叶酸靶向紫杉醇纳米胶束抑制小鼠H22肝癌肺转移的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶酸受体是一种在肿瘤细胞表面过表达的蛋白,通过叶酸及其受体的特异结合,而介导胞吞作用,被应用来传递药物活性分子。本研究中,以配体-受体的特异结合为基础,制备了键合叶酸、键合紫杉醇的胶束,经过筛选及校正,依据最合理配比,由两种混合胶束组成新的纳米微粒,而在组装后,复合胶束的叶酸质量比含量1.4%,而同时,紫杉醇(PTX)胶束中PTX活性药物质量比含量25%,然后,将两胶束以质量比1:9的比例,应用相应程序,制备成混合胶束从而同时载有叶酸和PTX。根据本实验室此前研究,证实混合胶束的水溶性良好,动态光散射(DLS)及扫描电镜(TEM)证实,在水媒介中形成特殊的外壳-内核形态的分散的微粒,而将活性药物PTX―包裹‖并保护在聚合物组成的外壳内,以避免/减少PTX在给药后血液循环中的非特异(到达靶区之产胆)释放或非治疗目的相关的释放,因此理论上可以减少毒副作用,同时达到治疗效果。具备有聚合物/纳米微粒、而以EPR效应为基础的―被动靶向‖(EPR)效应,与通过叶酸配体介导的以配体-受体的特异相结合,而形成的主动靶向效应。本实验以动物源性肝癌细胞H22等的体外检测,以及小鼠BALB/c的体内荷瘤抑制、生存分析等实验来评价这一种混合胶束FA-M(PTX)的抗肿瘤疗效是否存在优势。
     在本项目研究中,叶酸(folate, FA)作为靶向基元,键合在胶束的侧链上,从而可构建出相应载药聚合物。同时,PTX键合在另一种聚合物的载体上面(M(PTX))。这样把两种聚合物特异地制备后,构成了同时载有FA及PTX的混合胶束微粒(FA-M(PTX)),通过自组装作用,形成载药的外壳-内核结构,这样的复合纳米微粒有着良好的理化特点,比如说水溶性增加,以及在血液循环中的代谢时间可延长,还有其生物可降解性,最重要的一点是,FR-FA介导的胞吞靶向作用以及细胞摄取增加。
     本实验的结果见下:
     1.体外进行细胞实验(in vitro)
     1.1应用不同剂型的药物PTX, M(PTX)和FA-M(PTX)分别作用12,24和48h后,H22细胞存活率与紫杉醇当量的浓度梯度相关。
     1.2作用24h和72h后,药物组凋亡率较空白对照组显著增加;不同剂型药物PTX,M(PTX)和FA-M(PTX)作用24h后H22细胞凋亡率分别为16.8%,8.8%和11%,而在作用72h后,不同剂型药物相应的细胞凋亡纺分别为39.4%,34.9%和37.7%。
     1.3肿瘤细胞对载有叶酸的复合胶束的摄取较正常细胞显著增加(Hela细胞摄取阳性率62.1%;H22细胞摄取阳性率55.4%而BEAS-2B细胞为37.6%)。此外,肿瘤细胞对无叶酸胶束的摄取较正常细胞增加(Hela为41.8%,H22为40.1%而BEAS-2B为36.5%);对实验数据进行统计分析提示,与BEAS-2B细胞比较,Hela和H22这两种类型的肿瘤细胞对载有叶酸的复合胶束的摄取增加(p<0.001和p=0.017);而且,Hela和H22细胞对载有叶酸的复合胶束的摄取较其对无叶酸胶束的摄取增加(p<0.001);同时,Hela细胞对载有叶酸的复合胶束的摄取较H22增加(P=0.036),这种现象可能解释为叶酸-叶酸受体介导的胞吞效应。
     2.体内实验
     2.1肿瘤转移点的密度在药物治疗组明确低于对照组;荷瘤小鼠的肺组织重量与小鼠体重的比值表示肿瘤转移负担指数,治疗组明显低于对照组(p<0.05),并呈剂量相关性。
     2.2在PTX给药当量为15mg/kg或30mg/kg时,HE染色显示的肺转移抑制率在不同的治疗组中呈现以下趋势:PTX      2.3生存分析:Kaplan-Meier生存曲线;荷瘤小鼠的中位生存时间以及平均生存时间的差异进行log-rank检验;PTX当量为15mg/kg或者30mg/kg时,药物治疗组的小鼠生存期较空白对照组延长,其中,FA-M(PTX)较PTX和M(PTX)对H22肺转移模型的疗效更优,更大程度地延长了荷瘤小鼠模型的存活时间。
The folate receptor (FR) is over-expressed in many types of human cancers. It canmediate endocytosis of folic acid (FA) or FA-carrying drugs. Based on this specific interactionbetween FA and FR, folic acid and paclitaxel (PTX) containing micelles (FA-M(PTX)) wereprepared by co-assembling an FA-polymer conjugate, poly(ethylene glycol)-b-poly(L-lactide-co-2,2-dihydroxylmethyl-propylene carbonate/FA)[PEG-b-P(LA-co-DHP/FA), FAcontent1.4wt%] and a PTX-polymer conjugate, poly(ethylene glycol)-b-poly(L-lactide-co-2-methyl-2-carboxyl-propylene carbonate/PTX)[PEG-b-P(LA-co-DCC/PTX), PTXcontent25wt%] with a mass ratio of1:9. Anti-tumor activity of FA-M(PTX) on H22cancerswere evaluated on BALB/c mice models by pulmonary burden measurements, survival timeanalysis, flow cytometry assay, immunohistochemistry (IHC) and histopathology. The resultsshowed that FA-M(PTX) exhibits significant anti-tumor effects in vivo compared to pure PTXand simple PTX-polymer micelles. This enhanced efficacy of FA-M(PTX) is ascribed to thetargeting effect of FA moieties in the micelles. Therefore, conjugation of both PTX and FAonto the hydrophobic segments of the block copolymer and co-assembling of thePTX-polymer and FA-polymer conjugates are successful strategies to construct cancer celltargeting drug delivery systems.
