胚胎干细胞或胚胎样干细胞向血管细胞的分化及调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管系统是人类最大,分布最广的系统。血管细胞主要包括内皮细胞和平滑肌细胞。血管细胞的功能异常可以导致动脉粥样硬化,心肌梗塞,脑中风等血管疾病。
     胚胎干细胞来源于囊胚内细胞团,是具有无限增殖能力和向各胚层细胞分化能力的全能干细胞。胚胎干细胞向内皮细胞或平滑肌细胞分化的研究对血管细胞的发育生物学,心血管药物的筛选,并可望为细胞移植治疗提供细胞来源。本研究论文主要进行小鼠和人类的胚胎干细胞(ESCs)及胚胎干细胞样细胞(iPS细胞)向内皮细胞(ECs)和平滑肌细胞(SMCs)分化的体系构建及相关机制研究,包括以下五个方面:1、小鼠骨髓内皮细胞条件培养液对小鼠胚胎干细胞向内皮细胞分化的诱导作用;2、人类胚胎干细胞来源的内皮样细胞与脐血来源的内皮祖细胞和脐静脉内皮细胞的比较;3、iPS细胞向内皮细胞及平滑肌细胞的分化;4、平滑肌细胞分化过程中促进分化的转录因子的筛选及调控机制的初步研究;5、锌指蛋白297B协同Myocardin调节平滑肌细胞的分化。
     第一章小鼠骨髓内皮细胞条件培养液促进鼠胚胎干细胞向内皮细胞的诱导分化
     目的:小鼠骨髓内皮细胞的条件培养液在以前的实验中被证明能促进造血细胞的增殖及分化,促进骨髓内皮细胞的生长。本实验研究内皮细胞条件培养基(mEC-CM)对小鼠胚胎干细胞向内皮细胞分化的促进作用及分化的内皮细胞的纯化。
     方法:在这个研究中,我们用mEC-CM诱导mESCs向内皮细胞前体细胞Flkl+细胞分化,并将诱导分化的效率同细胞因子(VEGF,EGF,bFGF和IGF-1)诱导的效率相比较。我们还从分化的mESCs中机械挑选了吞噬DiI-Ac-LDL的鹅卵石样细胞,分析其生物学特性。
     结果:mEC-CM能明显促进mESCs向Flkl+细胞的分化,其效率与细胞因子的诱导相似,mEC-CM与细胞因子组合没有协同诱导作用。mEC-CM的诱导结合机械挑选DiI-Ac-LDL标记阳性的鹅卵石样细胞的方法,能纯化分化的内皮样细胞,表达内皮细胞标志,结合UEA1,并能在体外形成血管样结构。
     结论:mEC-CM能诱导mESCs向内皮细胞的分化。机械挑选DiI-Ac-LDL标记阳性的鹅卵石样细胞的方法能纯化mESCs分化的内皮样细胞。
     第二章胚胎干细胞来源的内皮细胞的诱导分化及其与人脐静脉内皮细胞和脐血内皮祖细胞的比较
     目的:从人类胚胎干细胞分化系统中分选出内皮前体细胞(KDR+细胞),研究其特性,并与脐血来源的内皮祖细胞和脐静脉内皮细胞进行比较。
     方法:用本研究所建立的人类胚胎干细胞株chESC-1, chESC-3, chESC-8, chESC-20和chESC-22,自发分化成9天的拟胚体,磁珠分选出KDR+细胞,在内皮细胞培养基培养后,检测其内皮细胞标志的表达,生长特性,及其内皮细胞功能,并与脐血内皮祖细胞和脐静脉内皮细胞进行比较。
     结果:从9天EBs中分选出KDR+细胞在内皮细胞培养基中培养后,与成体内皮细胞相比较,胚胎干细胞来源的KDR+细胞表达更多的内皮祖细胞标志如CD133,CD34,不表达成熟内皮细胞标志vWF,能结合UEA1,吞噬DiI-Ac-LDL,并能在matrigel上形成血管样结构。在体外培养过程中,KDR+细胞的祖细胞标志逐渐减少,出现成熟内皮细胞标志。
     结论:人胚胎干细胞株能向内皮细胞分化,分选得到的KDR+细胞在内皮细胞培养条件下与成体内皮细胞比较显示其内皮祖细胞特性,并能在体外培养中向成熟内皮细胞分化。
     第三章iPS细胞向内皮细胞和平滑肌细胞的诱导分化
     目的:成纤维细胞转染Oct4, c-Myc, Sox2和Klf4四种因子得到的诱导的多能干细胞(induced pluripotent stem cells,iPS)是一种胚胎干细胞样细胞,能无限增殖并具有多向分化潜能,较之胚胎干细胞,iPS细胞避免了伦理问题,且能建立患者特异性的细胞株,具有很高的临床应用价值。本研究探讨小鼠iPS细胞向血管细胞(内皮细胞和平滑肌细胞)分化的能力。
     方法:采用单层贴壁诱导及流式细胞术进行Flkl+细胞分化与分选,进而与OP9基质细胞共培养,并用VE-cadherin为标志纯化内皮细胞(09-EC);用高剂量反式视黄酸(RA)诱导iPS向平滑肌细胞分化。检测分化细胞的基因表达,免疫标记和细胞功能,与普通小鼠胚胎干细胞的分化效率相比较。
     结果:小鼠iPS细胞可以向内皮细胞和平滑肌细胞分化,分化效率与普通小鼠胚胎干细胞相似。分化的内皮细胞能表达CD31,CD144等表面标志,吞噬DiI-Ac-LDL,并能在matrigel上形成血管。分化的平滑肌细胞能表达SMAa, SMMHC等标志,在碳酰胆碱刺激下有收缩功能。分化过程中内皮或平滑肌细胞特异性基因表达上调,而Oct4、Sox2、Klf4和c-Myc这四种诱导iPS细胞形成的转录因子的表达显著下调。
     结论:小鼠iPS细胞能向内皮细胞和平滑肌细胞诱导分化,其分化潜能与小鼠胚胎干细胞相似。
     第四章平滑肌细胞重要调节因子Myocardin的协同转录因子的筛选
     目的:平滑肌细胞的增殖分化与血管内膜增生,冠状动脉狭窄等血管病理密切相关,Myocardin是平滑肌分化过程中不可缺少的一个协同转录因子,本实验希望通过筛选与Myocardin结合的蛋白,找到在平滑肌分化过程中新的重要的转录因子或协同转录因子,研究其在平滑肌分化过程中的功能及所属信号通路,进而更深入了解平滑肌分化的分子机制。
