靶向bcl-2基因不对称siRNA的干扰效果及其脱靶效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从RNA干扰(RNAi)现象发现以来,小干扰RNA (Small interfering RNA, siRNA)就被广泛应用于科研领域,成为一个研究热点。siRNA在RNAi过程中以一种序列特异性的方式高效沉默靶基因的表达。通常研究中所采用的化学合成siRNA一般由19-21个碱基对的长度相等的两条链组成,且每条链的3’-末端带有2个核苷酸的凸出。这种传统结构的siRNA有引起脱靶效应的报道,给其进一步的临床应用带来了新的研究课题。近来有研究表明,两条链长度不相等的不对称siRNA (asymmetric siRNA, asiRNA)同样能有效沉默靶基因的表达,并且asiRNA还能显著减少脱靶效应的产生。我们在研究中针对bcl-2基因设计了一系列双链配对区长度为13-17个碱基对的asiRNA,研究了其体外干扰效果及脱靶效应。结果表明,双链区长度为17个碱基对的asiRNA (17bp asiRNA)能够有效沉默bcl-2基因的表达,并能降低肿瘤细胞的活性。进一步的研究表明,与传统结构的siRNA相比,17bp asiRNA能有效减少脱靶效应的产生。另外靶向bcl-2基因的17bp asiRNA还能有效逆转肿瘤细胞的多药耐药性。
     化学合成siRNA的不稳定性和缺乏有效的递送系统是其体内系统应用所面临的两大主要问题。化学修饰是提高siRNA稳定性的一条有效途径,许多研究报道经过化学修饰的siRNA稳定性有了显著提高。为了提高17bpasiRNA的稳定性,我们也对其进行了一系列的化学修饰,包括硫代磷酸修饰,2’-O甲基修饰、2’-氟代修饰和末端胆固醇连接。通过对各个修饰片段干扰效果的比较发现,各种化学修饰均不同程度地降低了17bp asiRNA的干扰能力。在所有化学修饰片段中,其中一种修饰方案的17bp asiRNA-M2的干扰效果最好,并且血清稳定性实验表明其稳定性较不修饰的17bp asiRNA有了明显提高。为了进一步将asiRNA用于体内实验的研究,我们制备了由聚乙二醇2000-二硬酯酰磷脂酰乙醇胺(PEG-PE)、二油基磷脂酰丝氨酸(DOPS)和重组人内皮抑素(rhEndo statin)组成的复合脂质胶束用于asiRNA的体内递送。将17bp asiRNA-M2与复合脂质胶束混合形成复合物,并对复合物的表征、血清稳定性作了研究。结果表明,复合脂质胶束能与17bp asiRNA-M2形成带正电荷的纳米微粒,并能在血清中有效保护17bp asiRNA-M2短时间内不被降解。体内分布及药效实验表明,经尾静脉注入体内的复合脂质胶束递送的17bp asiRNA-M2能在实验动物体内较长时间的稳定存在,有效抑制小鼠多种肿瘤模型的生长,并且急性毒性实验表明,其对小鼠没有明显的毒副作用。
     综上所述,本研究发现:(1)对称结构的双链对于siRNA的干扰效果并不是必需的,不对称结构的siRNA同样能有效地沉默靶基因的表达。(2)与传统siRNA相比,靶向bcl-2基因的17bp asiRNA能有效减少脱靶效应的产生。(3)靶向bcl-2基因的17bp asiRNA能有效逆转肿瘤细胞的多药耐药性。(4)化学修饰的17bp asiRNA-M2在保持一定干扰效果的基础上,血清稳定性得到了显著提高。(5)17bp asiRNA-M2经PEG-PE、DOPS和rhEndostatin组成的复合脂质递送到实验动物体内,能在体内稳定存在并发挥抑瘤效果。我们的实验结果为RNAi中干扰片段的最优化设计及siRNA在肿瘤治疗的应用提供了基础和依据。
Small interfering RNAs (siRNAs) are valuable reagents for efficient gene silencing in a sequence-specific manner via the RNA interference (RNAi) pathway. The current synthetic siRNA structure consists of symmetrical duplexes of19-21base pairs (bp) with2nucleotide (nt)3'overhangs. However, this siRNA structure triggers several non-specific effects posing challenges to the application of RNAi therapeutics in clinical practice. Recent studies have shown that the asymmetric siRNAs (asiRNAs) were capable of effectively silencing target gene expressions and caused less off-target effects. In the present study, we synthesized a series of asiRNAs ranging from the13-17bp duplex region (13-17bp asiRNAs) targeting bcl-2gene, and evaluated their silencing ability and off-target effects in vitro. The results showed that17bp asiRNA had potent activity in downregulating bcl-2gene expression and inhibiting tumor proliferation in vitro. Importantly, this asiRNA structure significantly reduced off-target effects compared with conventional siRNA. Furthermore,17bp asiRNA targeting bcl-2gene could reverse multidrug resistance of tumor cells.
