series of polyurethane Elastomers. Ⅱ. Saxs-DSC annealing study. Journal of Applied Polymer Science,1997,64,803-817.
    34 Darren J.Martin, Gordon F.Meijs, Gordon M.Renwick, et.al. Effect of soft-segment CH2/O ratio on morphology and properties of a series of polyurethane elastomers. Journal of Applied Polymer Science, 1996,60,557-571.
    35 R.S.Labow, E.Meek, J.P.Santerre. Hydrolytic degradation of poly(carbonate)-urethanes by monocyte-derived macrophages. Biomaterials,2001,22:3025-3033.
    36 Y.W.Tang, R.S.Labow, J.P.Santerre1. Enzyme-induced biodegradation of polycarbonate polyurethanes: Dependence on hard-segment concentration. John Wiley & Sons, Inc.2001.
    37 Y.W.Tang, R.S.Labow, J.P.Santerre. Enzyme-induced biodegradation of polycarbonate -polyurethanes: Dependence on hard-segment chemistry. John Wiley & Sons, Inc.2001.
    38 Y.W.Tang, R.S.Labow, J.P.Santerre. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes. Biomaterials, 2003,24, 2805-2819.
    39 Maria Cristina Tanzi, Diego Mantovani, Paola Petrini, et.al. Chemical stability of polyether urethanes versus polycarbonate urethanes. Journal of biomedical research. 1997, 36,550-559.
    40 Lim F, Yang CZ, Cooper S.L. Systhesis, characterization and ex vivo evaluation of polydimethylsiloxane polyurea-urethanes. Biomaterials, 1994,15,408-416.
    41 Robert W.Hergenrother, Xue-hai Yu, Stuart L.Cooper. Blood-contacting properties of polydimethylsiloxane polyurea-urethanes. Biomaterials,1994,15:635-640.
    42 Ramazan Benrashid, Gordon L.Nelson. Synthesis of New Siloxane urethane block copolymers and their properties. Journal of polymer science: Part A:Polymer chemistry,1994,32:1847-1865.
    43 J.P. Pascault, Y. Camberlin. Quantitative determination of the phase segregation degree in a poly(dimethyl siloxane)-based polyurethane. Polymer Communications, 1986, 27,230-232.
    44 C.M.Brunette, S.L.Hsu, M.Rossman, et.al.Thermal and mechanical properties of linear segmented polyurethanes with butadiene soft segments. Polymer Engineering and Science,1981,21,668-674.
    45 T.A.Speckhard, G.Ver Strate, P.E.Gibson, et.al. Properties of polyisobutylene-polyurethane block copolymers: Ⅰ. Macroglycols from ozonolysis of isobutylene-isoprene copolymer. Polymer Engineering and Science.1983, 23,337-349.
    46 Yue Xuehai, M.R.Najarajan,T.G.Grasel, et.al. Polydimethylsiloxane -polyurethane Elastomers: Synthesis and Properties of Segmented Copolymers and Related Zwitterionomers. Journal of Polymer Science: Polymer physics Edition. 1985,23, 2319-2338.
    47 Young -Chul Chun, Kong-Soo Kim, Jae-Sup Shin. Synthesis and characterization of poly(siloxane-urethane)s. Polymer International, 1992,27,177-182.
    48 Darren J.Martin, Laura A.Poole Warren, Pathiraja A.Gunatillake, et.al. Polydimethylsiloxane/polyether-mixed macrodiol-based polyurethane elastomers: biostability. Biomaterials, 2000,21,1021-1029.
    49 Hideki Kazama, Tatsuya Ono, Yasuyuki Tezuka, et.al. Synthesis of polyurethane-polysiloxane graft copolymer using uniform-size poly(dimethylsiloxane) with a diol end group. Polymer, 1989,30,553-557.
    50 陈清元, 陈中华, 程时远等. 聚丁二烯聚氨酯弹性体的微相结构与性能, 高分子材料科学与工程,1998,14:100-103.
    51 陈清元, 沈家瑞, 张勇等. 不同硬段结构的聚丁二烯聚氨酯弹性体的形态结构研究,高分子材料科学与工程, 2000,16:67-70.
