藻蓝蛋白组合生物合成及蓝藻连接多肽生物进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝藻又称蓝细菌(Cyanobacteria),是藻类植物中最原始的一个门类,是无细胞核,具有植物型放氧光合作用的原核生物。藻胆体作为蓝藻捕光的一种超分子蛋白复合体,由不同种类的藻胆蛋白和连接多肽构成,在光合作用能量吸收和传递方面发挥重要的作用。钝顶螺旋藻(Spirulina platensis,Sp)是一种具有很高营养价值的经济型藻类,其中含有的藻蓝蛋白以其特有的营养和保健价值受到广泛的重视。由于藻蓝蛋白所特有的荧光活性且无毒,可用于荧光标记物以及光动力治疗等领域。
     本论文借助基因工程技术,实现了具有光学活性藻蓝蛋白的组合生物合成。
     1.首次实现了在大肠杆菌中利用一个载体完成多个基因的组合生物合成,提供了一种方便高效表达和纯化光学活性藻胆蛋白的新策略。从集胞藻PCC6803 (Synechocystis sp. PCC6803,S6)中克隆了五个基因cpcA(S6)、cpcE、cpcF、ho1及pcyA,构建了载体pCDF-cpcA(S6)-cpcE-cpcF, ho1-pcyA (V1),最终获得了具有光学活性的集胞藻PCC6803藻蓝蛋白α亚基holo-α-PC(S6)。
     2.基于以上策略的成功,进一步组合生物合成具有光学活性和生物学活性的钝顶螺旋藻C-藻蓝蛋白α亚基(rHHPC)。从Sp基因组DNA中克隆基因cpcA(Sp),构建了载体pCDF-cpcA(Sp)-cpcE-cpcF, ho1-pcyA (V2),以重组菌BL21 (DE3)作为研究对象,对rHHPC进行了5L规模的发酵,菌体密度OD600值达到27。初步摸索了发酵条件,优化了发酵工艺,探索了如何减少发酵过程中包涵体的生成,并对重组产物rHHPC的抗氧化活性进行了研究。结果表明rHHPC具有清除羟自由基和过氧化氢自由基的作用,使其成为一种具有开发潜力的抗氧化剂。
     3.实现具有光学活性钝顶螺旋藻C-藻蓝蛋白β亚基在大肠杆菌中的组合生物合成。将已知的CpcT及CpeS在S6基因组中进行BLASTP,得到具有高度同源性的基因Slr1649及Slr2049。从Sp基因组DNA中克隆C-藻蓝蛋白β亚基并对其结合色基的82位和153位半胱氨酸进行突变,进而构建了两组质粒分别为: pCDF-cpcB(C153A)-slr2049, ho1-pcyA (V3)和pCDF-cpcB(C82I)-slr2049, ho1-pcyA (V5); pCDF-cpcB(C82I)-slr1649, ho1-pcyA (V4)和pCDF-cpcB(C153I)- slr1649, ho1-pcyA (V6)。结果表明转化了V3和V4质粒的大肠杆菌,经诱导表达后分别产生了具有光学活性cpcB (C153A)-PCB和cpcB(C82I)-PCB,证实了Slr2049和Slr1649分别是催化藻蓝蛋白β亚基82位和153位与色基连接的特异性色基裂合酶。此外,分析和比较了几种本实验室构建的重组藻胆蛋白及天然藻胆蛋白的光谱学性质及差异。
     以上获得的重组蛋白均采用金属螯合亲和层析的方法,建立起快速高效的纯化工艺,对产物分别进行了SDS-PAGE、色素蛋白锌电泳、吸收和荧光光谱扫描等检测。
     4.首次对蓝藻连接多肽进行比较基因组学和系统进化分析。在25种蓝藻基因组(20种测序已完成,5种正在进行)中,得到了共192条连接多肽基因序列,包括167条与藻胆蛋白相关的连接多肽(Linker polypeptides)基因序列及25条铁氧化还原-NADP+脱氢酶(Ferredoxin-NADP+ oxidoreductase)基因序列。分析了这192条序列的基因结构、基因组上的定位、保守域和多态性,讨论了这些连接多肽的特征与功能。根据连接多肽的系统进化特征将蓝藻连接多肽分成六类,发现多数的连接多肽与藻胆蛋白聚集成簇,并多与藻胆蛋白的亚基、色基及相关的催化酶共享一个启动子。蓝藻连接多肽的产生、分化和消失归因于蓝藻对不同环境选择压力特别是光适应过程中产生的基因复制、水平基因转移或基因丢失。
     本论文为光学活性藻蓝蛋白的合成、广泛应用以及人工藻胆体的合成奠定了基础,探讨了藻胆蛋白的荧光活性机理,并通过对藻胆体连接多肽系统进化的研究,加深了对蓝藻光系统功能和进化的认识。
Cyanobacteria are among the oldest life on earth with the capacity of oxygenic photosynthesis. As a light-harvesting complex, phycobilisomes (PBSs) play a crucial role in the energy absorbing and transferring of photosynthesis in cyanobacteria. PBSs are highly organized complexes, and are composed of various biliproteins and linker polypeptides. A series of researches on PBSs have been done since they have comprehensive application in the fields of food, medicine and biotechnology, which becomes a hotspot in the research of algae. More stable and single-effect PBSs subunits are urgent for wide applications in the above fields.
