粗山羊草HMW谷蛋白亚基的鉴定及编码基因的分子克隆与原核表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦高分子量麦谷蛋白亚基(HMW-GS)是由1A、1B、1D染色体长臂上Glu-1位点编码的一组种子贮藏蛋白,按分子量大小分为x-型和y-型亚基,其组成与面包烘烤品质密切相关。研究表明,D基因组对面包品质具有十分重要的作用,然而普通小麦Glu-D1位点等位基因变异较小,HMW谷蛋白基因资源十分有限。因此,从小麦近缘种中寻找新的候选优质基因对小麦品质改良具有特别重要的意义。本研究以小麦D基因组的祖先——粗山羊草(Aegilops squarrosa或Triticum tauschii,又叫节节麦,DD,2n=2x=14)为材料,利用十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)、酸性聚丙烯酰胺凝胶电泳(A-PAGE)、双向聚丙烯酰胺凝胶电泳(2-DE:A-PAGE×SDS-PAGE)以及高效毛细管电泳(HPCE)等方法对特异HMW-GS进行分离和鉴定,然后通过设计等位基因特异PCR(AS-PCR)引物对其编码基因进行分子克隆、序列测定和比较分析,并将克隆的Dy12.1~t基因连接到表达载体,在大肠杆菌中进行了表达分析与鉴定。主要研究结果如下:
     ·粗山羊草特异HMW谷蛋白亚基的分离与鉴定
     应用单、双向凝胶电泳方法,在粗山羊草中鉴定了6个新的高分子量谷蛋白亚基,分别命名为1Dx1.5~t、1Dx5.2~t、1Dy10.1~t、1Dy12.1~t、1Dy12.2~t和1Dy12.5~t。同时,用高效毛细管电泳技术对这些新亚基进行了表征和鉴定,确定了这些亚基的毛细管电泳图谱,证实它们都为单一蛋白组分,由各自特定的基因编码。从而为特异谷蛋白亚基基因的分子克隆奠定了基础。在磷酸-甘氨酸酸性缓冲液(含20%乙氰和0.05%羟丙基甲基纤维素)条件下,用内径50μm、长度25.5cm(检测长度20cm)的毛细管分离HMW-GS可获得较高的分辨度。在这些条件下,多数x-型高分子量谷蛋白亚基表现为2-3个多态峰,其原因可能与蛋白质翻译后的修饰有关。从本研究结果可以看出,高效毛细管电泳技术具有操作简便、成本低、快速、样品用量少、分辨率和重复性较高以及高度自动化分离等优点,适于对HMW-GS进行高效的分离和和表征。
     ·特异HMW-GS编码基因的克隆、序列比较与分子进化分析
     根据高分子量谷蛋白亚基基因5’端和3’端的保守性,设计了两对引物分别扩增y-型高分子量谷蛋白亚基基因(1Dy12.1~t和1Dy10.1~t)编码区,以及1Dy12.1~t亚基编码基因的上游DNA序列。对含有目的基因的粗山羊草TD81和TD159进行了AS-PER扩增,均获得了约1950bp的单一强扩增带,分别回收克隆
    
    首都师范大学硕士论文
    后进行DNA序列测定,获得了IDy12.1‘和IDy10.1‘基因的完整编码区序列。同
    时,对TD159中y一型亚基基因上游序列的PCR也得到12O0bp的强扩增带,克隆
    测序后获得了IDyl2.1‘的上游启动子序列。IDy12.1‘基因DNA序列全长为
    2807bp,其中857bp的上游序列具有H姗一GS或真核生物基因的特征序列,如TATA
    框、类CCAAT序列、“一300元件”保守序列以及增强子序列等。该基因编码区
    与己知y一型HMW一GS基因结构相同。推导出的氨基酸序列由648个氨基酸残基组
    成,其蛋白质结构与面包小麦中的IDy10亚基具有很高的同源性,只有5个氨基
    酸残基的替换。因此,IDy12.l‘基因很有可能对面包品质具有重要作用(该基因
    已登陆GeneBank,序列号为AY248704)。从粗山羊草TD81中得到的DNA序列全
    长1980bp,以ATG起始密码子开始,结尾为两个连续的终止密码子 TGATAG,5’
    端和3’端均为非重复序列,中部为有规律的六肤和九肤重复区,具有y一型
    HMW一GS基因典型的编码区结构。通过DNA序列推导出的蛋白序列含有638个氨
    基酸残基,与面包小麦中的IDy12亚基同源性很高。分子进化分析表明,来自粗
    山羊草的y一型亚基与面包小麦和其它近缘种中的y一型亚基具有很高的相似性,
    y一型和x一型两个紧密连锁基因在由一个位点分化后沿各自的方向独立进化。
    .IDy12.1‘基因的原核表达与鉴定
     因Tm 59中的Dy12.1‘亚基与普通面包小麦中的的优质亚基Dy1O具有很高
    的同源性,推测其为一候选优质亚基。为进一步鉴定并研究其功能,对该亚基编
    码基因进行了原核表达。结果证明该序列能在大肠杆菌中表达,且表达产物大小
    与TD159种子中的Dy12.l‘亚基相同。对该基因进一步的遗传转化与功能鉴定等
    工作正在进行之中。
The high-molecular-weight glutenin subunits (HMW-GS) are main seed storage proteins encoded by multi-alleles at Glu-1 loci in wheat. There are two subfamilies called x-type and y-type subunits according to their molecular weight. It is well known that bread-making quality is highly associated with the composition of HMW glutenin subunits. Studies showed that the Gli-D1 loci play an important role in bread-making quality. The allelic variations at the Gli-Dl loci in bread wheat, however, are rather limited. Therefore, it is important to widen the genetic basis of bread wheat by using useful genes of related Triticum species. The D genome donor of bread wheat - diploid Asian goatgrass, Aegilops tauschii Coss (syn. Triticum tauschii, 2n = 2x = 14, DD) was found to possess extensive variations at the