     方法:用荧光素酶活性实验筛选1170个转录因子中能上调Myocardin表达的转录因子,并用免疫共沉淀等方法进一步确认候选因子与Myocardin蛋白水平的物理结合,通过生物信息学分析等方法筛选出候选因子,在小鼠胚胎干细胞向平滑肌细胞分化模型中确定其在平滑肌细胞分化中的调节作用。
     结果:我们从1170个转录因子中筛选出ZNF297B,RAI14和MAGED1等转录因子,确定其在平滑肌中高表达,在平滑肌分化过程中上调,并能与Myocardin直接结合,其过表达能促进平滑肌分化基因的表达。
     结论:ZNF297B,RAI14和MAGED1等转录因子可能是调节平滑肌分化的重要转录因子。
     第五章锌指蛋白297B协同Myocardin调节平滑肌细胞的分化
     目的:探讨锌指蛋白297B(ZNF297B)在平滑肌细胞分化过程中的表达及相关机制。
     方法:用定量实时PCR检测ZNF297B在人,大鼠,小鼠平滑肌细胞中体内/体外的表达量及在平滑肌细胞体内和体外分化或增殖过程中的表达变化;构建ZNF297B-Myc表达质粒,免疫荧光检测ZNF297B-Myc在大鼠平滑肌细胞中的表达分布;用荧光素酶活性检测及免疫共沉淀实验检测ZNF297B与Myocardin的结合及相互作用。
     结果:ZNF297B在平滑肌细胞中特异性高表达,在小鼠胚胎干细胞向平滑肌细胞分化过程中表达上调,在PDGFBB刺激的平滑肌细胞增殖过程中下调,在大鼠颈动脉球囊损伤内膜修复过程中表达先上调后下降。ZNF297B主要分布于细胞核及核周的细胞质。ZNF297B能与Myocardin蛋白结合,荧光素酶活性检测显示ZNF297B的表达受Myocardin的调控。
     结论:ZNF297B可能在平滑肌细胞分化过程中起到重要正向调控作用,这一作用很可能是通过ZNF297B与Myocardin的协同作用来完成。
Vascular system is the biggest and the most widely distributed system in human being. Vascular cells include endothelial cells and smooth muscle cells. The disfunction of vascular cells can cause diseases such as atherosclerosis, myocardial infarction, stock and reginal ischemia.
     Embryonic stem cells (ESCs) are cell lines from inner cell mess of blastula. They can infinitely proliferate and are capable of differentiate into all the cell types of three layers. The in vitro system of differentiation of ESCs into vascular cells is a valuable tool to study vascular development, screen drugs for cardiovascular diseases, or potential cell transplantation in clinic applications. This thesis focuses on several issues that are related to the differentiation of ESCs or ESC-like cells (iPS) to endothelial cells and/or smooth muscle cells as well as the mechanisms of the differentiation, which include the following aspects:1. The promotional effects of conditional medium of endothelial cells to the differentiation of ESCs into endothelial cells; 2. The comparison of ESCs derived endothelial-like cells with adult endothelial progenitors and human umbilical cord vascular endothelial cells; 3. The differentiation of iPS cells into endothelial cells and smooth muscle cells; 4. The screening of the transcriptional factors that are related to smooth muscle differentiation and the mechanisms underneath; 5. ZNF297B regulates differentiation of smooth muscle cells through interaction with myocardin.