     Five genes cpcA(S6)、cpcE、cpcF、ho1 and pcyA were cloned from Synechocystis sp. PCC6803 (S6) genomic DNA. A vector pCDF-cpcA (S6)-cpcE-cpcF, ho1-pcyA (V1) was successfully constructed resulting in combinational biosynthesis of a fluorescent holo-α-phycocyanin (S6) in Escherichia coli BL21. In addition, a strategy in co-expression of multigenes by using one expression vector was presented, which is a promising method to produce lager-scale fluorescent phycobiliproteins (PBPs) in biotechnological applications.
     Based on former research about optically active holo-α-PC (S6), the gene cpcA (Sp) cloned from Spirulina platensis (Sp) genomic DNA, and a new vector pCDF-cpcA (Sp)-cpcE-cpcF, ho1-pcyA (V2) was constructed. The vector could play a role to synthesize PCB, apo-PC (Sp), and lyase CpcE/F (S6) catalyzing the connection of them in E. coli BL21, which finally produced fluorescentα-subunit C-PC of Sp (rHHPC). The recombinant E. coli BL21 was cultured to OD_(600) = 27 in a 5L fermentor. The fermentation technique was improved to reduce the production of inclusion bodies. Inhibition effect on hydroxyl and peroxyl radicals makes rHHPC as a potent antioxidant.
     In order to biosynthesize fluorescent holo-β-PC (Sp) in E. coli BL21, special chromophore lyases genes CpeS and CpcT were carried out BLASTP in S6 genome, and two high homologous genes Slr2049 and Slr1649 were obtained. Sites 82 and 153 inβ-PC (Sp) were site-directed mutated. Two groups of co-expression vectors were constructed and transformed into E. coli BL21, which were pCDF-cpcB(C153A)- slr2049, ho1-pcyA and pCDF-cpcB(C82I)-slr2049, ho1-pcyA, pCDF-cpcB(C82I)- slr1649, ho1-pcyA and pCDF-cpcB(C153I)-slr1649, ho1-pcyA. The result indicates that Slr2049 and Slr1649 catalyzed the 82β- and 153β-PC (Sp) linking to the PCB, respectively. Fluorescent cpcB(C153A)-PCB and cpcB(C82I)-PCB were achieved. In addition, the spectroscopy characteristic between several recombinant and natural PBPs were analyzed.
     All recombinant proteins were purified by metal chelating affinity chromatography, and were analyzed by SDS-PAGE, chromoprotein Zn2+ electrophoresis, spectrum detect and so on.
     Recent availability of the whole genome database of cyanobacteria provides us a global and further view on the complex structural PBSs. A total of 192 putative linker genes including 167 putative PBSs-associated linker genes and 25 Ferredoxin-NADP+ oxidoreductase (FNR) genes were detected through whole genome analysis of all 25 cyanobacterial genomes (20 finished and 5 in draft). A phylogenetic analysis based on protein data demonstrates a possibility of six classes of the linker family in cyanobacteria. Emergence, divergence, and disappearance of cyanobacterial linkers among cyanobacterial species were due to speciation, gene duplication, gene transfer, or gene loss, and acclimation to various environmental selective pressures especially light.
     This study provides a method for the production of the fluorescent phycocyanin in the research of PBSs construction and biotechnological applications, which would helps to find the mechanism of fluorescent and biological activities in PBPs and approach to construct artificial PBSs. Research on cyanobacterial linker family plays an important role in divergence and evolution of cyanobacterial light-harvesting systems.