     In this research, folic acid (FA) was chosen as the targeting moiety, and it is attached to acarrier polymer via an ester linkage. Based on our previous work, paclitaxel (PTX) isconjugated to another carrier polymer. These two carrier polymers are co-assembled intocomposite micelles which are expected to have many properties including water solubility,prolonged circulation, biodegradability, folate-receptor targeting and rapid cell uptake. Toexamine the anti-tumor efficacy of these composite micelles, murine H22cancer xenograftnude mice models were constructed and a series of evaluation was performed such as tumorgrowth inhibition rate, survival time analysis, immunohistochemistry (IHC) andhistopathology. The results showed that FA-M(PTX) exhibits significant anti-tumor efficacy in vivo compared to pure PTX and simple PTX-polymer micelles. This enhanced efficacy ofFA-M(PTX) is ascribed to the targeting effect of FA moieties in the micelles.
     Results and conclusions of this study:
     1. In vitro
     1.1The cell viability of H22incubated with PTX, M(PTX), and FA-M(PTX) for12hours,24hours, and48hours are depicted in Figure1as a function of the equivalent PTXconcentration.
     1.2The time-dependent apoptosis of H22cells induced by the drugs was observed. As shownin Figure2, the apoptosis of the drug groups were evidently higher when compared with thecontrol at24hours and72hours. The mean apoptosis rate of PTX, M(PTX), and FA-M(PTX)was16.8%,8.8%, and11%at24hours, while it was up to39.4%,34.9%, and37.7%at72hours, respectively.
     1.3The three cell lines were exposed to0.1%FA-f-micelles and FA-mixed micelles for2hours,respectively, and a quantitative analysis by FCM was performed. It is presumed and confirmed in this studythat the cellular uptake of FA-mixed micelles was increased in HeLa and H22cells with overexpressed FRwhen compared to nontumorigenic BEAS-2B cells. As shown in Figure3, the obvious preferentialuptake of FA-mixed micelles was shown in cancer cells (HeLa,62.1%; H22,55.4%) compared withBEAS-2B cells (37.6%). Furthermore, an increased uptake of FA-f-micelles by HeLa (41.8%) and H22(40.1%) was observed when compared with BEAS-2B (36.5%). Statistically, HeLa and H22revealed theenhanced cellular uptake of FA-mixed micelles compared with BEAS-2B (P<0.001and P=0.017,respectively). Moreover, the uptake of FA-mixed micelles by the two cancer cells was significantlyincreased compared with that of FA-f-micelles (P<0.001). In addition, HeLa showed the preferential uptakeof FA-mixed-micelles compared with H22(P=0.036), which implicated FA–FR mediated endocytosis.
     2. In vivo
     2.1The density of the metastatic colonies was visibly decreased in the drug groups comparedwith control. As shown in Figure4, the ratio of wet lung weight to body weight in the druggroups were statistically decreased as an index of metastasis burden when compared with control (P<0.05), and the ratio varied in an almost dose-related manner.
     2.2The microscopic tumor metastasis colonies detected by HE decreased in the drug groupsin the order of PTX      2.3The Kaplan–Meier survival curve is shown in Figure6. The median/mean survival time ofthe groups was compared using the log-rank test. The mice in the drug groups showed aprolonged survival time compared with the control with equivalent doses of PTX of15mg/kgas well as30mg/kg. The FA-M(PTX) was significantly more effective than pure PTX and M(PTX)on H22pulmonary metastasis models.
引文
[1] World Health Organization. Cancer Fact Sheet No297. Geneva: World HealthOrganization;2013. Available from: http://www.who.int/media-centre/factsheets/fs297/en/index.html. Accessed January31,2013.