Gli-Dl loci, and therefore it is expected to serves as an important gene resource for bread wheat quality improvement. In this study, some specific HMW glutenin subunits from Aegilops tauschii were separated and identified by SDS-PAGE, A-PAGE., 2-DE (A-PAGE x SDS-PAGE) and High Performance Capillary Electrophoresis (HPCE): Allele specific PCR primers were designed to amplify and clone some specific HMW-GS genes. The main results were as the followings:
    Separation and identification of specific HMW-GS in Aegilops tauschii by PAGE and HPCE
    Some novel HMW-GS in Aegilops tauschii were detected by one- and two-dimensional gel electrophoresis and they were named as 1Dx1.5t, 1Dx5.2t, IDy10.1t, lDy12.1t, 1Dy12.2t and lDy12.5t, respectively. They were further characterized by high performance capillary electrophoresis (HPCE). The high resolution CE separations of HMW-GS could be obtained by 0.1 M phosphate-glycine (pH2.50) buffer, containing 20% acetonitrile (ACN) and 0.05% Hydroxypropyl-methylcellulose (HPMC) with a 25.5 cm length capillary (50um i.d.). In addition, the multiple peaks of single HMW-GS under above acidic CE conditions were found, which may relate to post-translational modification of glutenin proteins. Our results showed that HPCE is a powerful tool for HMW-GS separation and characterization with low cost, minor sample requirement, good resolution, and rapidly automatic separation.
    Cloning, characterization and molecular evolutional analysis of HMW-GS genes at Glu-Dt 1 locus
    
    
    
    AS-PCR primers were designed to amplify the upstream and coding region of HMW-GS genes from TD159 with IDy12.1t gene and TD81 with 1Dy10.1t gene. Single strongly amplified band with about 1850bp from both accessions were obtained, and then the amplified products were cloned and sequenced. The complete nucleotide sequence of 1Dy12.1t gene was 2807bp, containing an open reading frame of 1950bp and 857bp of upstream sequence. A perfectly conserved enhancer sequence and the -300 element were present at positions of 209-246bp and 424-447bp upstream of the ATG start codon, respectively. The deduced mature protein of 1Dy12.1t subunit comprised 648 amino acid residues and had great similarity to 1Dy10 subunit from bread wheat with only seven amino acid substitutions, suggesting that 1Dy12.1t gene could have positive effect on bread-making quality. The complete nucleotide sequence of 1Dy10.1t gene was 1980bp. Sequence analysis showed that it is the coding sequence of typical y-type HMW-GS genes. Its deduced mature protein had 638 amino acid residues and was highly homologous with 1Dy12 subunit of bread wheat. The phenetic trees produced by nucleotide and protein sequences showed that the x-and y-type subunit genes were clustered together, respectively, and the 1Dy12.1t and 1Dy10.1t genes are closely related to other y-type subunit genes from the B and D genomes of hexaploid bread wheat.