     The poor stability and inefficient delivery of siRNA are two major obstacles for the therapeutic application of siRNA following systemic administration. Chemical modification is an effective method for improving the stability of siRNA and several studies have reported that some siRNAs with chemical modifications show durable activities in RNAi assays. To improve the stability of the17bp asiRNA, we introduced a series of chemically modification to17bp asiRNAs, including phosphorothioate,2'-O-methylation (2'-O-Me),2'-fluoro-uridine (2'-FU) and cholesterol conjunction. The comparison of silencing effect suggested that chemical modifications reduced the silencing activity of17bp asiRNA. The17bp asiRNA-M2, one of the modified17bp asiRNAs, exhibited the best gene silencing effect among all the chemically modified asiRNAs and its serum stability was significantly increased compared with17bp asiRNA. To further use asiRNA in the in vivo experiments, a proteolipid micelle was preparation to deliver asiRNA. The proteolipid micelle (termed PDE) was composed of polyethylene glycol-phosphatidylethanolamine (PEG-PE), phospholipid dioleylphosphatidylserine (DOPS) and rh-endostatin. The PDE was mixed with17bp asiRNA-M2to form17bp asiRNA-M2/PDE complexes, and its characterization and serum stability were studied. The results showed that the PDE micelle and17bp asiRNA-M2could form nano-size micelles with positive charge, and PDE micelle could protect17bp asiRNA-M2from nuclease in serum. The in vivo experiments suggested that17bp asiRNA/PDE complex could stably exist in mice for a long time and it effectively suppressed the growth of several tumor models in mice. The acute toxicity experiments showed that17bp asiRNA-M2/PDE complexes had no toxic effects.
     In conclusion, our study indicates that symmetrical duplex is not necessary for the silencing effect of siRNA, and asymmetric siRNAs can also effectively silence target gene while reducing off-target effects. The chemically modified17bp asiRNA-M2maintained silencing effect andr the serum stability of it was increased. When17bp asiRNA-M2was delivered by PDE micelle it is very stable and significantly inhibited tumor growth in vivo. Our results provide foundation for siRNA design and siRNA application in cancer therapy in the future.
引文
1. Napoli C, Lemieux C, Jorgensen R. Introduction of a chalcone synthase gene into petunia results in reversible co-suppression of homologous genens in trans. Plant Cell,1990; 2: 279-289.
    2. Cogoni C, Romano N, Macino G. Suppression of gene expression by homologous transgenes. Anton Leeuw Int J G,1994; 65:205-209.
    3. Guo S, Kemphues KJ. Par-1, a gene required for establishing polarity in C.elegant embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell,1995; 81:611-620.
    4. Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998; 391: 806-811.
    5. Misquitta L, Paterson BM. Targeted disruption of gene function in Drosophila by RNA interference (RNAi):a role for nautilus in embryonic somatic muscle formation. Proc. Natl Acad Sci,1999; 96:1451-1456.
    6. Ngo H, Tschudi C, Gull K, Ullu E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci,1998; 95:14687-14692.
    7. Sanchez-Alvarado A, Newmark PA. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci,1999; 96:5049-5054.
    8. Lohmann JU, Endl I, Bosch TC. Silencing of developmental genes in Hydra. Dev Biol,1999; 214:211-214.
    9. Wargelius A, Ellingsen S, Fjose A. Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem Biophys Res Commun,1999; 263:156-161.
    10. Wianny F, Zernicka-Goetz M. Specific interferencewith gene function by double-stranded RNA in early mouse development. Nat Cell Biol,2000; 2:70-75.
    11. Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science,1999; 286:950-952.
    12. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21-to 23-nucleotide intervals. Cell,2000; 101:25-33.
    13. Hammond SM, Bernstein E, Beach D, Harmon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature,2000; 404:293-296.