     Chapter 1 The effect of a conditional medium of endothelial cells in inducing the differentiation of mouse embryonic stem cells into endothelial cells
     Objective:It has been proved that the conditional medium of mouse bone marrow endothelial cells (mEC-CM) could promote the proliferation and differentiation of embryonic or adult hematopoietic cells; it also could stimulate the growth of bone marrow endothelial cells. The purpose of this experiment is to study the effect of the cytokines in this mEC-CM in inducing the differentiation of mouse embryonic stem cells into endothelial cells.
     Methods:In this study, we induced the mESCs into endothelial progenitors with mEC-CM, and compared the differentiation efficiency with the induction by cytokine cocktail(VEGF,EGF,bFGF and IGF1). We also handpicked the DiI-Ac-LDL uptaken cells derived from mESCs and analyzed their characteristics. They were a pure cell population with endothelial characteristics.
     Results:mEC-CM could significantly promote the differentiation of mESCs into Flk1+ cells. The efficiency was similar to the induction by cytokine cocktail. We got pure cobblestone-like cell population by induction by mEC-CM combined with handpick-up Dil-Ac-LDL-positive cells. This cell population could express endothelial marker, bind UEA1, uptake DiI-Ac-LDL and form tube-like structure in vitro.
     Conclusions:mEC-CM can induce the differentiation of mESCs into endothelial cells. Manual selection of DiI-Ac-LDL-positive cells could be a potential method to isolate endothelial-like cells from differentiated mESCs.
     Chapter 2 Comparison the embryonic stem cell-derived KDR+ cells with cord blood endothelial progenitors and human umbilical cord vascular endothelial cells
     Objective:To study the characteristics of human embryonic stem cell-derived endothelial progenitors (KDR+ cells), and compare them with CBEPCs and HUVECs.
     Methods:The human ES cell lines that established by our institute were allowed to spontaneously differentiated into 9 day embryoid bodies (9dEBs). Isolated the KDR+ cells from 9dEBs by MACS and cultured them in endothelial medium. Their expression of endothelial markers and their function were tested and compared with CBEPCs and HUVECs.
     Results:Compared with adult endothelial cells, the 9dEB-derived KDR+ cells expressed higher level of endothelial progenitor markers such as CD133 and CD34, showed endothelial function, but did not express the mature endothelial marker vWF. In the process of in vitro culture, the progenitor markers of KDR+ cells were downregulated, while mature endothelial markers were upregulated.
     Conclusions:The human ES cell lines established by our institute can differentiated into endothelial cells. The isolated KDR+ cells showed the endothelial progenitor characteristics and could differentiate into mature endothelial cells in vitro.
     Chapter 3 The induced differentiation of iPS cells into endothelial cells and smooth muscle cells
     Objective:The induced pluripotent stem cells (iPS cells) in our experiment were derived from fibroblast cells that had been transfected by four transcriptional factors (Oct4,Nanog,Sox2 and Klf4). iPS is embryonic stem cell like pluripotent cell line. But compared with ESCs, iPS cell experiments avoid the ethical issues and make patient specific pluripotent cell line possible. This experiment studied the differentiation of iPS cells into vascular cells (endothelial cells and smooth muscle cells).
     Methods:09 iPS cells were induced to differentiate into endothelial cells by monolayer culture, FACS sorting Flk1+ cells, followed by OP9 stromal cell co-culture, and purified by FACS sorting VE-cadherin+ cells(09-EC). Smooth muscle cell differentiation of iPS cells was induced by high dose retinoid acid (RA).The specific marker expression and functional characteristics of the differentiated cells were analyzed. Gene expression during differentiation process were tested by real-time PCR. The differentiation efficiency was compared with ESC differentiation.
     Results:iPS cells could differentiate into endothelial cells and smooth muscle cells. The endothelial or smooth muscle specific genes were up-regulated in the differentiation process. Four reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) that induce the generation of iPS cells were significantly down-regulated in this process. The method and efficiency of differentiation were similar with normal mouse ESCs.
     Conclusions:This study supports that iPS cells can differentiate into endothelial cells and smooth muscle cells in vitro. The vascular differentiation ability of iPS cells is similar with ESCs This procedure may contribute to clinic application of patient-specific iPS cells derived cells in vascular degeneration diseases.
     Chapter 4 Screening of the co-activators of Myocardin—new discovery in mechanism of regulation of smooth muscle cell differentiation
     Objective:The proliferation and differentiation of smooth muscle cells is highly related to the mechanisms underneath angiopathological situation such as formation of neointima and coronary stenosis. Myocardin is a key factor in smooth muscle differentiation. In this experiment, we were looking for important transcriptional factors or co-activators in smooth muscle differentiation signaling pathway by screening the proteins that could bind and upregulate myocardin. By studying the function of the protein candidate, we could discover the molecular mechanism of smooth muscle differentiation.
     Methods:We discovered a list of candidates that could upregulate the expression of myocardin by screening 1170 transcriptional factor candidates by luciferase assay. After further confirmation of the binding between candidates and myocardin by co-IP and analysis with bioinformatics strategy, we got ZNF297B, RAI14 and MAGED1 as the most promising candidates.