     Expression and identification of 1Dy12.1t gene in E. coli
    Because of high similarity to 1Dy10 good-quality subunit, it could be concluded that 1Dy12.1t gene have positive effect on bread-making quality. Thus, in order to further understand its function, the expression characters of the 1Dy 12.1t gene were primarily investigated. Cloned 1Dy12.1t gene was connected
引文
[美]D.R.马歇克、J.T.门永、R.R.布格斯、M.W.克努特、W.A.布伦南、S-H林著、朱厚础等译(1999)蛋白质纯化与鉴定实验指南.科学出版社,北京
    郭尧君 (1991) SDS电泳技术的实验考虑及最新进展.生物化学与生物物理进展 18(1):32—37
    郭尧君主编 (1999) 蛋白质电泳实验技术.科学出版社,北京:54-68
    姜怡,余建中,晏月明,蔡民华,胡英考,Perovic D(2002)大麦醇溶蛋白毛细管电泳及其品种鉴定研究.麦类作物学报 22(增):43-46
    解瑞立,万永芳,张彦,王道文 (2000) 多倍体山羊草物种中高分子量麦谷蛋白亚基组成与其编码基因的分子克隆.科学通报 45(17):1867-1874
    李育庆,曹凯鸣,忻骅,顾其敏,孙崇荣 (1992)聚合酶链反应(PCR)所得小麦高分子量谷蛋白亚基基因片断地克隆和顺序分析.植物学报 34(9):651—657
    林炳承 (1996) 毛细管电泳导论.科学出版社,北京:5-34;83-94;180-187
    刘志杰 (2002) 两个二倍体山羊草属物种高分子量麦谷蛋白亚基的鉴定、分子克隆及表达研究.硕士论文:11-12
    唐凤兰,张晓东,王广金,李忠杰,张宏纪,孙岩 (2002) 利用花粉管通道法向小麦中导入麦谷蛋白高分子量优质亚基基因的研究初报。黑龙江农业科学 3:1-2
    王关林,方宏筠主编 (2002) 植物基因工程.科学出版社,北京:143-172
    夏其昌主编 (1997) 蛋白质化学研究技术与进展.科学出版社,北京:99
    颜泽洪,郑有良,万永芳,刘坤凡,王道文 (2001) 粗山羊草高分子量麦谷蛋白新型亚基的筛选和鉴定。四川农业大学学报 19(3):197-199,217
    颜启传,黄亚军,徐媛 (1989) 我国适用的小麦和大麦种子醇溶蛋白聚丙烯酰胺凝胶电泳鉴定品种的标准程序.种子 6:55—57
    杨学举 (1996) 利用高分子量麦谷蛋白电泳技术改良小麦品质.北京农业科学14(3):11—14
    余建中 (2002) 小麦醇溶蛋白和高分子量谷蛋白亚基高效毛细管研究.硕士论文
    余建中,晏月明,蔡民华,胡英考 (2002) 毛细管电泳技术及其在作物贮藏蛋白研究中的应用.麦类作物学报 22(3):78-81
    张发云,晏月明,胡英考,胡赞民,周奕华 (2002) 小麦HMW谷蛋白亚基基因克隆研究进展.中国生物工程杂志 22(6):33-40
    张晓东,李冬梅,徐文英,蒋有绎,胡道芬,韩立新 (1998) 利用基因枪将HMW谷蛋白亚基基因与除草剂Basra抗性基因导入小麦不同外植体获得转基因植株。遗传20(增刊):3-8
    张晓东,梁荣奇,陈绪清,杨凤萍,张立全 (2003) 优质HMW谷蛋白亚基转
    
    基因小麦的获得及其遗传稳定性和品质性状分析.科学通报 48(5):474-479
    赵友梅,王淑俭 (1990) 高分子量麦谷蛋白亚基的SDS-PAGE图谱在小麦品质研究中的应用.作物学报 16(3):208—218
    Ahmad M (2000) Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theor. Appl. Genet. 101:892-896
    Allaby RG, Banerjee M, Brown TA (1999) Evolution of the high molecular weight glutenin loci of the A,B,D, and G genomes of wheat. Genome 42:296-307
    Altpeter F, Vasil V, Srivastava V, Vasil IK (1996) Integration and expression of the high-molecular-weight glutenin subunit 1 Ax 1 gene into wheat. Nature Biotechnol 14:1155-1159
    Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Ryabushkina N, Shewry P, Stein J, Vallejos RH (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100:319-327