    [2] McCormack VA, Schüz J. Africa’s growing cancer burden: environmental andoccupational contributions. Cancer Epidemiol.2012;36(1):1–7.
    [3] Ferlay J, Shin HR, Bray F, Forman D, Mathers C and Parkin DM. GLOBOCAN2008v2.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No.10[Internet].Lyon, France: International Agency for Research on Cancer;2010. Available from:http://globo can.iarc.fr. Accessed30, October2013.
    [4] National Cancer Institute. What Is Cancer? Defining Cancer. Bethesda, MD: NationalCancer Institute. Available from: http://www.cancer.gov/cancertopics/cancerlibrary/what-is-cancer. Accessed February28,2013.
    [5] Ramasamy K, Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett.2008;269(2):352–362.
    [6] Khosravi-Darani K, Pardakhty A, Honarpisheh H, Rao VS, Mozafari MR. The role ofhigh-resolution imaging in the evaluation of nanosystems for bioactive encapsulation andtargeted nanotherapy. Micron.2007;38(8):804–818.
    [7] Rai P, Mallidi S, Zheng X, et al. Development and applications of photo-triggeredtheranostic agents. Adv Drug Deliv Rev.2010;62(11):1094–1124.
    [8] Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA. Emerging nano-pharmaceuticals.Nanomedicine.2008;4(4):273–282.
    [9] Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The bigpicture on nanomedicine: the state of investigational and approved nanomedicineproducts. Nanomedicine.2013;9(1):1–14.
    [10] Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnosticmodalities. Adv Drug Deliv Rev.2006;58(14):1456–1459.
    [11] Dominguez AL, Lustgarten J. Targeting the tumor microenvironment withanti-neu/anti-CD40conjugated nanoparticles for the induction of antitumor immuneresponses. Vaccine.2010;28(5):1383–1390.
    [12] Chen K-I, Li B-R, Chen Y-T. Silicon nanowire field-effect transistor-based biosensors forbiomedical diagnosis and cellular recording investigation. Nano Today.2011;6(2):131–154.
    [13] Vizirianakis IS. Nanomedicine and personalized medicine toward the application ofpharmacotyping in clinical practice to improve drug-delivery outcomes. Nanomedicine.2011;7(1):11–17.
    [14] Ji XT, Huang L, Huang HQ. Construction of nanometer cisplatin core-ferritin (NCC-F)and proteomic analysis of gastric cancer cell apoptosis induced with cisplatin releasedfrom the NCC-F. J Proteomics.2012;75(11):3145–3157.
    [15] Chen H, Wang L, Yeh J, et al. Reducing non-specific binding and uptake of nanoparticlesand improving cell targeting with an antifouling PEO-b-PgammaMPS copolymer coating.Biomaterials.2010;31(20):5397–5407.
    [16] Ranganathan R, Madanmohan S, Kesavan A, et al. Nanomedicine: towards developmentof patient-friendly drug-delivery systems for oncological applications. Int JNanomedicine.2017:1043–1060.
    [17] Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA.Nanotechnology-based approaches in anticancer research. Int J Nanomedicine.2017:4391–4408.
    [18] Fishman DA, Cohen L, Blank SV, et al. The role of ultrasound evaluation in the detectionof early-stage epithelial ovarian cancer. Am J Obstet Gynecol.2005;192(4):1214–1221.
    [19] Wu X, Jiang H, Zheng J, et al. Highly sensitive recognition of cancer cells byelectrochemical biosensor based on the interface of gold nanoparticles/polylactidenanocomposites. J Electroanal Chem.2011;656(1–2):174–178.
    [20] Vo-Dinh T, Cullum BM, Stokes DL. Nanosensors and biochips: frontiers in biomoleculardiagnostics. Sens Actuators.2001;74(1–3):2–11.
    [21] Kwon OS, Park SJ, Jang J. A high-performance VEGF aptamer functionalizedpolypyrrole nanotube biosensor. Biomaterials.2010;31(17):4740–4747.
    [22] National Institutes of Health. Advances in Colorectal Cancer Research: Nanotechnologyto Improve Early Detection and Treatment of Colorectal Cancer. Bethesda, MD: NationalInstitutes of Health. Available from: http://www.nih.gov/science/colorectalcancer/nanotech.htm. Accessed May31,2013.
    [23] Zheng XT, Li CM. Single living cell detection of telomerase over-expression for cancerdetection by an optical fiber nanobiosensor. Biosens Bioelectron.2010;25(6):1548–1552.
    [24] Geszke M, Murias M, Balan L, et al. Folic acid-conjugated core/shell ZnS:Mn/ZnSquantum dots as targeted probes for two photon fluorescence imaging of cancer cells.Acta Biomater.2011;7(3):1327–1338.
    [25] Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon A. Folate-mediated tumorcell uptake of quantum dots entrapped in lipid nanoparticles. J Control Release.2007;124(1–2):28–34.