引文
Adir N, Vainer R, Lerner N. Refined structure of c-phycocyanin from the cyanobacterium Synechococcus vulcanus at 1.6 ?: insights into the role of solvent molecules in thermal stability and co-factor structure. Biochim. Biophys. Acta., 2002, 1556: 168-174
    Adir N, Lerner N The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in phycobilisomes. J Biol Chem 2003, 278:25926-25932
    Babu KS ; Mohapatra RN. Radiative fermion masses and large neutrino magnetic moment: A unified picture. Phys. Rev., 1991, 159
    Beale SI, Cornejo J. Biosynthesis of phycobilins. Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium. J. Biol. Chem., 1991a, 266: 22326-22332
    Beale SI, Cornejo J. Biosynthesis of phycobilins. 3(Z)-Phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdinⅨα. J. Biol. Chem., 1991b, 266: 22333-22340
    Bennett A, Bogorad L. Properties of subunits and aggregates of blue-green algal biliproteins. Biochemistry, 1971, 10: 3625-3634
    Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne P E. The Protein Data Bank. Nucleic. Acids. Res., 2000, 28: 235-242
    Bermejo R, Talavera EM, Alarez-Pez JM, Orte JC. Chromatographic purification of biliproteins from Spirulina plarensis high-performance liquid chromatographic separation of theirαand βsubunits. J. Chromatogr. A., 1997, 778: 441-450
    Bermejo, R, Fernandez, E, Alvarez-Pez, JM., Talavera, EM. Labeling of cytosine residues with biliproteins for use as fluorescent DNA probes. J. Luminescence, 2002, 99: 113–124
    Berns DS, Edwards M R. Electron micrographic investigations of C-phycocyanin. Arch. Biochem. Biophys., 1965, 110: 511-516
    Betz M. One century of protein crystallography: The phycobiliproteins. Biol. Chem. Hoppe-Seyler, 1997, 378:167-176
    Bhat VB, Madyastha KM. C-Phycocyanin: A Potent Peroxyl Radical Scavenger in Vivo and inVitro. 2000, Biochem. Biophys. Res. Commun., 275: 20–25
    Bhat VB, Madyastha KM. Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: protection against oxidative damage to DNA. Biochem. Biophy. Res. Commu., 2001, 285(2): 262-266
    Brejc K, Ficner R, Huber R, Steinbacher S. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 ?
    resolution. J. Mol. Biol., 1995, 249: 424-440 Bryant DA, Guglielmi G, Tandeau de Marsac N, et al.. The structure of cyanobacterial phycobilisomes: A model. Arch. Microbiol., 1979, 12(3): 113–127
    Bryant DA, de Lorimier R, Lambert DH, et al.. Molecular cloning and nucleotide sequence of the alpha and beta subunits of allophycocyanin from the cyanelle genome of Cyanophora paradoxa. Proc. Natl. Acad. Sci. USA, 1985, 82(10): 3242-3249
    Bryant DA. The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands. 1994, 908
    Cai YA, Murphy JT, Wedemayer GJ, et al. Recombinant phycobiliproteins. Recombinant c-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains. Anal. Biochem., 2001, 290: 186-204
    Casey ES, Grossman A. In vivo and in vitro characterization of the light-regulated cpcB2A2 promoter of Fremyella diplosiphon. J. Bacteriol., 1994: 176 (20): 6362-6374
    Chang W, Jiang T, Wan Z, Zhang J, Yang Z, Liang D. Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 ? resolution [J]. J Mol Biol, 1996, 262: 721-731
    Chueh C C. Method of allophycocyanin inhibition of enterovirus and influenza virus reproduction resulting in cytopathic effect [P]. 2002, US6346408
    Cornejo J, Willows RD, Beale SI. Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803. Plant J., 1998, 15: 99-107
    Contreras-Martel C, Martinez-Oyanedel J, Bunster M, Legrand P, Piras C, Vernede X, Fontecilla-Camps JC. Crystallization and 2.2 ? resolution structure of R-phycoerythrin from Gracilaria chilensis: a case of perfect hemihedral twinning. Acta. Crystallogr., Sect. D, 2001,57: 52-60