    Anderson OD, Abraham-Pierce FA, Tam A (1998) Conservation in wheat high-molecular-weight glutenin gene promoter sequence: comparisons among loci and among alleles of the GLU-Bl-I locus. Theor. Appl. Genet. 96:568-576
    Anderson OD, Greene FC (1989) The characterization and comparative analysis of high-molecular-weight glutenin genes from genomes A and B of a hexaploid bread wheat. Theor. Appl. Genet. 77:689-700
    Anderson OD, Greene FC, Yip RE, Halford NG, Shewry PR, Malpica-Romero JM (1989) Nucleotide sequences of the two high-molecular-weight glutenin genes from the D-genome of a hexaploid bread wheat, Triticum aestivum L. cv Cheyenne. Nucleic Acids Res 17:461-462
    Barro F, Rooke L, Békés F, Gras P, Tatham AS, Fido R, Lazzer PA, Shewry PR, Barcelò P (1997) Transformation of wheat with high-molecular-weight glutenin gene results in improved functional properties. Nature Biotechnol 15:1295-1299
    Bean SR, Bietz JA, Lookhart GL(1998a) High-performance capillary electrophoresis of cereal proteins. Journal of Chromatography A, 814:25-41
    Bean SR, Lookhart GL (1998b) Faster capillary electrophoresis separation of wheat proteins through modifications to buffer composition and sample handling. Electrophoresis 19:3190-3198
    Bean SR, Lookhart GL(2001a) Recent developments in high-performance capillary electrophoresis of cereal proteins. Electrophoresis 22:1503-1509
    Bean SR, Lookhart GL(2001b) High-performance capillary electrophoresis of meat, dairy, and cereal proteins. Electrophoresis 22:4207-4215
    Belton PS (1999) On the elasticity of wheat gluten. J. Cereal Sci. 29:103-107
    
    
    Belton PS, Colquhoun IJ, Field JM, Grant A, Shewry PR, Tatham AS (1994) 1H and 2H NMR relaxation studies of high Mr subunit of wheat glutenin and comparisom with elastin. J. Cereal Sci. 19:115-121
    Bietz JA (1993) Fractionation of wheat gluten proteins by capillary electrophoresis. Gluten Proteins: 404-413
    Bietz JA, Schmalzried E (1992) Capillary electrophoresis of wheat proteins: optimization and use for varietal identification. Cereal Foods World 37:555-560
    Bietz, J. A.: Separation of cereal proteins by reversed-phase high-performance liquid chromatography. J. Chromatogr. 1983, 155: 219-238.