    52 全一武, 陈庆民. 聚丁二烯聚氨酯(脲), 高分子通报, 2003,(1):59-62.
    53 Simon J.McCarthy, Gordon F.Meijs, Natasha Mitchell, et.al. In-vivo degradation of polyurethanes: transmission-FTIR microscopic characterization of polyurethanes sectioned by cryomicrotomy. Biomaterials, 1997, 18, 1387-1409.
    54 Timothy G. Grasel, Jeffrey A.Pierce, Stuart L.Cooper. Effects of alkyl grafting on surface properties and blood compatibility of polyurethane block copolymers. Journal of Biomededical Material Research, 1987,21:815-842.
    55 Chapman T.M. Models for polyurethane hydrolysis under moderately acidic conditions: A comparative study of hydrolysis rates of urethanes, ureas, and amides. Journal of Polymer Science Part A: Polymer Chemistry. 1989,27,1993-2005.
    56 Tang Y.W., Santer J.P., Matsurra T., et.al.Synthesis of surface-modifying macromoleculaes for use in segmented polyurethanes. Journal of Applied polymer Science. 1996,62,1133-1145.
    57 C.B.McCloskey, C.M.Yip, J.P.Santerre.Effect of Fluorinated surface-Modifying macromolecules on the molecular surface structure of a polyether poly(urethane urea). Macromolecules, 2002,35,924-933
    58 Ashish Vaidya,Manoj K.Chaudhury. Synthesis and surface properties of environmentally responsive segmented polyurethanes. Journal of Colloid and Interface Science, 2002, 249,235-245.
    59 Gwendolyn M.R.Wetzels, Leo H.Kode. Photoimmobilisation of poly(N –vinylpyrrolidinone) as a means to improve haemocompatibility of polyurethane biomaterials. Biomaterials, 1999,20,1879-1887.
    60 Shan-hui Hsu, Wei-Chih Chen. Improves cell adhesion by plasma-induces grafting of L-lactide onto polyurethane surface. Biomaterials, 2000, 21, 359-367.
    61 J.D.Andrade, S.Nagaoka, S.Cooper et al. Surfaces and blood compatibility current hypotheses. ASAIOTrans., 1987,33:75-76.
    62 Jae Hyung Park, Ki Dong Park, You Han Bae. PDMS-based polyurethanes with MPEG grafts:Synthesis, characterization and platelet adhesion study. Biomaterials, 1999, 20, 943-953.
    63 Qiang LV, Chuanbao Cao, Hesun Zhu. A novel solvent system for blending of polyurethane and heparin. Biomaterials,2003,24,3915-3919.
    64 Yoshihiro Ito, Masahiko Sisido, Yukio Imanishi. Synthesis and antithrombogenicity of anionic polyurethanes and heparin-bound polyurethanes. Journal of biomedical materials research. 1986,20,1157-1177.
    65 Ki Dong Park,Ai Zhi Piao,Harvey Jarvey Jacobs, et.al.Synthesis and Characterization of spuu-peo-Heparin Graft copolymers. Journal id polymer Science: Part A: Polymer Chemistry. 1991,28, 725-1737.
    66 Jung-Sook Bae, Eun-Jin Seo, Inn-Kyn Kang. Synthesis and characterization of heparinized polyurethanes using plasma glow discharge. Biomaterials, 1999,20,529-537.
    67 Barbucci R,Casisi G, Ferruti P, et.al. Surface-grafted heparinizable materials. Polymer, 1985,26,1349-1352.
    68 Han DK,Park KD, Ahn KD, et.al. J Biomed Mater Res Appl Biomater. 1989,23,87-104.
    69 Lin SC ,Jacobs A,Kim SW. J Biomed Mater Res. 1991,25,791-795.
    70 Mitsuaki Yamada, YUJUN Li, Tadao Nakaya. Stnthesis and properties of polyurethanes containing phosphatidylcholine analogues in the side chainsJ. Macromol. Sci. Pure Appl. Chem, 1995,A32,1235-1242.