    [26] Pan J, Feng SS. Targeting and imaging cancer cells by folate-decorated, quantum dots(QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials.2009;30(6):1176–1183.
    [27] Papagiannaros A, Levchenko T, Hartner W, Mongayt D, Torchilin V. Quantum dotsencapsulated in phospholipid micelles for imaging and quantification of tumors in thenear-infrared region. Nanomedicine.2009;5(2):216–224.
    [28] Siddiqui IA, Adhami VM, Chamcheu JC, Mukhtar H. Impact of nanotechnology incancer: emphasis on nanochemoprevention. Int J Nanomedicine.2012;7:591–605.
    [29] Setua S, Menon D, Asok A, Nair S, Koyakutty M. Folate receptor targeted, rare-earthoxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells.Biomaterials.2010;31(4):714–729.
    [30] Chin PT, Buckle T, Aguirre de Miguel A, Meskers SC, Janssen RA, van Leeuwen FW.Dual-emissive quantum dots for multispectral intraoperative fluorescence imaging.Biomaterials.2010;31(26):6823–6832.
    [31] Kim PS, Djazayeri S, Zeineldin R. Novel nanotechnology approaches to diagnosis andtherapy of ovarian cancer. Gynecol Oncol.2011;120(3):393–403.
    [32] Cirstoiu-Hapca A, Buchegger F, Lange N, Bossy L, Gurny R, Delie F. Benefit ofanti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment ofdisseminated ovarian cancer: Therapeutic efficacy and biodistribution in mice. JControl Release.2010;144(3):324–331.
    [33] Lei T, Srinivasan S, Tang Y, et al. Comparing cellular uptake and cytotoxicity of targeteddrug carriers in cancer cell lines with different drug resistance mechanisms.Nanomedicine.2011;7(3):324–332.
    [34] Guyton AC. Textbook of Medical Physiology.8th ed. San Diego: Harcourt CollegePublishers;1991:274.
    [35] Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approachfor poorly-water-soluble compounds. Eur J Pharm Sci.2003;18(2):113–120.
    [36] Beig A, Miller JM, Dahan A. Accounting for the solubility-permeability interplay in oralformulation development for poor water solubility drugs: the effect of PEG-400oncarbamazepine absorption. Eur J Pharm Biopharm.2012;81(2):386–391.
    [37] Buckley ST, Fischer SM, Fricker G, Brandl M. In vitro models to evaluate thepermeability of poorly soluble drug entities: challenges and perspectives. Eur J Pharm Sci.2012;45(3):235–250.
    [38] Savic R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to definedcytoplasmic organelles. Science.2003;300(5619):615–618.
    [39] Pathak P, Meziani MJ, Desai T, et al. Formation and stabilization of ibuprofennanoparticles in supercritical fluid processing. J Supercrit Fluids.2006;37(3):279–286.
    [40] Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorlysoluble drugs. Int J Pharm.2013;453(1):198–214.
    [41] Ganta S, Paxton JW, Baguley BC, Garg S. Formulation and pharmacokinetic evaluationof an asulacrine nanocrystalline suspension for intravenous delivery. Int J Pharm.2009;367(1–2):179–186.
    [42] Ehrlich P. Collected Studies on Immunity. New York: John Wiley;1906:442.
    [43] Rapoport N. Physical stimuli-responsive polymeric micelles for anticancer drug delivery.Prog Polym Sci.2007;32:962–990.
    [44] Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery.Adv Drug Deliv Rev.2008;60(10):1153–1166.
    [45] Husseini GA, Pitt WG. Micelles and nanoparticles for ultrasonic drug and gene delivery.Adv Drug Deliv Rev.2008;60(10):1137–1152.
    [46] Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancertherapy: towards the overcoming of drug resistance. Drug Resist Updat.2011;14(3):150–163.
    [47] Cho YW, Park SA, Han TH, et al. In vivo tumor targeting and radionuclide imagingwith self-assembled nanoparticles: mechanisms, key factors, and their implications.Biomaterials.2007;28(6):1236–1247.
    [48] Geusens B, Lambert J, De Smedt SC, Buyens K, Sanders NN, Van Gele M.Ultradeformable cationic liposomes for delivery of small interfering RNA (siRNA) intohuman primary melanocytes. J Control Release.2009;133(3):214–220.
    [49] Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy.Adv Drug Deliv Rev.2004;56(11):1649–1659.
    [50] Guo M, Que C, Wang C, Liu X, Yan H, Liu K. Multifunctional super-paramagneticnanocarriers with folate-mediated and pH-responsive targeting properties for anticancerdrug delivery. Biomaterials.2011;32(1):185–194.
    [51] Blagosklonny MV. Matching targets for selective cancer therapy. Drug Discov Today.2003;8(24):1104–1107.