    Bietz JA, Shepherd KW, Wall JS (1975) Single kernel analysis of glutenin: Cse in wheat geneties and breading. Cereal Chem. 52:513-532
    Bietz JA, Wall JS (1972) Wheat gluten subunits: Molecular weights determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cereal Chem. 49: 416-430
    Blechl AE, Anderson OD (1996) Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nature Bioteehnol 14:875-879
    Branlard G, Brigitte P, Christian C (1990) Electrophoresis of gliadins in long acrylamide gel: method and nomenclature. Electrophoresis 11:310-314
    Branland, G and M. Dardevet, (1985) Diversity of grain proteins and bread wheat quality. Ⅰ. Correlation between gliadin brands and flour quality characteristics. J Cereal Sci 3:329~343
    Brown JWS, Flavell RB (1981) Fractionation of wheat gliadin and glutenin subunits by two-dimensional electrophoresis and the role if group 6 and group 2 chromosomes in gliadin synthesis. Theor Appl Genet 59:349-359
    Bushuk W, Zillmam RR (1978) Wheat cultivar identification by gliadin electrophoregrams. I. Apparatus, method and nomenclature. Can J Plant Sci. 58: 505-515
    Bustos A, Rubio P, Soler C, Garcia P, Jouve N (2001) Marker assisted selection to improve HMW-gluetenins in wheat. Euphytica 119:69-73
    Bustos AD, Rubio P, Jouve N(2000) Molecular characterisation of the inactive allele of the gene Glu-Al and the developement of a set of AS-PCR markers for HMW glutenins of wheat. Theor. Appl. Genet. 100:1085-1094
    Ciaffi M, Lafiandra D, Porceddu E, Benedettelli S (1993) Storage protein variation in wild emmer wheat (Triticum turgicum ssp. dicoccoides) from Jordan and Turkey. Ⅰ. Elecyrophoretic characterization of grnotypes. Thoretical and Applied Genetics 86: 474-480
    Colot V, Robert LS, Kavanagh TA, Bevan MW, Thompson RD(1987) Localization of sequence in wheat endosperm protein genes which confer tissue-specific
    
    expression in tobacco. EMBO J 6:3559-3564
    Damidaux R,Autran J-C,Grignac P, Feillet P. (1978) Relation applicable en selection entre l'electrophoregramme des gliadins et les proprietes viscoelastiques du gluten de triticum durum Desf. C R Acad Sci Ser D.287:701-704
    D'Olidio R, Porceddu E, Lafiandra D (1994) PCR analysis of genes encoding allelic variants of high-molecular-weight glutenin subunits at the Glu-Dl locus. Theor. Appl. Genet. 88:175-180
    D'Ovidio R, Masci S, Porceddu E (1995) Development of a set of oligonucleotide primers specific for genes at the Glu-1 complex loci of wheat. Theor Appl Genet 91:189-194
    D'Ovidio R, Masci S, Porceddu E(1996) Sequence analysis of the 5' non-coding regions of active and inactive 1 Ay HMW glutenin genes from wild and cultivated wheats. Plant Science 114:61-69
    D'Olidio R, Anderson OD, Masci S, Skerritt J, Porceddu E (1997) Construction of Novel Wheat High-Mr Glutenin Subunit Gene Variability:Modification of the Repetitive Domain anf Expression in E.coli. Journal of Cereal Science 25:1-8
    Draper SR (1987) ISTA Variety Committee Report of the working group for Biochemical Tests for Cultivar Identification 1983-1986. Seed Sci. & Technol. 15: 431-434
    Fernandez CB, Orellana J (1990) High molecular weight glutenin subunit variation in the Sitopsis selection of Aegilops: Implications for the B genome of wheat. Heredity 65:455-463
    Flavell RB, Goldsbrough AP, Robert LS, Schnick D, Thompson RD(1989) Genetic variation in wheat HMW glutenin subunits and the molecular basis of bread-making quality. Bio/Technology 7:1281-1190
    Forde J, Malpica J-M, Halford NG, Shewry PR, Anderson OD, Greene FC, Miflin BJ(1985) The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of wheat (Triticurn aestivum L.). Nucleic Acids Research 13:6817-6832