    14. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev,2001; 15:188-200.
    15. Bass BL. Double-stranded RNA as a template for gene silencing. Cell,2000; 101:235-238.
    16. Bernstein E, Caudy AA, Hammond SM, Gregory J, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001; 409:363-366.
    17. Cerruti L, Mian N, Bateman A. Domains in gene silencing in cell differentiation proteins:the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci,2000; 25: 481-482.
    18. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ. Argonaute2 is the catalytic engine of mammalian RNAi. Science's STKE,2004; 305:1437.
    19. Sontheimer EJ. Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Bio, 2005; 6:127-138.
    20. Bennasser Y, Yeung ML, Jeang KT. HIV-1 TAR RNA subverts RNA interference in transfected cells through sequestration of TAR RNA-binding protein, TRBP. J Biol Chem, 2006; 281:27674-27678.
    21. MacRae IJ, Zhou K, Doudna JA. Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol,2007; 14:934-940.
    22. Ameres SL, Martinez J, Schroeder R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell,2007; 130:101-112.
    23. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature,2005; 436:740-744.
    24. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation:stepwise processing and subcellular localization. EMBO J,2002; 21:4663-4670.
    25. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993; 75:843-854.
    26. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000; 403:901-906.
    27. Bartel DP. MicroRNAs:Genomics, Biogenesis, Mechanism, and Function. Cell,2004; 116: 281-297.
    28. Stark A, Brennecke J, Bushativ N, Russell RB, Cohen SM. Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell,2005; 123:1133-1146.
    29. Mittal V. Improving the efficency of RNA interference in mammals. Nat Rev Genet,2004; 5: 355-365.
    30. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J, 2001; 20:6877-6888.
    31. Brown SV, Hosking P, Li J, Williams N. ATP synthase is responsible for maintaining mitochondrial membrane potential in bloodstream form Trypanosoma brucei. Eukaryotic Cell, 2006; 5:45-53.
    32. Gunter M, Thomas T. Mechanisms of gene silencing double-stranded RNA. Nature,2004; 431:343-349.
    33. Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res,2003; 31:589-595.
    34. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS. Expression profiling reveals off target gene regulation by RNAi. Nature Biotech,2003; 21:635-637.
    35. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS. Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA,2006; 12:1179-1187.
    36. Birmingham A, Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A.3'UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods,2006; 3:199-204.
    37. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Bio,2005; 3:e85.
    38. Lai EC. Micro RNAs are complementary to 3'UTR sequence motifs that mediate negative posttranscriptional regulation. Nature Genetics,2002; 30:363-364.
    39. Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature,2008; 456: 921-926.
    40. Anderson EM, Birmingham A, Baskerville S, Reynolds A, Maksimova E, Leake D, Fedorov Y, Karpilow J, Khvorova A. Experimental validation of the importance of seed complement frequency to siRNA specificity. RNA,2008; 14:853-861.
    41. Clark PR, Pober JS, Kluger MS. Knockdown of TNFR1 by the sense strand of an ICAM-1 siRNA:dissection of an off-target effect. Nucleic Acids Res,2008; 36:1081-1097.
    42. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors. Nature Immunol,2010; 11:373-384.
    43. Kanneganti TD. Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol,2010; 10:688-698.
    44. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNA mediate RNA interference in cultured mammalian cells. Nature,2001; 411:494-498.
    45. Kariko K, Bhuyan P, Capodici J, Weissman D. Small interfering RNAs mediate sequence independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol,2004; 172:6545-6549.
    46. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotechnol,2005; 23:457-462.
    47. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Med,2005; 11:263-270.
    48. Diebold SS, Kaisho T, Hemmi H, Akira S, Sousa CRE. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science,2004; 303:1529-1531.
    49. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single stranded RNA via toll-like receptor 7 and 8. Science,2004; 303:1526-1529.
    50. Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol,2005; 348:1079-1090.
    51. Sioud M. Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts:a central role for 2'-hydroxyl uridines in immune responses. Eur J Immunol,2006; 36:1222-1230.
    52. Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNA and microRNAs. RNA,2005; 11:220-226.
    53. Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med,2005; 11:50-55.
    54. Stierle V, Laigle A, Jolles B. Modulation of the efficiency of a siRNA directed against MDR1 expression in MCF7-R cells when combined with a second siRNA. Biochimie,2007; 89:1033-1036.