     Results:ZNF297B, RAI14 and MAGED1 were highly expressed in smooth muscle cells and their expression level was upregulated during the differentiation of smooth muscle cells. They could bind to myocardin directly. The overexpression of these candidates promoted the differentiation of ESCs into smooth muscle cells.
     Conclusions:ZNF297B, RAI14 and MAGED1 could be important transcriptional factors to regulate smooth muscle differentiation
     Chapter 5 ZNF297B regulates differentiation of smooth muscle cells through interaction with myocardin
     Objective:Discover the expression of ZNF297B in the differentiation of smooth muscle cells and investigate the related mechanism.
     Methods:The mRNA expression level of ZNF297B in human, rat and mouse smooth muscle cells and the change of ZNF297B expression level in smooth muscle cell differentiation and proliferation was tested by real-time PCR. The ZNF297B-Myc/His plasmid was constructed and transfected into rat smooth muscle cells to test the distribution of ZNF297B in cultured cells. The binding and interaction of ZNF297B and Myocardin was tested by luciferase assay and confirmed by co-immunoprecipitation.
     Results:ZNF297B was specificly highly expressed in smooth muscle cells. The expression level of ZNF297B was upregulated in the process of RA induced smooth muscle cell differentiation from mouse embryonic stem cells. ZNF297B expression was downregulated in PDGFBB stimulated smooth muscle cell proliferation process. In balloon-injured rat carotid arteries, ZNF297B was upregulated after 6 hours and then downregulated. ZNF297B mainly expressed in nucleus and the cytoplasm around nucleus. ZNF297B can bind and interact with Myocardin in protein level.
     Conclusions:ZNF297B may play an important role in smooth muscle cell differentiation. This function may related to the interaction between ZNF297B and Myocardin.
引文
[1]Na XD, Wang QR, Zhao ZP. [Analysis of the different effects of murine bone marrow endothelial cell conditioned medium on the growth of embryonic and adult hematopoietic stem/progenitor cells in vitro]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2004; 12 (3):255-260.
    [2]Wang QR, Yan Y, Wang BH, Li WM, Wolf NS. Long-term culture of murine bone-marrow-derived endothelial cells. In Vitro Cell Dev Biol Anim 1998; 34 (6):443-446.
    [3]Na XD, Zhao ZP, Tan MQ, Xie QY, Wang QR. [Effects of murine bone marrow endothelial cell conditioned medium on the growth of yolk sac hematopoietic stem cells and progenitors]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2002; 24 (1):36-40.
    [4]Zhao HP, Lu GX, Wang QR. [Bone marrow endothelial cell-conditioned medium promotes hematopoietic differentiation of mouse embryonic stem cells]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2003; 11 (2):109-114.
    [5]Zhou XY, Wang QR, Huang YH, Cheng LM, Tan MQ. [Promoting effects of serum-free murine bone marrow endothelial cell conditioned medium on the growth of bone marrow endothelial cells]. Sheng Li Xue Bao 2005; 57 (2):199-204.
    [6]Huang YH, Wang QR. [Effects of bone marrow endothelial cell conditioned medium on the expansion of mature megakaryocytes and CFU-Meg in vitro]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2004; 29 (4):386-388.
    [7]Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J. flk-1, an flt-related receptor tyro sine kinase is an early marker for endothelial cell precursors. Development 1993; 118 (2):489-498.
    [8]Dumont DJ, Fong GH, Puri MC et al. Vascularization of the mouse embryo:a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 1995; 203 (1):80-92.
    [9]Shalaby F, Rossant J, Yamaguchi TP et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376 (6535):62-66.
    [10]McCloskey KE, Lyons I, Rao RR, Stice SL, Nerem RM. Purified and proliferating endothelial cells derived and expanded in vitro from embryonic stem cells. Endothelium 2003; 10 (6):329-336.
    [11]Dang SM, Gerecht-Nir S, Chen J, Itskovitz-Eldor J, Zandstra PW. Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 2004; 22 (3):275-282.
    [12]Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 2005; 106 (5):1601-1603.
    [13]Cameron CM, Hu WS, Kaufman DS. Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol Bioeng 2006; 94 (5):938-948.
    [14]Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science 2001; 294 (5542):564-567.
    [15]Shen G, Tsung HC, Wu CF et al. Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells. Cell Res 2003; 13 (5):335-341.
    [16]Ward MR, Stewart DJ, Kutryk MJ. Endothelial progenitor cell therapy for the treatment of coronary disease, acute MI, and pulmonary arterial hypertension: current perspectives. Catheter Cardiovasc Interv 2007; 70 (7):983-998.
    [17]Ding YT, Kumar S, Yu DC. The role of endothelial progenitor cells in tumour vasculogenesis. Pathobiology 2008; 75 (5):265-273.
    [18]Yamashita J, Itoh H, Hirashima M et al. Flkl-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000; 408 (6808):92-96.
    [19]Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R. Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 2002; 99 (7):4391-4396.