    Gianibelli MC, Gupta RB, Lafiandra D, Margiotta B, MacRitchie F (2001) Polymorphism of high Mr glutenin subunits in Triticum tauschii: characterisation by chromatography and electrophoretic methods. Journal of Cereal Science 33:39-52
    Gianibelli MC, Lagudah ES, Wrigley CW, MacRichie F (2002) Biochemical and genetic characterization of a monomeric storage protein (T1) with an unusually high molecular weight in Triticum tauschii. Theor Appl Genet 104:497-504
    Gianibelli MC, Solomon RG(2003) A Novel y-type High M_r Glutenin Subunit(12.4~t) Present in Triticum tauschii. Journal of Cereal Science 37:253-256
    
    
    Goldsbrough AP, Bulleid NJ, Freedman RB, Flavell RB(1989) Conformational differences between two wheat(Triticum aestivum).'high-molecular-weight' glutenin subunits are due to a short region containing six amino acid differences. Biochem. J. 263:837-842
    Halford NG, Forde J, Anderson OD, Greene FC, Shewry PR(1987) The nucleotide and deduced amino acid sequences of a HMW glutenin subunit gene from chromosome 1B of bread wheat (Triticum aestivum L.) and comparison with those of genes from chromosome 1A and 1D. Theor. Appl. Genet. 75:117-126
    Kipp B, Beliz H-D, Seilmeier W, Wiesert H (1996) Comparative Studies of High M_r Subunits of Rye and Wheat. I. Isolation and Biochemical Characterisation and Effects on Gluten Extensibility. Journal of Cereal Science 23:227-234
    Kosmolak F G, Dexter JE, Matsuo R R, Leisle D, Marchylo B A. (1950)A relationship between durum wheat quality and gliadin eletrophoregrams. Can J Plant Sci.60:427-432
    Kreis M, Shewry PR, Forde BG, Miflin BJ (1985) Structure and evolution of seed storage proteins and their genes with particular reference to those of wheat, barley and rye. Oxford Surv Plant Mol Cell Biol 2:253-317
    Lafiandra D, D'Ovidio R, Porceddu E, Margiotta B, Colaprico G(1993) New Data Supporting High M_r Glutenin Subunit 5 as the Determinant of Quality Differences among the pairs 5+10 vs. 2+12. Journal of Cereal Science 18:197-205
    Lafiandra D, Porceddu E, Colaprico G, Margiotta B (1994) Combined reversed-phase high-performance liquid chromatography (RP-HPLC) and electrophoretic techniques in genetics and breeding of wheat storage proteins. In 'High-performance liquid chromatography of cereal and legume proteins' (Kruger JE, Bietz JA eds) AACC, St Paul, Minnesota: 273-325
    Lagudah ES, O'Brien L, Halloran GM (1988) Influence of gliadin composition and high-molecular-weight subunits of glutenin on dough properties in an F_3 population of a bread wheat cross. J. Cereal Sci. 7:33-42
    Lagudah ES, Halloran GM (1988) Phylogenetic relationships of Triticum tauschii the D genome donor to hexaploid wheat. 1. Variation in HMW subunits of glutenin and giiadin. Theor Appl Genet 75:592-598
    Lookhart GL, Bean SR (2000) Ultrafast CE analysis of cereal storage proteins and its applications to protein characterization and cultivar differentiation. Agric. Food Chem. 48:344-353
    Mackie AM, Sharp PJ, Lagudah ES(1996) The Nucleotide and Derived Amino Acid Sequence of a HMW Glutenin Gene from Triticum tauschii and Comparison with those from the D Genome of Bread Wheat. Journal of Cereal Science 24:73-78
    
    
    MacRitchie F (1992) Physicochemical properties of wheat proteins in relation to functionality. Adv. Food. Natr. Res. 36:1-87
    Margiotta B, Urbano M, Colaprico G, Johansson E, Buonocore F, D'Ovidio R, Lafiandra D (1996) Detection of y-type Subunit at GIu-Al Locus in Some Swedish Bread Wheat Lines. J. Cereal Sci. 23: 203-211
    Mcdonald MBJ (1991) Blotting of seed proteins from isoelectrically focused gels for cultivar identification. Seed Sci Technol 9:33-40