    [52] Lehner R, Wang X, Wolf M, Hunziker P. Designing switchable nanosystems formedical application. J Control Release.2012;161(2):307–316.
    [53] Meng F, Cheng R, Deng C, et al. Intracellular drug release nanosystems. Materials Today.2012;15(10):436–442.
    [54] Leamon CP, Low PS. Folate-mediated targeting: from diagnostics to drug and genedelivery. Drug Discov Today.2001;6(1):44–51.
    [55] Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P. Drug delivery to resistanttumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release.2003;93(2):151–160.
    [56] Rastogi R, Gulati N, Kotnala RK, Sharma U, Jayasundar R, Koul V. Evaluation of folateconjugated pegylated thermosensitive magnetic nanocomposites for tumor imaging andtherapy. Colloids Surf B Biointerfaces.2011;82(1):160–167.
    [57] Pradhan P, Giri J, Rieken F, et al. Targeted temperature sensitive magnetic liposomes forthermo-chemotherapy. J Control Release.2010;142(1):108–121.
    [58] Paolino D, Licciardi M, Celia C, Giammona G, Fresta M, Cavallaro G. Folate-targetedsupramolecular vesicular aggregates as a new frontier for effective anticancer treatmentin in vivo model. Eur J Pharm Biopharm.2012;82(1):94–102.
    [59] Wang X, Li J, Wang Y, et al. HFT-T, a targeting nanoparticle, enhances specific deliveryof paclitaxel to folate receptor-positive tumors. ACS Nano.2009;3(10):3165–3174.
    [60] Wang X, Li J, Wang Y, et al. A folate receptor-targeting nanoparticle minimizes drugresistance in a human cancer model. ACS Nano.2011;5(8):6184–6194.
    [61] Onyüksel H, Mohanty PS, Rubinstein I. VIP-grafted sterically stabilized phospholipidnanomicellar17-allylamino-17-demethoxy geldanamycin: a novel targeted nanomedicinefor breast cancer. Int J Pharm.2009;365(1–2):157–161.
    [62] Landriscina M, Amoroso MR, Piscazzi A, Esposito F. Heat shock proteins, cell survivaland drug resistance: the mitochondrial chaperone TRAP1, a potential novel target forovarian cancer therapy. Gynecol Oncol.2010;117(2):177–182.
    [63] Mi Y, Liu X, Zhao J, Ding J, Feng SS. Multimodality treatment of cancer with herceptinconjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles ofbiodegradable polymers. Biomaterials.2012;33(30):7519–7529.
    [64] Bazell R. HER-2: The making of Herceptin, a revolutionary treatment for breast cancer.New York: Random House;1998.
    [65] Das M, Sahoo SK. Epithelial cell adhesion molecule targeted nutlin-3a loadedimmunonanoparticles for cancer therapy. Acta Biomater.2011;7(1):355–369.
    [66] Paszko E, Ehrhardt C, Senge MO, Kelleher DP, Reynolds JV. Nanodrug applications inphotodynamic therapy. Photodiagnosis Photodyn Ther.2011;8(1):14–29.
    [67] Li X, Zhao Q, Qiu L. Smart ligand: Aptamer-mediated targeted delivery ofchemotherapeutic drugs and siRNA for cancer therapy. J Control Release.2013;171(2):152–162.
    [68] Soundararajan S, Wang L, Sridharan V, et al. Plasma membrane nucleolin is a receptor forthe anticancer aptamer AS1411in MV4-11leukemia cells. Mol Pharmacol.2009;76(5):984–991.
    [69] Yang X, Liu X, Liu Z, Pu F, Ren J, Qu X. Near-infrared light-triggered, targeted drugdelivery to cancer cells by aptamer gated nanovehicles. Adv Mater.2012;24(21):2890–2895.
    [70] Kang H, O’Donoghue MB, Liu H, Tan W. A liposome-based nanostructure for aptamerdirected delivery. Chem Commun (Camb).2010;46(2):249–251.
    [71] Platt VM, Szoka FC Jr. Anticancer therapeutics: targeting macromolecules andnanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm.2008;5(4):474–486.
    [72] Ganesh S, Iyer AK, Morrissey DV, Amiji MM. Hyaluronic acid based self-assemblingnanosystems for CD44target mediated siRNA delivery to solid tumors. Biomaterials.2013;34(13):3489–3502.
    [73] Gary-Bobo M, Brevet D, Benkirane-Jessel N, et al. Hyaluronic acid-functionalizedmesoporous silica nanoparticles for efficient photodynamic therapy of cancer cells.Photodiagnosis Photodyn Ther.2012;9(3):256–260.
    [74] Lo YL. Phospholipids as multidrug resistance modulators of the transport of epirubicin inhuman intestinal epithelial Caco-2cell layers and everted gut sacs of rats. BiochemPharmacol.2000;60(9):1381–1390.
    [75] Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. JControl Release.2012;162(1):45–55.