    [20]Balconi G, Spagnuolo R, Dejana E. Development of endothelial cell lines from embryonic stem cells:A tool for studying genetically manipulated endothelial cells in vitro. Arterioscler Thromb Vasc Biol 2000; 20 (6):1443-1451.
    [21]Voyta JC, Via DP, Butterfield CE, Zetter BR. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol 1984; 99 (6):2034-2040.
    [22]Murohara T. Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors. Trends Cardiovasc Med 2001; 11 (8):303-307.
    [23]Kawamoto A, Gwon HC, Iwaguro H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103 (5):634-637.
    [24]Vittet D, Prandini MH, Berthier R et al. Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 1996; 88 (9):3424-3431.
    [25]Caspi O, Lesman A, Basevitch Y et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 2007; 100 (2):263-272.
    [26]Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161 (2):851-858.
    [27]Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246 (4935):1306-1309.
    [28]Keck PJ, Hauser SD, Krivi G et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989; 246 (4935):1309-1312.
    [29]Millauer B, Wizigmann-Voos S, Schnurch H et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993; 72 (6):835-846.
    [30]Kataoka H, Takakura N, Nishikawa S et al. Expressions of PDGF receptor alpha, c-Kit and Flkl genes clustering in mouse chromosome 5 define distinct subsets of nascent mesodermal cells. Dev Growth Differ 1997; 39 (6):729-740.
    [31]Shalaby F, Ho J, Stanford WL et al. A requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997; 89 (6):981-990.
    [32]Oyamada N, Itoh H, Sone M et al. Transplantation of vascular cells derived from human embryonic stem cells contributes to vascular regeneration after stroke in mice. J Transl Med 2008; 6:54.
    [33]Yang L, Soonpaa MH, Adler ED et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 2008; 453 (7194):524-528.
    [34]Zhou J, Ou-Yang Q, Li J et al. Human feeder cells support establishment and definitive endoderm differentiation of human embryonic stem cells. Stem Cells Dev 2008;17(4):737-749.
    [35]Xie CQ, Lin G, Yuan D et al. Proliferative feeder cells support prolonged expansion of human embryonic stem cells. Cell Biol Int 2005; 29 (8):623-628.
    [36]Lin G, OuYang Q, Zhou X et al. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res 2007; 17 (12):999-1007.
    [37]Lin G, Xie Y, Ouyang Q et al. HLA-matching potential of an established human embryonic stem cell bank in China. Cell Stem Cell 2009; 5 (5):461-465.
    [38]Wang J, Zhao HP, Lin G et al. In vitro hematopoietic differentiation of human embryonic stem cells induced by co-culture with human bone marrow stromal cells and low dose cytokines. Cell Biol Int 2005; 29 (8):654-661.
    [39]Wang L, Li L, Shojaei F et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 2004; 21 (1):31-41.
    [40]Zambidis ET, Peault B, Park TS, Bunz F, Civin CI. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood 2005; 106 (3):860-870.
    [41]Levenberg S, Rouwkema J, Macdonald M et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol 2005; 23 (7):879-884.
    [42]Wernig M, Zhao JP, Pruszak J et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A 2008; 105 (15):5856-5861.
    [43]Hanna J, Wernig M, Markoulaki S et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318 (5858):1920-1923.
    [44]Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318 (5858):1917-1920.
    [45]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126 (4):663-676.
    [46]Park IH, Zhao R, West JA et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451 (7175):141-146.
    [47]Sullivan GJ, Hay DC, Park IH et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology; 51 (1):329-335.
    [48]Taura D, Noguchi M, Sone M et al. Adipogenic differentiation of human induced pluripotent stem cells:comparison with that of human embryonic stem cells. FEBS Lett 2009; 583 (6):1029-1033.
    [49]Kuzmenkin A, Liang H, Xu G et al. Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB J 2009; 23 (12):4168-4180.
    [50]Osakada F, Jin ZB, Hirami Y et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 2009; 122 (Pt 17):3169-3179.
    [51]Dimos JT, Rodolfa KT, Niakan KK et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008; 321 (5893):1218-1221.
    [52]Boland MJ, Hazen JL, Nazor KL et al. Adult mice generated from induced pluripotent stem cells. Nature 2009; 461 (7260):91-94.
    [53]Zhao XY, Li W, Lv Z et al. iPS cells produce viable mice through tetraploid complementation. Nature 2009; 461 (7260):86-90.
    [54]Nakagawa M, Koyanagi M, Tanabe K et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008;26(1):101-106.
    [55]Kaji K, Norrby K, Paca A et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009; 458 (7239):771-775.
    [56]Woltjen K, Michael IP, Mohseni P et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458 (7239):766-770.
    [57]Chang CW, Lai YS, Pawlik KM et al. Polycistronic lentiviral vector for "hit and run" reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 2009; 27 (5):1042-1049.
    [58]Gonzalez F, Barragan Monasterio M, Tiscornia G et al. Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci U S A 2009; 106 (22):8918-8922.