    71 Mitsuaki Yamada, Yujun Li, Tadao Nakaya. Synthesis and properties of polyurethanes containing phosphatidylcholine analogues in the polymer backbone. Macromolecular Rapid Communications. 1995 16,25-30.
    72 Yujun Li, Yoshitomo Shibata, Tadao Nakaya. Synthesis and characterization of polyurethanes containing cholesterol and phosphatidylcholine analogous moieties. Macromolecular Rapid Communications, 1995,16,253-258.
    73 Yu-Jun Li, Kerr H. Matthews, Makoto Kodama, et.al. Novel blood compatible polyurethanes containing long-chain alkyl groups and phosphatidylcholine analogues. Macromolecular chemistry and physics. 1995, 196,3143-3153.
    74 Yu-Jun Li,Kerr H. Makoto Kodama, Tadao Nakaya. Synthesis and properties of phospholipids polyurethanes with poly(isoprene) soft segment. Journal of Applied Polymer Science, 1996,62,687-694.
    75 Kazuhiko Ishihara, Hisako Hanyuda, Nobuo Nakabayashi. Synthesis of phospholipids polymers having a urethane bond in the side chain as coating material on segmented polyurethane and their platelet adhesion-resistant properties. Biomaterials, 1995,16,873-879.
    76 Kuo-Yu Chen, Jen-Feng Kuo, Chu-Yang Chen. Synthesis, Characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethanes. Biomaterials,2000,21,161-171.
    77 Okkema AZ, Cooper SL. Effect of carboxylate and/or sulfonate ion incorporation on the physical and blood-contacting properties of a polyetherurethane. Biomaterials, 1991,12,668-76.
    78 袁江,袁幼菱,沈键等.聚氨酯表面构建磺铵两性离子结构及其抗血小板粘附性的研究.高等学校化学学报,2003,24,916-919.
    79 Dong Keun Han, Nam Young Lee, Ki Dong Park, et.al. Heparin-like anticoagulant activity of sulphonated poly(ethylene oxide) and sulphonated poly(ethane oxide)-grafted polyurethane. Biomaterials, 1995,16,467-471.
    80 Muller E, Leverksen KW. Acid-catalyzed transformation of cyclohexane into dimethyldecalins, US 3509223, 1970.
    81 Harris RF, Joseph MD, Davidson C, et.al. Polyurethane elastomers based on molecular weight advanced poly(ethylene ether carbonate) diols. Journal of Applied Polymer Science, 1990, 41:487-507.
    82 Gunatillake PA,Meijs GF,Mccarthy SJ,et.al. Synthesis and characterization of a series of poly(alkylene carbonate) macrodiols and the effect of their structure on the properties of polyurethanes . Journal of Applied Polymer Science, 1997,69:1621-1633
    83 陈同蕙,管云林,许美萱等。合成橡胶工业,1993,16(4):199-201
    84 彭汉,林欣欣,黄斌等。聚碳酸亚丙酯聚氨酯弹性体的合成与性能, 化学世界,1995,36(8):426-428.
    85 刘树.聚氨酯弹性体的氢键,合成橡胶工业,1991,14(3):220-226.
    86 谢兴益,李洁华,钟银屏等.聚碳酸酯聚氨酯弹性体的合成与性能研究,高分子材料科学与工程,2002,18:37-40.
    87 Samuels SL,Wilkes GL, Journal of Polymer Science, 1973,43:149.
    88 R.W.Seymour, Copper S.L., Macromolecules, 1973,16:48.
    89 Yu H, Wang J, Natansohn A, Singh MA. Microphase structures of poly(styrene-b-theylene/propylene) diblock copolymers investigated by solid state NMR and mall angle X-ray scattering techniques. Macromolecules. 1999,32:4365-4374
    90 王炳琴,黎植昌,刘炽清.甘氨酸乙二醇酯的合成、红外和质谱研究,西南师范大学学报(自然科学版),1995,20,(6):712-716
    91 廖白霞,李玉泉,李银奎.乙二醇及聚乙二醇的酯化与反应研究,高分子学报,1992,(1)34-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700