    55. Castanotto D, Sakurai K, Lingeman R, Li H, Shively L, Aagaard, L Soifer H, Gatignol A, Riggs A, Rossi JJ. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res,2007; 35:5154-5164.
    56. Persengiev SP, Zhu XC, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA, 2004; 10:12-18.
    57. Caffrey DR, Zhao J, Song Z, Schaffer ME, Haney SA, Subramanian RR, Seymour AB, Hughes JD. siRNA off-target effects can be reduced at concentrations that match their individual potency. PLoS One,2011; 6:e21503.
    58. Jackson A L, Burchard J, Leake D, Reynolds A, Janell Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A, Linsley PS. Position-specific chemical modification of siRNAs reduces"off-target"rranscript silencing. RNA,2006; 12:1197-1205.
    59. Robbins M, Judge A, Liang L, McClintock K, Yaworski E, MacLachlan I. 2'-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther,2007; 15:1663-1669.
    60. Hoshika S, Minakawa N, Kamiya H, Harashima H, Matsuda A. RNA interference induced by siRNAs modified with 4'-thioribonucleosides in cultured mammalian cells. FEBS Lett,2005; 579:3115-3118.
    61. Cullen BR. Enhancing and confirming the specificity of RNAi experiments. Nat Methods, 2006; 3:677-679.
    62. Paroo Z, Corey DR. Challenges for RNAi in vivo. Trends Biotechnol,2004; 22:390-394.
    63. Ryther RC, Flynt AS. Phillips JA, Patton JG. siRNA therapeutics:big potential from small RNAs. Gene Ther,2005; 12:5-11.
    64. Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, Tuschl T. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev,2003; 13:83-105.
    65. Hall AH, Wan J, Shaughnessy EE, Ramsay SB, Alexander KA. RNA interference using boranophosphate siRNAs:structure-activity relationships. Nucleic Acids Res,2004; 32: 5991-6000.
    66. Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B Liang Z, (?)rum H, Koch T, Wahlestedt C. Locked nucleic acid (LNA) mediated improvements in SiRNA stability and functionality. Nucleic Acids Res,2005; 33:439-447.
    67. Allerson CR, Sioufi N, Jarres R, Prakash TP, Naik N, Berdeja A, Wanders L, Griffey RH, Swayze EE, Bhat B. Fully 2'-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem,2005; 48: 901-904.
    68. Dande P, Prakash TP, Sioufi N, Gaus H, Jarres R, Berdeja A, Swayze EE, Griffey RH, Bhat B. Improving RNA interference in mammalian cells by 4'-Thio-modified small interfering RNA (siRNA):Effect on siRNA activity and nuclease stability when used in combination with 2'-O-alkyl modifications. J Med Chem,2006; 49:1624-1634.
    69. Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M, Honma K, Nagahara S, Hanai K, Sano A, Kato T, Terada M, Ochiya T. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res,2004; 32:e109.
    70. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature,2004; 432:173-178.
    71. Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res,2004; 64: 3365-3370.
    72. Pille JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P, Maksimenko A, Lu H, Vannier JP, Soria J, Malvy C, Soria C. Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice:safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther,2006; 17:1019-1026.
    73. Zheng M, Librizzi D, Kthc A, Liu Y, Renz H, Merkel OM, Kissel T. Enhancing in vivo circulation and siRNA delivery with biodegradable polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) copolymers. Biomaterials,2012; 33:6551-6558.
    74. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature,2010; 464:1067-1070.
    75. Gosselin MA, Lee RJ. Folate receptor-targeted liposomes as vectors for therapeutic agents. Biotechnol Annu Rev,2002; 8:103-131.
    76. Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Liberman J. Antibody-mediated in vivo delivery of small interfering RNAs via cell-surface receptors, Nat. Biotechno,2005; 23:709-717'.
    77. Wilda M, Fuchs U, Wossmann W, Borkhardt A. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene,2002; 21:5716-5724.
    78. Wohlbold L, van der Kuip H, Miething C, Vornlocher HP, Knabbe C, Duyster J, Aulitzky WE. Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood,2003; 102:2236-2239.
    79. Tian W, Li B, Zhang X, Dang W, Wang X, Tang H, Wang L, Cao H, Chen T. Suppression of tumor invasion and migration in breast cancer cells following delivery of siRNA against Stat3 with the antimicrobial peptide PR39. Oncol Rep,2012; 28:1362-1368.