    [76] Win KY, Feng S-S. Effect of particle size and surface coating on cellular uptake ofpolymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials.2005;26(15):2713-2722.
    [77] Dreis S, Rothweiler F, Michaelis M, Cinatl J Jr, Kreuter J, Langer K. Preparation,characterisation and maintenance of drug efficacy of doxorubicin-loaded human serumalbumin (HSA) nanoparticles. Int J Pharm.2007;341(1–2):207–214.
    [78] Wartlick H, Michaelis K, Balthasar S, Strebhardt K, Kreuter J, Langer K. Highly specificHER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. JDrug Target.2004;12(7):461–471.
    [79] Ertl B, Platzer P, Wirth M, Gabor F. Poly(D,L-lactic-co-glycolic acid) microspheres forsustained delivery and stabilization of camptothecin. J Control Release.1999;61(3):305–317.
    [80] Mu L, Elbayoumi TA, Torchilin VP. Mixed micelles made of poly(ethyleneglycol)-phosphatidylethanolamine conjugate and d-alpha-tocopheryl polyethylene glycol1000succinate as pharmaceutical nanocarriers for camptothecin. Int J Pharm.2005;306(1–2):142–149.
    [81] Koo OM, Rubinstein I, Onyuksel H. Camptothecin in sterically stabilized phospholipidmicelles: a novel nanomedicine. Nanomedicine.2005;1(1):77–84.
    [82] Fang JY, Hung CF, Hua SC, Hwang TL. Acoustically active perfluoro-carbonnanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicityagainst cancer cells. Ultrasonics.2009;49(1):39–46.
    [83] Shenderova A, Burke TG, Schwendeman SP. Stabilization of10-hydroxycamptothecin inpoly(lactide-co-glycolide) microsphere delivery vehicles. Pharm Res.1997;14(10):1406–1414.
    [84] Zhang L, Yang M, Wang Q, et al.10-Hydroxycamptothecin loaded nanoparticles:preparation and antitumor activity in mice. J Control Release.2007;119(2):153–162.
    [85] Hatefi A, Amsden B. Camptothecin delivery methods. Pharm Res.2002;19(10):1389–1399.
    [86] Ziomkowska B, Kruszewski S, Siuda R, et al. Deactivation of camptothecin determinedby factor analysis of steady-state flourescence and absorption spectra. Optica Applicata.2006;36(1):137–146.
    [87] Cortesi R, Esposito E, Maietti A, Menegatti E, Nastruzzi C. Formulation study for theantitumour drug camptothecin: liposomes, micellar solutions and a microemulsion. Int JPharm.1997;159(1):95–103.
    [88] Miura H, Onishi H, Sasatsu M, Machida Y. Antitumor characteristics ofmethoxypolyethylene glycol-poly(DL-lactic acid) nanoparticles containing camptothecin.J Control Release.2004;97(1):101–113.
    [89] Vergara D, Bellomo C, Zhang X, et al. Lapatinib/Paclitaxel polyelectrolyte nanocapsulesfor overcoming multidrug resistance in ovarian cancer. Nanomedicine.2012;(6):891–899.
    [90] Fonseca C, Sim es S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation,physicochemical characterization and in vitro anti-tumoral activity. J Control Release.2002;83(2):273–286.
    [91] Sonnemann J, Palani CD, Wittig S, et al. Anticancer effects of the p53activator nutlin-3in Ewing’s sarcoma cells. Eur J Cancer.2011;47(9):1432–1441.
    [92] Song XR, Cai Z, Zheng Y, et al. Reversion of multidrug resistance by co-encapsulation ofvincristine and verapamil in PLGA nanoparticles.Eur J Pharm Sci.2009;37(3–4):00–305.
    [93] Cesur H, Rubinstein I, Pai A, Onyüksel H. Self-associated indisulam inphospholipid-based nanomicelles: a potential nanomedicine for cancer. Nanomedicine.2009;5(2):178–183.
    [94] Mohanty C, Sahoo SK. The in vitro stability and in vivo pharmacokinetics of curcuminprepared as an aqueous nanoparticulate formulation. Biomaterials.2010;31(25):6597–6611.
    [95] Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluroniccomposite nanoparticles for delivery to cancer cells. Nanomedicine.2010;6(1):153–160.
    [96] Anitha A, Maya S, Deepa N, et al. Efficient water soluble O-carboxymethyl chitosannanocarrier for the delivery of curcumin to can cells. Carbohydr Polym.2011;83(2):452–461.
    [97] Tiyaboonchai W, Tungpradit W, Plianbangchang P. Formulation and characterization ofcurcuminoids loaded solid lipid nanoparticles. Int J Pharm.2007;337(1–2):299–306.
    [98] Anand P, Nair HB, Sung B, et al. Design of curcumin-loaded PLGA nanoparticlesformulation with enhanced cellular uptake, and increased bioactivity in vitro and superiorbioavailability in vivo. Biochem Pharmacol.2010;79(3):330–338.