    Metakovsky E V,P Annicchiarico,G Boggini. (1997) Rela tionship between gliadin alleles and dough trength in Italian bread wheat cultivars. Cereal Sc.25:229~236
    Morel MH (1994) Acid-Polyacrylamide Gel Electrophoresis of Wheat Glutenins: A New Tool for the Separation of High and Low Molecular Weight Subunits. Cereal Chem 71 (3):238-242
    Nevo E, Payne PI (1987) Wheat storage proteins: Diversity of HMW glutenin subunits in wild emmer from Israel. Theor Appl Genet 74:827-836
    Ortiz JP, Ravizzini RA, Morata MW, Vallejos RH (1997) A rapid system for studying foreign gene expression in wheat (Triticum aestivum L.). J Appl Genet 38:123-130
    Payne PI, Corfield KG, Blackman JA (1979) Identification of a high-molecular-weight subunit of glutenin whose presence correlates with bread-making quality in wheats of related pedigree. Theor. Appl. Genet. 55:153-159
    Payne PI, Corfield KG, Blackman JA (1981) correlation between the inheritance of certain high-molecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J. Sci. Food Agric. 32:51-60
    Payne PI, Holt LM, Lawrence GJ (1983) Detection of a novel high molecular weight subunit of glutenin in some Japanese hexaploid wheats. J Cereal Sci 1:3-8
    Payne PI, Holt Lm, Lawrence GJ, Law CN (1982) The genetics of gliadin and glutenin, the major storage proteins of wheat endosperm. Qual Plant Plant Foods Hum Nutr. 31: 229-241
    Payne PI, Law CN, Mudd EE (1980) Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet 58:113-120
    Payne PI, Holt LM, Jackson EA, Law CN (1984) Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Philos. Trans. R. Soc. Lond. B 304:359-371
    Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Plant Physiol 38:141-153
    Payne PI, Nightingalc MA, Krattiger AF, Holt LM (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British
    
    grown wheat varieties. J. Sci. Food Agric. 40:51-65
    Pflüger LA, D'Ovidio R, Margiotta B, Pea R, Mujeeb-Kazi A, Lafiandra D (2001) Characterisation of high- and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theor Appl Genet 103:1293-1301
    Robert LS, Thompson RD, Flavell RB (1989) Tissue-specific expression of a wheat high molecular weight glutenin gene in transgenic tobacco. The Plant Cell 1:569-578
    Rooke L, Békés F, Fide R, Barro F, Gras P, Tatham AS, Barceló P, Lazzer PA, Shewry PR(1999) Overpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J Cereal Sci, 30:115-120
    Sapirstein HD, Bushhuk W (1985) Computer-aided analysis of gliadin electrophoregrams. I. Improvement of precision of relative mobility determination by using a three reference band standardization. Creal Chem 65:372-377
    Shewry PR ,Tatham AS(1997) Disulphide bonds in wheat gluten proteins. Journal of Cereal Science 25:207-227
    Shewry PR, Halford NG, Tatham AS (1959) The high molecular weight subunits of wheat, barley and rye: Genetics, molecular biology, chemistry and role in wheat gluten structure and functionality. In Oxford Surveys of Plant and Molecular Cell Biology 6: 163-219, B. J. Miftin, Oxford University Press: London
    Shewry PR, Halford NG, Tatham AS (1992) The high molecular weight subunits of wheat, glutenin. J. Cereal Sci. 15:105-120
    Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, propcrties and role in grain utilization. J Exp Bot 53:947-958
    Singh NK, Shepherd KW, Cornish GB (199 l) A Simplified SDS-PAGE for Separating LMW Subunit of Glutenin. J. Cereal Sci 14:203-207
    Smith RL, ME Schweder ME, Barnett RD (1994) Identification of glutenin alleles in wheat and triticale using PCR-generated DNA markers. Crop Sci. 34:1373-1378
    Sozinov A A, Poperelya F A. (1960)Genetic classification of prolamines and its use for plant breeding. Ann Technol Agric, 29:229~245.