    80. Wang YH, Liu S, Zhang G, Zhou CQ, Zhu HX, Zhou XB, Quan LP, Bai JF, Xu NZ. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res,2005; 7:R220-R228.
    81. Liu H, Dibling B, Spike B, Dirlam A, Macleod K. New roles for the RB tumor suppressor protein. Curr Opin Genet Dev,2004; 14:55-64.
    82. DuPree EL, Mazumder S, Almasan A. Genotoxic stress induces expression of E2F4, leading to its association with p130 in prostate carcinoma cells. Cancer Res,2004; 64:4390-4393.
    83. Jiang M, Milner J. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene,2002; 21:6041-6048.
    84. Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R de Graaf P, Francoz S, Gasparini P, Gobbi A, Helin K, Pelicci PG, Jochemsen AG, Marine JC. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol,2004; 24:5835-5843.
    85. Roberson RS, Kussick SJ, Vallieres E, Chen SY, Wu DY. Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res,2005; 65:2795-2803.
    86. Zen Y, Harada K, Sasaki M, Chen TC, Chen MF, Yeh TS, Jan YY, Huang SF, Nimura Y, Nakanuma Y. Intrahepatic cholangiocarcinoma escapes from growth inhibitory effect of transforming growth factor-betal by overexpression of cyclin D1. Lab Invest,2005; 85: 572-581.
    87. Xiao Z, Xue J, Sowin TJ, Rosenberg SH, Zhang H. A novel mechanism of checkpoint abrogation conferred by Chkl downregulation. Oncogene,2005; 24:1403-1411.
    88. Yano J, Hirabayashi K, Nakagawa S, Yamaguchi T, Nogawa M, Kashimori I, Naito H, Kitagawa H, Ishiyama K, Ohgi T, Irimura T. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res,2004; 10: 7721-7726.
    89. Wang Y, Zhu H, Quan L, Zhou C, Bai J, Zhang G, Zhan Q, Xu N. Downregulation of survivin by RNAi inhibits the growth of esophageal carcinoma cells. Cancer Biol Ther,2005; 4:974-978.
    90. Caldas H, Holloway MP, Hall BM, Qualman SJ, Altura RA. Survivin-directed RNA interference cocktail is a potent suppressor of tumour growth in vivo. J Med Genet,2006; 43: 119-128.
    91. Yang D, Song X, Zhang J, Ye L, Wang S, Che X, Wang J, Zhang Z, Wang L. Suppression of livin gene expression by siRNA leads to growth inhibition and apoptosis induction in human bladder cancer T24 cells. Biosci Biotechnol Biochem,2010,74:1039-1044.
    92. Liu N, Bi F, Pan Y, Sun L, Xue Y, Shi Y, Yao X, Zheng Y, Fan D. Reversal of the malignant phenotype of gastric cancer cells by inhibition of RhoA expression and activity. Clin Cancer Res,2004; 10:6239-6247.
    93. Lipscomb EA, Dugan AS, Rabinovitz I, Mercurio AM. Use of RNA interference to inhibit integrin (alpha6beta4)-mediated invasion and migration of breast carcinoma cells. Clin Exp Metastasis,2003; 20:569-576.
    94. Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res,2005; 65:967-971.
    95. Kanazawa T, Sugawara K, Tanaka K, Horiuchi S, Takashima Y, Okada H. Suppression of tumor growth by systemic delivery of anti-VEGF siRNA with cell-penetrating peptide-modified MPEG-PCL nanomicelles. Eur J Pharm Biopharm,2012; 81:470-477.
    96. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res,2004; 32:e149.
    97. Kilic N, Oliveira-Ferrer L, Wurmbach JH, Loges S, Chalajour F Neshat-Vahid S Weil J, Fernando M, Ergun S. Pro-angiogenic signaling by the endothelial presence of CEACAM1. J Biol Chem,2005; 280:2361-2369.
    98. Nieth C, Priebsch A, Stege A, Lage H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett,2003; 545:144-150.
    99. Hua J, Mutch DG, Herzog TJ. Stable suppression of MDR-1 gene using siRNA expression vector to reverse drug resistance in a human uterine sarcoma cell line. Gynecol Oncol,2005; 98:31-38.