    Contreras-Martel C, Matamala A, Bruna C, Poo-Caama?o G, Almonacid D, Figueroa M, Martínez-Oyanedel J, Bunster M. The structure at 2 ? resolution of phycocyanin from Gracilaria chilensis and the energy transfer network in a PC-PC Complex. Annu. Rev. Biophys. Biophys. Chem., 2007, 125: 388-396
    de Marsac NT. Phycobiliproteins and phycobilisomes: the early observations. Photosynth. Res., 2003, 76: 197-205
    Demidov A A, Mimuro M. Deconvolution of C-phycocyaninβ-84 andβ-155 chromophore absorption and fluorescence spectra of cyanobacterium Mastigocladus laminosus.J Biophys, 1995, 68: 1500-506
    Dolganov N, Grossman AR. A polypeptide with similarity to phycocyanin alpha-subunit phycocyanobilin lyase involved in degradation of phycobilisomes. J. Bacteriol., 1999, 181(2): 610-617
    Doust AB, Marai CNJ, Harrop SJ, Wilk KE, Curmi PMG, Scholes GD. Developing a structure-function model for the cryptophyte phycoerythrin using ultrahigh resolution crystallography and ultrafast laser spectroscopy. J. Mol. Biol., 2004, 344: 135-153
    Duerring GB, Schmidt R H. Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1'66 D resolution. J. Mol. Biol., 1991, 217: 577–592
    Duerring M, Huber R, Bode W, et al. Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7?. J. Mol. Biol., 1990, 211: 633-644
    Edington M D,Riter R E,Beck W F.Interexcitonstate relaxation and exciton localization in allophycocyanin trimers. J. Phys. Chem., 1996, 100: 14206-14217
    Esenbeck N. Ueber einen blau-rothen Farbstoff, der sich bei der Zersetzung von Oscillatorien bildet. Liebigs. Ann. Chem., 1836, 17: 75-82
    Edwards MR, Berns DS, GhiorseWC, Holt SC. Ultrastructure of the thermophilic blue-green alga Synechococcus lividus Copeland. J. Phycol., 1968, 4: 283-298
    Edwards MR, Gantt E. Phycobilisomes of the thermophilic blue-green alga Synechococcus lividus. J. Cell Biol., 1971, 50: 896-900
    Fairchild CD, Glazer AN. Oligomeric structure, enzyme kinetics, and substrate specificity of thephycocyaninαsubunit phycocyanobilin lyase. J. Biol. Chem., 1994, 269: 8686–8694
    Frankenberg N, Mukougawa K, Kohchi T, et al. Functional Genomic Analysis of the HY2 Family of Ferredoxin-Dependent Bilin Reductases from Oxygenic Photosynthetic Organisms. The Plant Cell, 2001, 13: 965-978
    Fukino H, Hirai M, Hsueh Y M, Moriyasu S & Yamane Y. Mechanism of protection by zinc against mercuric chloride toxicity in rats: effects of zinc and mercury on glutathionine metabolism. J. Toxicol. Environ. Health, 1986, 19(1): 75-89
    Galland-Irmouli AVL, Pons M, Lucon C, et al.. One-step purification of R-phycoerythrin from the red macroalga Palmaria palmata using preparative polyacrylamide gel electrophoresis. J. Chromatogr., 2000, 739(1): 117–123
    Gantt E, Conti SF. The ultrastructure of Porphyridium cruentum. J. Cell. Biol., 1965, 26: 365-381
    Gantt E, Conti SF. Phycobiliprotein localization in algae. Brookhaven Symp Biol., 1966a, 19: 393-405
    Gantt E, Conti SF. Granules associated with the chloroplast lamellae of Porphyridium cruentum. J. Cell. Biol., 1966b, 29(3): 423-434
    Gantt E, Edwards MR, and Provasoli L. Chloroplast structure of the Cryptophyceae. Evidence for phycobiliproteins within intrathylakoidal spaces. Michrosc. Res. Tech., 1971, 38: 280-290
    Gantt E, Lipschultz CA. Phycobilisomes of Porphyridium cruentum: Pigment analysis. Biochemistry, 1974, 13: 2960-2966
    Gantt E. Structure and function of phycobilisomes: Light harvesting pigment complexes in red algae and blue green algae [M]. Int. Rev. Cytol., 1980, 60: 45-80
    Ge BS, Qin S, Han L, Lin F, Ren YH. Antioxidant properties of recombinant allophycocyanin expressed in Escherichia coli. J Photochem Photobio B: Biology, 2006, 84: 175-180
    Georgiou G, Bahra SS, Mackie AR, Wolfe CA, O'Shea P, Ladha S, Fernandez N, Cherry RJ. Measurement of the lateral diffusion of human MHC class I molecules on HeLa cells by fluorescence recovery after photobleaching using a phycoerythrin probe. Biophys. J., 2002, 82:1828-1834