    [59]Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 2009; 5 (6):584-595.
    [60]Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 1998; 125 (9):1747-1757.
    [61]Narazaki G, Uosaki H, Teranishi M et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 2008; 118 (5):498-506.
    [62]Schenke-Layland K, Rhodes KE, Angelis E et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 2008; 26 (6):1537-1546.
    [63]Skurk C, Izumiya Y, Maatz H et al. The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem 2005; 280 (21):20814-20823.
    [64]Potente M, Urbich C, Sasaki K et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest 2005; 115 (9):2382-2392.
    [65]Miyamoto K, Araki KY, Naka K et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1(1):101-112.
    [66]Kops GJ, Dansen TB, Polderman PE et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 2002; 419 (6904):316-321.
    [67]Schoenen F, Wirth B. The zinc finger protein ZNF297B interacts with BDP1, a subunit of TFIIIB. Biol Chem 2006; 387 (3):277-284.
    [68]Wang D, Chang PS, Wang Z et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 2001; 105 (7):851-862.
    [69]Li S, Wang DZ, Wang Z, Richardson JA, Olson EN. The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proc Natl Acad Sci U S A 2003; 100 (16):9366-9370.
    [70]Wang Z, Wang DZ, Pipes GC, Olson EN. Myocardin is a master regulator of smooth muscle gene expression. Proc Natl Acad Sci U S A 2003; 100 (12):7129-7134.
    [71]Yoshida T, Sinha S, Dandre F et al. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Circ Res 2003;92(8):856-864.
    [72]Du KL, Ip HS, Li J et al. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Mol Cell Biol 2003; 23 (7):2425-2437.
    [73]Lamesch P, Li N, Milstein S et al. hORFeome v3.1:a resource of human open reading frames representing over 10,000 human genes. Genomics 2007; 89 (3):307-315.
    [74]Walhout AJ, Temple GF, Brasch MA et al. GATEWAY recombinational cloning:application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol 2000; 328:575-592.
    [75]Li S, Liu C, Li N et al. Genome-wide coactivation analysis of PGC-lalpha identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab 2008; 8(2):105-117.
    [76]Kutty RK, Samuel W, Chen S et al. Immunofluorescence analysis of the expression of Norpeg (Rai14) in retinal Muller and ganglion cells. Neurosci Lett 2006; 404 (3):294-298.
    [77]Kutty RK, Chen S, Samuel W et al. Cell density-dependent nuclear/cytoplasmic localization of NORPEG (RAI14) protein. Biochem Biophys Res Commun 2006; 345 (4):1333-1341.
    [78]Kutty RK, Kutty G, Samuel W et al. Molecular characterization and developmental expression of NORPEG, a novel gene induced by retinoic acid. J Biol Chem 2001; 276 (4):2831-2840.
    [79]Bertrand MJ, Kenchappa RS, Andrieu D et al. NRAGE, a p75NTR adaptor protein, is required for developmental apoptosis in vivo. Cell Death Differ 2008; 15(12):1921-1929.
    [80]Shen WG, Xue QY, Wu YD et al. Melanoma-associated antigen family protein-Dl regulation of tumor cell migration, adhesion to endothelium, and actin structures reorganization in response to hypoxic stress. Cell Commun Adhes 2007;14(1):21-31.
    [81]Shen WG, Xue QY, Zhu J et al. Inhibition of adenovirus-mediated human MAGE-D1 on angiogenesis in vitro and in vivo. Mol Cell Biochem 2007; 300 (1-2):89-99.
    [82]Kuwajima T, Taniura H, Nishimura I, Yoshikawa K. Necdin interacts with the Msx2 homeodomain protein via MAGE-D1 to promote myogenic differentiation of C2C12 cells. J Biol Chem 2004; 279 (39):40484-40493.
    [83]Mori T, Durand J, Chen Y et al. Effects of short-term estrogen treatment on the neointimal response to balloon injury of rat carotid artery. Am J Cardiol 2000; 85(10):1276-1279.
    [84]Xie CQ, Huang H, Wei S et al. A comparison of murine smooth muscle cells generated from embryonic versus induced pluripotent stem cells. Stem Cells Dev 2009;18(5):741-748.
    [1]Risau W. Differentiation of endothelium. FASEB J 1995,9:926-933.
    [2]Coffin JD, Harrison J, Schwartz S, Heimark R. Angioblast differentiation and morphogenesis of the vascular endothelium in the mouse embryo. Dev Biol 1991, 148:51-62.
    [3]Lacaud G, Keller G, Kouskoff V. Tracking mesoderm formation and specification to the hemangioblast in vitro. Trends Cardiovasc Med 2004,14:314-317.
    [4]Schatteman GC, Awad O. Hemangioblasts, angioblasts, and adult endothelial cell progenitors. Anat Rec A Discov Mol Cell Evol Biol 2004,276:13-21.
    [5]Ciau-Uitz A, Walmsley M, Patient R. Distinct origins of adult and embryonic blood in Xenopus. Cell 2000,102:787-796.