    1. Adams JM, Cory S. The Bcl-2 protein family:arbiters of cell survival. Science,1998; 281: 1322-1326.
    2. Kaiser U, Schilli M, Haag U, Neumann K, Kreipe H, Kogan E, Havemann K. Expression of bcl-2-protein in small cell lung cancer. Lung Cancer,1996; 15:31-40.
    3. Kobayashi S, Iwase H, Ito Y, Yamashita H, Iwata H, Yamashita T, Ito K, Toyama T, Nakamura T, Masaoka A. Clinical significance of bcl-2 gene expression in human breast cancer tissues. Breast Cancer Res Treat,1997; 42:173-181.
    4. Kaklamanis L, Savage A, Whitehouse R, Doussis-Anagnostopoulou I, Biddolph S, Tsiotos P, Mortensen N, Gatter KC, Harris AL. bcl-2 protein expression:association with p53 and prognosis in colorectal cancer. Br J Cancer,1998; 77:1864-1869.
    5. Bronner MP, Culin C, Reed JC, Futh EE. The bcl-2 protooncogene and the gastrointestinal epithelial tumor progression model. Am J Pathol,1995; 146:20-26.
    6. Miyake H, Hara I, Yamanaka K, Gohji K, Arakawa S, Kamidon S. Overexpression of bcl-2 enhances metastatic potential of human bladder cancer cells. Br J Cancer,1999; 79: 1651-1656.
    7. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,2001; 411:494-498.
    8. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell,2000; 101: 25-33.
    9. Jackson AL, Linsley PS. Noise amidst the silence:off-target effects of siRNAs? Trends Genet,2004; 20:521-524.
    10. Clark PR, Pober JS, Kluger MS. Knockdown of TNFR1 by the sense strand of an ICAM-1 siRNA:dissection of an off-target effect. Nucleic Acids Res,2008; 36:1081-1097.
    11. Sun X, Rogoff HA, Li CJ. Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol,2008; 26:1379-1382.
    12. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotechnol,2005; 23:457-462.
    13. Chang CI, Yoo JW, Hong SW, Lee SE, Kang HS, Sun X, Rogoff HA, Ban C, Kim S, Li CJ, Lee D. Asymmetric shorter-duplex siRNA structures trigger efficient gene silencing with reduced nonspecific effects. Mol Ther,2009; 17:725-732.
    14. Yuan ZP, Wu XL, Liu C, Xu GX, Wu ZW. Asymmetric siRNA:new strategy to improve specificity and reduce off-target gene expression. Hum Gene Ther,2012; 23:521-532.
    15. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotech,2003; 21:635-637.
    16. Lin XY, Ruan X, Anderson MG, McDowell JA, Kroeger PE, Fesik SW, Shen Y. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res,2005; 33:4527-4535.
    17. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS. Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA,2006; 12,1179-1187.
    18. Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A.3'UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods,2006; 3:199-204.
    19. Clark PR, Pober JS, Kluger MS. Knockdown of TNFR1 by the sense strand of an ICAM-1 siRNA:dissection of an off-target effect. Nucleic Acids Res,2008; 36:1081-1097.
    20. Ameres SL, Martinez J, Schroeder R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell,2007; 130:101-112.
    1. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol,2005; 205: 275-292.
    2. Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer:mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharmacol Sci,2000; 11:265-283.
    3. Jabr-Milane LS, Vlerken LE, Yadav S, Amiji MM. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev,2008; 34:592-602.
    4. Borowski E, Bontemps-Gracz MM, Piwkowska A. Strategies for overcoming ABC-transporters-mediated multidrug resistance (MDR) of tumor cells. Acta Biochim Pol, 2005; 52:609-627.
    5. Gottesman MM, Pastan I, Ambudrak SV. P-glycoprotein and multidrug resistance. Curr Opin Genet Dev,1996; 6:610-617.
    6. Cole SP, Deeley RG. Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP. BioEssays,1998; 20:931-940.
    7. Shi X, Liu S, Kleeff J, Friess H, Buchler MW. Acquired resistance of pancreatic cancer cells towards 5-fluorouracil and gemcitabine is associated with altered expression of apoptosis regulating genes. Oncology,2002; 62:354-362.
    8. Cho HJ, Kim JK, Kim KD, Yoon HK, Cho MY, Park YP, Jeona JH, Leeb ES, Byunb S, Limc HM, Songa EY, Limd J, Leea HG, Choea Y. Upregulation of Bcl-2 is associated with cisplatin resistance via inhibition of Bax translocation in human bladder cancer cells. Cancer Lett,2006; 237:56-66.