    [99] Dhule SS, Penfornis P, Frazier T, et al. Curcumin-loaded γ-cyclodextrin liposomalnanoparticles as delivery vehicles for osteosarcoma. Nanomedicine.2012;8(4):440–451.
    [100] Kundu P, Mohanty C, Sahoo SK. Antiglioma activity of curcumin-loaded lipidnanoparticles and its enhanced bioavailability in brain tissue for effective glioblastomatherapy. Acta Biomater.2012;8(7):2670–2687.
    [101] Liu J, Xu L, Liu C, et al. Preparation and characterization of cationic curcuminnanoparticles for improvement of cellular uptake. Carbohydr Polym.2012;90(1):16–22.
    [102] Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid InterfaceSci.2001;6(1):66–77.
    [103] Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymericmicelles as nanocarriers for drug and gene delivery. Pharmacol Ther.2006;112(3):630–648.
    [104] Bellott R, Pouna P, Robert J. Separation and determination of liposomal andnon-liposomal daunorubicin from the plasma of patients treated with Daunoxome. JChromatogr B Biomed Sci Appl.2001;757(2):257–267.
    [105] Junghanns JU, Müller RH. Nanocrystal technology, drug delivery and clinicalapplications. Int J Nanomedicine.2008;3(3):295–309.
    [106] Nijhara R, Balakrishnan K. Bringing nanomedicines to market: regulatory challenges,opportunities, and uncertainties. Nanomedicine.2006;2(2):127–136.
    [107] Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinicalmedicine. Adv Drug Deliv Rev.2008;60(8):876–885.
    [108] Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles.J Control Release.2008;132(3):171–183.
    [109] Nakanishi T, Fukushima S, Okamoto K, et al. Development of the polymer micelle carriersystem for doxorubicin. J Control Release.2001;74(1–3):295–302.
    [110] Tsukioka Y, Matsumura Y, Hamaguchi T, Koike H, Moriyasu F, Kakizoe T.Pharmaceutical and biomedical differences between micellar doxorubicin (NK911) andliposomal doxorubicin (Doxil). Jpn J Cancer Res.2002;93(10):1145–1153.
    [111] Shea JE, Nam KH, Rapoport N, Scaife CL. Genexol inhibits primary tumour growth andmetastases in gemcitabine-resistant pancreatic ductal adenocarcinoma. HPB(Oxford).2011;13(3):153–157.
    [112] Alakhov V, Klinski E, Li SM, et al. Block copolymer-based formulation of doxorubicin.From cell screen to clinical trials. Colloids Surf B Biointerfaces.1999;16(1–4):113–134.
    [113] Danson S, Ferry D, Alakhov V, et al. Phase I dose escalation and pharmacokinetic studyof pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br JCancer.2004;90(11):2085–2091.
    [114] Bogunia-Kubik K, Sugisaka M. From molecular biology to nanotechnology andnanomedicine. Biosystems.2002;65(2–3):123–138.
    [115] Fattal E, Bochot A. State of the art and perspectives for the delivery of antisenseoligonucleotides and siRNA by polymeric nanocarriers. Int J Pharm.2008;364(2):237–248.
    [116] Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr CM. Chitosan-coated PLGAnanoparticles for DNA/RNA delivery: effect of the formulation parameters oncomplexation and transfection of antisense oligonucleotides. Nanomedicine.2007;3(3):173–183.
    [117] Zhong J, Yao X, Li DL, et al. Large scale preparation of midkine antisenseoligonucleotides nanoliposomes by a cross-flow injection technique combined withultrafiltration and high-pressure extrusion procedures. Int J Pharm.2013;441(1–2):712–720.
    [118] Sioss JA, Bhiladvala RB, Pan W, et al. Nanoresonator chip-based RNA sensor strategyfor detection of circulating tumor cells: response using PCA3as a prostate cancer marker.Nanomedicine.2012;8(6):1017–1025.
    [119] Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles fortargeted drug delivery and imaging. Adv Drug Deliv Rev.2010;62(3):284–304.
    [120] Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev.2012;64(13):1394–1416.
    [121] Shiraishi K, Endoh R, Furuhata H, et al. A facile preparation method of a PFC-containingnano-sized emulsion for theranostics of solid tumors. Int J Pharm.2011;421(2):379–387.
    [122] Shalviri A, Foltz WD, Cai P, Rauth AM, Wu XY. Multifunctional terpolymeric MRIcontrast agent with superior signal enhancement in blood and tumor. J Control Release.2013;167(1):11–20.
    [123] He Q, Ma M, Wei C, Shi J. Mesoporous carbon@silicon-silica nanotheranostics forsynchronous delivery of insoluble drugs and luminescence imaging. Biomaterials.2012;33(17):4392–4402.