    [6]Buschmann I, Schaper W. The pathophysiology of the collateral circulation (arteriogenesis). J Pathol 2000,190:338-42.
    [7]Stavros, T., and Majesky, M.W. Smooth muscle lineage diversity in the chick embryo. Dev. Biol.1996,178,430-445.
    [8]Le Lievre, C.S., and Le Douarin, N.M. Mesenchymal derivatives of the neural crest:analysis of chimeric quail and chick embryos. J. Embryol. Exp. Morphol.1975,34,125-154.;
    [9]Waldo, K.L., and Kirby, M.L. Cardiac neural crest contribution to the pulmonary artery and sixth aortic arch artery complex in chick embryos aged 6 to 18 days. Anat. Rec.1993,237,385-399.;
    [10]Hungerford, J.E., Owens, G.K., Argraves, W.S., and Little, C.D. Development of the aortic vessel wall as defined by vascular smooth muscle markers and extracellular matrix markers. Dev. Biol.1996,178,375-392.
    [11]Vokes SA, Krieg PA. Endoderm is required for vascular endothelial tube formation, but not for angioblast specification. Development 2002,129:775-785.
    [12]Vokes SA, Yatskievych TA, Heimark RL, McMahon J, McMahon AP, Antin PB, Krieg PA. Hedgehog signaling is essential for endothelial tube formation during vasculogenesis. Development 2004,131:4371-4380.
    [13]Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C et al.. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996, 380:435-439.
    [14]Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995,376:62-66.
    [15]Furuyama T, Kitayama K, Shimoda Y, Ogawa M, Sone K, Yoshida-Araki K, Hisatsune H, Nishikawa S, Nakayama K, Nakayama K et al.. Abnormal angiogenesis in Foxol (Fkhr)-deficient mice. J Biol Chem 2004, 279:34741-34749.
    [16]Javerzat S, Auguste P, Bikfalvi A. The role of fibroblast growth factors in vascular development. Trends Mol Med 2002,8:483-489.
    [17]Francis SE, Goh KL, Hodivala-Dilke K, Bader BL, Stark M, Davidson D, Hynes RO. Central roles of a5b1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler Thromb Vasc Biol 2002, 22:927-933.
    [18]Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000, 6:389-395.
    [19]Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-b in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 1999, 126:3047-3055.
    [20]Hirschi KK, Rohovsky SA, D'Amore PA. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cellinduced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 1998,141:805-814.
    [21]Schatteman GC. Adult bone marrow-derived hemangioblasts, endothelial cell progenitors, and EPCs. Curr Top Dev Biol 2004,64:141-180.
    [22]Urbich C, Dimmeler S. Endothelial progenitor cells:characterization and role in vascular biology. Circ Res 2004,95:343-353.
    [23]Takahashi T, Kalka C, Masuda H, Chen. D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. Ischemia-and cytokineinduced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999,5:434-438.
    [24]Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002, 109:337-346.
    [25]Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG. Circulating skeletal stem cells. J Cell Biol 2001,153:1133-1140.
    [26]Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, Strasser RH, Daniel WG. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 2001,49:671-680.
    [27]Urbich C, Heeschen C, Aicher A, Dernbach E, Zeiher AM, Dimmeler S. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 2003,108:2511-2516.
    [28]Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003,114:763-776.
    [29]Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 2004,110:349-355.
    [30]Wurmser AE, Nakashima K, Summers RG, Toni N, D'Amour KA, Lie DC, Gage FH. Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 2004,430:350-356.
    [31]Risau W, Sariola H, Zerwes HG, Sasse J, Ekblom P, Kemler R, Doetschman T. Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 1988,102:471-478.
    [32]Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells. Development 1998, 125:725-732.
    [33]Vittet D, Prandini MH, Berthier R, Schweitzer A, Martin-Sisteron H, Uzan G, Dejana E. Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 1996,88:3424-3431.
    [34]Choi K, Chung YS, Zhang WJ. Hematopoietic and endothelial development of mouse embryonic stem cells in culture. Methods Mol Med 2005,105:359-368.
    [35]Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R. Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2002, 99:4391-4396.
    [36]Gerecht-Nir S, Dazard JE, Golan-Mashiach M, Osenberg S, Botvinnik A, Amariglio N, Domany E, Rechavi G, Givol D, Itskovitz-Eldor J. Vascular gene expression and phenotypic correlation during differentiation of human embryonic stem cells. Dev Dyn 2005,232:487-497.
    [37]Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 2003,9:702-712.
    [38]Zhang WJ, Park C, Arentson E, Choi K. Modulation of hematopoietic and endothelial cell differentiation from mouse embryonic stem cells by different culture conditions. Blood 2005,105:111-114.
    [39]Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 1998,125:1747-1757.
    [40]Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K. Flkl-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000,408:92-96.
    [41]Iida M, Heike T, Yoshimoto M, Baba S, Doi H, Nakahata T. Identification of cardiac stem cells with FLK1, CD31, and VE-cadherin expression during embryonic stem cell differentiation. FASEB J 2005,19:371-378.