    9. Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magud JP, Guyotat D. High expression of Bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood,1993; 81:3091-3096.
    10. Scanlon KJ, Funato T, Pezeshki B, Tone T, Sowers LC. Potentiation of azidothymidine cytotoxicity in cisplatin-resistant human ovarian carcinoma cells. Cancer Commun,1990; 2: 339-343.
    11. Takara K, Obata Y, Yoshikawa E, Kitada N, Sakaeda T, Ohnishi N, Yokoyama T. Molecular changes to HeLa cells on continuous exposure to cisplatin or paclitaxel. Cancer Chemother Pharmacol,2006; 58:785-793.
    12. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med,2002; 53: 615-627.
    13. Donmez Y, Gunduz U. Reversal of multidrug resistance by small interfering RNA (siRNA) in doxorubicin-resistant MCF-7 breast cancer cells. Biomed Pharmacother,2011; 65: 85-89.
    14. Wu Z, Li X, Zeng Y, Zhuang X, Shen H, Zhu H, Liu H, Xiao H. In vitro and in vivo inhibition of MRP gene expression and reversal of multidrug resistance by siRNA. Basic Clin Pharmacol,2010; 108:177-184.
    15. Zhang H, Zhang X, Wu X, Li W, Su P, Cheng H, Xiang L, Gao P, Zhou G. Interference of Frizzled 1 (FZD1) reverses multidrug resistance in breast cancer cells through the Wnt/b-catenin pathway. Cancer Lett,2012; 323:106-113.
    16. Tillman DM, Petak I, Houghton JA. A Fas dependent component in 5-fluorouracil/leucovorin-induced cytotoxicity in colon carcinoma cells. Clin Cancer Res, 1999; 5:425-430.
    1. Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet,2007; 8:173-184.
    2. Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature,2009; 457:426-433.
    3. Yano J, Hirabayashi K, Nakagawa S, Yamaguchi T, Nogawa M, Kashimori I, Naito H, Kitagawa H, Ishiyama K, Ohgi T, Irimura T. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res,2004; 10: 7721-7726.
    4. Lipscomb EA, Dugan AS, Rabinovitz I, Mercurio AM. Use of RNA interference to inhibit integrin (alpha6beta4)-mediated invasion and migration of breast carcinoma cells. Clin Exp Metastasis,2003; 20:569-576.
    5. Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res,2004; 64: 3365-3370.
    6. Watts JK, Deleavey GF, Damha MJ. Chemically modified siRNA:tools and applications. Drug Discov Today,2008; 13:842-855.
    7. Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, Corey DR. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry,2003; 42:79677975.
    8. Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res,2003; 31:589-595.
    9. Love KT, Mahon KP, Levins CG, Whiteheadb KA, Querbesd W, Dorkind JR, Qind J, Cantleyd W, Qind LL, Racied T, Frank-Kamenetskyd M, Yipa KN, Alvarezd R, Sahd DWY, Fougerollesd A, Fitzgerald K. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci USA,2010; 107:1864-1869.
    10. Cheng Q, Huang Y, Zheng H, Wei T, Zheng S, Huo S, Wang X, Du Q, Zhang X, Zhang HY, Liang XJ, Wang C, Tang R, Liang Z. The effect of guanidinylation of PEGylated poly (2-aminoethyl methacrylate) on the systemic delivery of siRNA. Biomaterials,2013; 34: 3120-3131.
    11. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature,2010; 464:1067-1070.
    12. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin:a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell,1994; 79:315-328.
    13. Torehilin VP, Lukyanov AN, Gao Z, PaPahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. PNAS,2003; 100:6039-6044.
    14. Lukyanov AN, Gao Z, Torehilin VP. Micelles from polyethylene glycol/phosphatidylethanolamine conjugates for tumor drug delivery. J Control Release, 2003; 91:97-102.
    15. Chu Z, Sun Y, Kuan CY, Grabowski GA, Qi X. Saposin C:neuronal effect and CNS delivery by liposomes. Ann N Y Acad Sci,2005; 1053:237-246.
    16. Kim EJ, Park TG, Oh YK, Shim CK. Assessment of siRNA pharmacokinetics using ELISA-based quantification. J Contro Release,2010; 143:80-87.
    17. Lorenz C, Hadwiger P, John M, Vornlocher HP, Unverzagt C. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg Med Chem Lett,2004; 14:4975-4977.