    [124] Howell M, Mallela J, Wang C, et al. Manganese-loaded lipid-micellar theranostics forsimultaneous drug and gene delivery to lungs. J Control Release.2013;167(2):210–218.
    [125] Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxidenanoparticles (SPIONs): development, surface modification and applications inchemotherapy. Adv Drug Deliv Rev.2011;63(1–2):24–46.
    [126] Tsay JM, Trzoss M, Shi L, et al. Singlet oxygen production by Peptide-coated quantumdot-photosensitizer conjugates. J Am Chem Soc.2007;129(21):6865–6871.
    [127] Spyratou E, Makropoulou M, Mourelatou EA, Demetzos C. Biophotonic techniques formanipulation and characterization of drug delivery nanosystems in cancer therapy.Cancer Lett.2012;327(1–2):111–122.
    [128] Allison RR, Mota HC, Bagnato VS, Sibata CH. Bio-nanotechnology and photodynamictherapy–state of the art review. Photodiagnosis Photodyn Ther.2008;5(1):19–28.
    [129] García-Díaz M, Kawakubo M, Mroz P, et al. Cellular and vascular effects of thephotodynamic agent temocene are modulated by the delivery vehicle. J Control Release.2012;162(2):355–363.
    [130] Ling D, Bae BC, Park W, Na K. Photodynamic efficacy of photosensitizers under anattenuated light dose via lipid nano-carrier-mediated nuclear targeting. Biomaterials.2012;33(21):5478–5486.
    [131] Sobolev AS, Jans DA, Rosenkranz AA. Targeted intracellular delivery of photosensitizers.Prog Biophys Mol Biol.2000;73(1):51–90.
    [132] Roy I, Ohulchanskyy TY, Pudavar HE, et al. Ceramic-based nanoparticles entrappingwater-insoluble photosensitizing anticancer drugs: a novel drug-carrier system forphotodynamic therapy. J Am Chem Soc.2003;125(26):7860–7865.
    [133] Kiesslich T, Berlanda J, Plaetzer K, Krammer B, Berr F. Comparative characterization ofthe efficiency and cellular pharmacokinetics of Foscan-and Foslip-based photodynamictreatment in human biliary tract cancer cell lines. Photochem Photobiol Sci.2007;6(6):619–627.
    [134] Sibata MN, Tedesco AC, Marchetti JM. Photophysicals and photochemicals studies ofzinc(II) phthalocyanine in long time circulation micelles for photodynamic therapy use.Eur J Pharm Sci.2004;23(2):131–138.
    [135] Khdair A, Handa H, Mao G, Panyam J. Nanoparticle-mediated combinationchemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. Eur JPharm Biopharm.2009;71(2):214–222.
    [136] Ohulchanskyy TY, Roy I, Goswami LN, et al. Organically modified silica nanoparticleswith covalently incorporated photosensitizer for photodynamic therapy of cancer. NanoLett.2007;7(9):2835–2842.
    [137] Frank D, Tyagi C, Tomar L, et al. Overview of the role of nanotechnological innovationsin the detection and treatment of solid tumors. Int J Nanomedicine.2014,9:589-613.
    [138] Xie Z, Hu X, Chen X, Sun J, Shi Q, Jing X. Synthesis and characterization of novelbiodegradable poly(carbonate ester)s with photolabile protecting groups.Biomacromolecules.2008;9(1):376-380.
    [139] Hu X, Liu S, Huang Y, Chen X, Jing X. Biodegradable block copolymer-doxorubicinconjugates via different linkages: preparation, characterization, and in vitro evaluation.Biomacromolecules.2010;11(8):2094-2102.
    [140] Wu W, Zheng Y, Wang R, et al. Antitumor activity of folate-targeted, paclitaxel-loadedpolymeric micelles on a human esophageal EC9706cancer cell line. Int J Nanomedicine.2012;7:3487-502.
    [141] Kamen BA, Smith AK. A review of folate receptor alpha cycling and5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. AdvDrug Deliv Rev.2004;56(8):1085-1097.
    [142] Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptorexpression in carcinomas and normal tissues determined by a quantitative radioligandbinding assay. Anal Biochem.2005;338(2):284-293.
    [143] Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolvingparadigms. Cell.2011;147(2):275-292.
    [144] Ogata Y, Matono K, Nakajima M, Sasatomi T, Mizobe T, Nagase H, et al. Efficacy of theMMP inhibitor MMI270against lung metastasis following removal of orthotopicallytransplanted human colon cancer in rat. Int J Cancer.2006;118(1):215-221.
    [145] Belotti D, Paganoni P, Manenti L, Garofalo A, Marchini S, Taraboletti G, et al. Matrixmetalloproteinases (MMP9and MMP2) induce the release of vascular endothelial growthfactor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res.2003;63(17):5224-5229.
    [146] Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrixmetalloproteinase-9triggers the angiogenic switch during carcinogenesis. Nat Cell Biol.2000;2(10):737-744.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700