    Stevenson SG, Preston KR (1996) Flow Field-Flow Fractionation of Wheat Proteins. Cereal Sci. 23:121-131
    Sutton KH, Bietz JA (1997) Variation among high molecular weight subunits of glutenin detected by capillary electrophoresis. J. Cereal Sci. 25:9-16
    Tahir M, Pavoni A, Tucci GF, Turchetta T, Lafiandra D (1996) Detection and characterization of a glutenin subunit with unusual high Mr at the Glu-Al locus in hexaploid wheat. Theor Appl Genet 92:654-659
    Tatham AS, Miflin BJ, Shewery PR (1985) The beta-turn conformation in wheat
    
    gluten proteins: relationship to gluten elasticity. Cereal Chem 62: 405-412
    Thomas MS, Flavell RB (1990) Identification of an enhancer element for the endosperm-specific expression of high molecular weight glutenin. Plant Cell 2: 1171-1180
    Thompson RD, Bartels D, Harberd NP (1985) Nucleotide sequence of a gene from chromosome 1D of wheat encoding a HMW glutenin subunit. Nucleic Acids Research 13:6833-6846
    Vensel WH, Adalsteins AE, Kasarda DD (1997) Purification and characterization of the glutenin subunits of Triticum tauschii, progenitor of the D genome in hexaploid bread wheat. Cereal Chem. 74(2): 108-114
    Wahlund KG, Gustavsson M, MacRitchie F, Nylander T, Wannerberger L (1996) Size characterization of wheat proteins, particularly the glutenins, byasymmetdcal flow field-flow fractionation. J. Cereal Science 23:113-119
    Waines JG, Payne PI (1987) Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat. Theor. Appl. Genet. 74:71-76
    Weegels PL, Hamer RJ, Schofield JD (1995) RP-HPLC and Capillary Electrophoresis of Subunits from Glutenin Isolated by SDS and Osborne Fractionation. J. Cereal Sci. 22:211-224
    Weegels PL, Hamer RJ, Schofield JD (1996) Critical Review Functiōn Properties of Wheat Glutenin. J. Cereal Sci. 23:1-18
    Wemer WE, Wiktorowicz JE, Kasarda DD (1994) Wheat varietal identification by capillary electrophoresis of gliadins and highmolecular weight glutenin subunits. Cereal chem. 71(5): 394-402
    Wieser H (2000) Comparative investigations of gluten proteins from different wheat species Ⅰ. Qualitative and quantitative composition of gluten protein types. Eur Food Res Technol 211:262-268
    Williams MDHM, Pena RJ, Mujeeb-Kazi A. (1993) Seed protein and isozyme variations in Triticum tauschii (Aegilops squarrosa). Theor Appl Genet 87:257-26
    Woychik, J H, Boundy JE and Dimler RJ ( 1961 ) Starch gel electrophoresis of wheat gluten proteins with concentrated urea. Arch Biochem Biophys 94:477-482
    Wrigley C W (1996) Giant proteins with flour power. Nature 381:738-739
    Wrigley C W, Robinson P J,Williams W T. (1982) Association between indiviual gliadin proteins and quality, agronomic and morphological attributes of wheat cultivars. Aust J Agric Res 33:409~418
    Yan Y, Prodanovic S, Mladenov N, Milovanovic M (1999a) Genetic control of low molecular weight glutenin subunits in wheat by A-PAGE analysis. Cereal Res Comm 27:251-257
    Yan, Y., G. Surlan-Momirovic, S. Prodanovic, D. Zorie and G. Liu (1999b) Capillary
    
    zone electrophoresis analysis of gliadin proteins from Chinese and Yugoslav winter wheat cultivars. Euphytica, 105:197-204.
    Yan Y, Hsam SLK, Yu JZ, Jiang Y, Zeller FJ (2003a) Genetic polymorphisms at Gli-D′ gliadin loci in Aegilops tauschii as revealed by acid polyacrylamide gel and capillary electrophoresis. Plant Breed. 122:120-124
    Yan Y, Hsam SLK, Yu JZ, Jiang Y, Zeller FJ (2003b) Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by Sodium Dodecyl Sulphate (SDS-PAGE), Acid Polyacrylamide Gel (A-PAGE) and Capillary Electrophoresis. Euphytica 130:377-385
    Yah Y, Yu J Z, Jiang Y, Hu Y, Cai M, Hsam S L K, Zeller F J (2003c) Capillary, electrophoresis separation of high molecular weight glutenin subunits in bread wheat (Triticum aestivum) and related species with phoephate-based buffers. Electrophoresis 24:1429-1436
    Yan Y, Hsam S L K, Yu J Z, Jiang Y, Ohtsuka I, Zeller F J (2003d) Studies on the origin of European spelt wheat (Triticum spelta L.) I. HMW and LMW glutenin alleles among putative tetraploid and hexaploid T. spelta progenitors. Theor Appl Genet (in press)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700