    18. Hall AH, Wan J, Shaughnessy EE, Ramsay SB, Alexander KA. RNA interference using boranophosphate siRNAs:structure-activity relationships. Nucleic Acids Res,2004; 32: 5991-6000.
    19. Allerson CR, Sioufi N, Jarres R, Prakash TP, Naik N, Berdeja A, Wanders L, Griffey RH, Swayze EE, Bhat B. Fully 2'-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem,2005; 48:901-904.
    20. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review. J Control Release,2000; 65:271-284.
    21. Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPReffect. Eur J Pharm Biopharm,2009; 71:409-419.
    22. Zhao H, Jutila A, Nurminen T, Wickstrom SA, Keski-Oja J, Kinnunen PK. Binding of endostatin to phosphatidylserine-containing membranes and formation of amyloid-like fibers. Biochemistry,2005; 44:2857-2863.
    23. Ran S, Downes A, Thorpe PE. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res,2002; 62:6132-6140.
    1. Yazawa K, Fujimori M, Amano J, KanoY, Taniguchi S. Bifidobacterium longum as a delivery system for cancer gene therapy:selective localization and growth in hypoxic tumors. Cancer Gene Ther,2000; 7:269-274.
    2. Sasaki T, Fujimori M, Hamaji Y, Hama Y, Ito K, Amano J, Taniguchi S. Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats. Cancer Sci,2006; 97:649-657.
    3. O'Reilly MS, Boehm T, Shing Y, Naomi Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin:An endogenous inhibitor of angiogenesis and tumor growth. Cell,1997; 88:277-285.
    4. Folkman J. Antiangiogenesis in cancer therapy-endostatin and its mechanisms of action. Exp Cell Res,2006; 312:594-607.
    5. Abraham D, Abri S, Hofmann M, Holtl W, Aharinejad S. Low dose carboplatin combined with angiostatic agents prevents metastasis in human testicular germ cell tumor xenografts. J Urol,2003; 170:1388-1393.
    6. Zhu LP, Xing J, Wang QX, Kou L, Li C, Hu B, Wu ZW, Wang JJ, Xu GX. Therapeutic efficacy of recombinant human endostatin combined with chemotherapeutics in mice-transplanted tumors. Eur J Pharmacol,2009; 613:23-27.
    7. Rayman MP. The importance of selenium to human health. Lancet,2000; 356:233-234.
    8. Salonen JT, Alfthan G, Huttunen JK, PUSKA P. Association between Serum Selenium and the Risk of Cancer. Am J Epidemoil,1984; 120:342-349.
    9. Zeng HW, Combs GF. Selenium as an anticancer nutrient:roles in cell proliferation and tumor cell invasion. J Nutr Biochem,2008; 19:1-7.
    10. Menter DG, Sabichi AL, Lippman SM. Selenium Effects on Prostate Cell Growth. Cancer Epidem Biomar,2000; 9:1171-1182.
    11. Daniels LA. Selenium Metabolism and Bioavailability. Biol Trace Elem Res,1996; 54: 185-199.
    12. Suhajda A, Hegoczki J, Janzso B, Pais I, Vereczkey G. Preparation of selenium yeasts I. Preparation of selenium-enriched yeasts Saccharomyces cerevisiae. J Trace Elem Med Biol, 2000; 14:43-47.
    13. Calomme MR, Vanden Branden K, Vanden Branden DA. Selenium and Lactobacillus species. J Appl Bacteriol,1995; 79:331-340.
    14. Xu YF, Zhu LP, Hu B, Fu GF, Zhang HY, Wang JJ, Xu GX. A new expression plasmid in Bifidobacterium longum as a delivery system of endostatin for cancer gene therapy. Cancer Gene Ther,2007; 14:151-157.
    15. Gallegos A, Berggren M, Gasdaska JR, Powis G. Mechanisms of the regulation of thioredoxin reductase activity in cancer cells by the chemopreventive agent selenium. Cancer Res,1997; 57:4965-4970.
    16. Lawson T. Nicotinamide and selenium stimulate the repair of DNA damage produced by N-nitrosobis (2-oxopropyl) amine. Anticancer Res,1989; 9:483-486.
    17. Arthur JR, McKenzie RC, Beckett GJ. Selenium in the immune system. J Nutr,2003; 133: 1457S-1459S.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700