    [42]Lei Yang, Mark H. Soonpaa, Eric D. Adler, et al.. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 2008,453:524-529.
    [43]Gerecht-Nir S, Ziskind A, Cohen S, Itskovitz-Eldor J. Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation. Lab Invest 2003,83:1811-1820.
    [44]Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2001,98:10716-10721.
    [45]Huarong Huang a, Xiaoli Zhao a, Liangbiao Chen et al. Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture. Biochemical and Biophysical Research Communications 2006,351:321-327
    [46]Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997,275:964-967.
    [47]Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM et al.. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001, 103:634-637.
    [48]Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001,7:430-436.
    [49]Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, Steinhoff G. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003,361:45-46.
    [50]Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004,104:2752-2760.
    [51]Shinoka T, Shum-Tim D, Ma PX, Tanel RE, Isogai N, Langer R, Vacanti JP, Mayer JE Jr. Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 1998,115:536-545; discussion 545-536.
    [52]Remy-Zolghadri M, Laganiere J, Oligny JF, Germain L, Auger FA. Endothelium properties of a tissue-engineered blood vessel for small-diameter vascular reconstruction. J Vasc Surg 2004,39:613-620.
    [53]Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R. Functional arteries grown in vitro. Science 1999,284:489-493.
    [54]Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, Rabkin E, Moran AM, Schoen FJ, Atala A et al.. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 2001,7:1035-1040.
    [55]Schmidt D, Asmis LM, et al. Engineered living blood vessels:functional endothelia generated from human umbilical cord-derived progenitors. Ann Thorac Surg.2006 Oct; 82(4):1465-71
    [56]Hibino N, Shin'oka T, Matsumura G, Ikada Y, Kurosawa H. The tissue-engineered vascular graft using bone marrow without culture. J Thorac Cardiovasc Surg 2005,129:1064-1070.
    [57]Cho SW, Park HJ, Ryu JH, Kim SH, Kim YH, Choi CY, Lee MJ, Kim JS, Jang IS, Kim DI et al.. Vascular patches tissueengineered with autologous bone marrow-derived cells and decellularized tissue matrices. Biomaterials 2005, 26:1915-1924.
    [58]Poh M, Boyer M, Solan A, Dahl SL, Pedrotty D, Banik SS, McKee JA, Klinger RY, Counter CM, Niklason LE. Blood vessels engineered from human cells. Lancet 2005,365:2122-2124.
    [59]Levenberg S, Burdick JA, Kraehenbuehl T, Langer R. Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Eng 2005,11:506-512.
    [60]Huang NF, Niiyama H, Peter C, De A, Natkunam Y, Fleissner F, Li Z, Rollins MD, Wu JC, Gambhir SS, Cooke JPEmbryonic Stem Cell-Derived Endothelial Cells Engraft Into the Ischemic Hindlimb and Restore Perfusion. Arterioscler Thromb Vasc Biol.2010 Feb 18.[Epub ahead of print]
    [61]Nourse MB, Halpin DE, Scatena M, Mortisen DJ, Tulloch NL, Hauch KD, Torok-Storb B, Ratner BD, Pabon L, Murry CE. VEGF induces differentiation of functional endothelium from human embryonic stem cells:implications for tissue engineering. Arterioscler Thromb Vasc Biol.2010 Jan;30(1):80-9
    [62]Yurugi-Kobayashi T, Itoh H, Yamashita J, Yamahara K, Hirai H, Kobayashi T, Ogawa M, Nishikawa S, Nishikawa S, Nakao K. Effective contribution of transplanted vascular progenitor cells derived from embryonic stem cells to adult neovascularization in proper differentiation stage. Blood 2003,101:2675-2678.
    [63]Marchetti S, Gimond C, Iljin K, Bourcier C, Alitalo K, Pouyssegur J, Pages G. Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J Cell Sci 2002, 115:2075-2085.
    [64]Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D'Amore PA. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol 2003,264:275-288.
    [65]Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Tissue engineering:creation of long-lasting blood vessels. Nature 2004,428:138-139.
    [66]Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FW, Schoen FJ, Mayer JE Jr, Bischoff J. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol 2004,287:H480-H487.
    [67]Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, van Blitterswijk CA, Mulligan RC, D'Amore PA et al.. Engineering vascularized skeletal muscle tissue. Nat Biotechnol 2005,23:879-884.
    [68]Rouwkema J,de Boer J, et al. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng.2006 Sep; 12(9):2685-93
    [69]Lesman A, Habib M, Caspi O, Gepstein A, Arbel G, Levenberg S, Gepstein L. Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng Part A.2010 Jan;16(1):115-25.
    [70]Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang Y. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng 2005,11:302-309.
    [71]Kaihara S, Borenstein J, Koka R, Lalan S, Ochoa ER, Ravens M, Pien H, Cunningham B, Vacanti JP. Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng 2000,6:105-117.
    [72]Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials 2005,26:93-99.
    [73]Odde DJ, Renn MJ. Laser-guided direct writing of living cells. Biotechnol Bioeng 2000,67:312-318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700