    Glauser M, Bryant DA, Frank G, et al. Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120:a new model. Eur. J. Biochem., 1992, 205: 907-915
    Glazer AN, Cohen BG. Subunit structure of the phycobiliproteins of blue-green algae. Proc. Natl. Acad. Sci. USA, 1971, 8: 1398-1401
    Glazer AN. Phycobilisome: A macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta., 1984, 768: 29–51
    Glazer A N. Light guides:directional energy transfer in a photosynthetic antenna. J. Biol. Chem., 1989, 264:1-4
    Grossman AR, Lemaux PG, Conley PB. Regulated synthesis of phycobilisome components. Photochem. Photobiol., 1986, 44: 827-837
    Grossman AR, Schaefer MR, Chiang GG, Collier JL. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev., 1993, 57: 725-749
    Grossman AR, Bhaya D, Apt KE, Kehoe DM. Light-harvesting complexes in oxygenic photosynthesis: Diversity control and evolution. Annu. Rev. Genetics., 1995, 29: 231-238
    Guglielmi G, Cohen-Bazire G, Bryant DA. The structure of Gloeobacter violaceus and its phycobilisomes. Archicrobiol., 1981, 129: 181-189
    Gysi J, Zuber H. Isolation and characterization of allophycocyanin II from the thermophilic blue-green alga Mastigocladus laminosus Cohn. FEBS Lett., 1974, 48: 209–213
    Hassan M I, Ethayathulla A S, Soni B, Madamwar D, Yadav S, Sharma S, Kaur P, Singh T P. Crystal structure of the pigment protein phycoerythrin from Cyanobacterium at 2.6? resolution. (in press)
    He JA, Hu YZ, Jiang LJ. Photodynamic action of phybiliproteins in situ generation of reactive oxygen species. J. Biochim. Biophys. Acta.: Bioenergetics, 1997, 1320(1): 165-174
    Hilditch C M, Balding P, Kakins R, Smith, AJ, Rogers, LJ. C-phycocyanin from the cyanobacterium Aphanothece halophytica. J. Appl. Phycol., 1991, 3: 345
    Holzwarth A R.Structure–function relationships and energy transfer in phycobiliprotein antennae. Physio. Plant, 1991, 83: 518-528
    Homoelle B J,Edington M D,Diffey W M,et al.Stimulated photon-echo and transient-grating studies of protein–matrix solvation dynamics and interexciton-state radiationless decay in a phycocyanin and allophycocyanin. J. Phys. Chem., 1998, 102: 3044-3052
    Iijma T, Saitoh N, Nobutomo K, et al.. Prospective cohort study of hepatitis B surface antigen carriers in a working population. Gann., 1984, 75 (7): 571-573
    Jiang T, Zhang J, Chang W, Liang D. Crystal structure of R-phycocyanin and possible energy transfer pathways in the phycobilisome. Biophys. J., 2001, 81: 1171-1179
    Kahn K, Schaefer MR. rpbA controls transcription of the constitutive phycocyanin gene set in Fremyella diplosiphon. J. Bacteriol., 1997, 179(24): 7695–7704
    Kahn K, Mazel D, Houmard J, et al. A role for cpeYZ in cyanobacterial phycoerythrin biosynthesis. J. Bacteriol., 1997, 179(4): 998-1006
    Kehoe DM, Gutu A. Responding to color: the regulation of complementary chromatic adaptation. Annu. Rev. Plant Biol., 2006, 57: 127-150
    Kronick MN. The use of phycobiliproteins as fluorescent labels in immunoassay. J. Immunol. Methods, 1986, 92(1): 1-13
    Lange W, Wilhelm C, Wehrmeyer W, et al. The supermolecular structure of photosystem II-phycobilisome-complexes of Porphyridium cruentum. Bot. Acta., 1990, 103: 250-257
    Lansdorp PM, Smith C, Safford M, et al. Single laser three color immuno- fluorescence staining procedures based on energy transfer between phycoerythrin and cyanine 5. Cytometry, 1991, 12(8): 723-730
    Lefort, M. Sur le chromatoplasma d’une cyanophycee endosymbiotique: Glaucocytis nostochinearum Itzigs., C.R. Acad. Sci. Paris, 1965, 261: 233-236
    Liu J, Jiang T, Zhang J, Liang D. Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-Aa Resolution. J. Biol. Chem., 1999, 274(24): 16945-16952
    MacColl R, Lee JJ, Berns DS. Protein aggregation in C-phycocyanin. Studies at very low concentration with the photoelectric scanner of the ultracentrifuge. Biochem. J., 1971, 122: 421-426
    MacColl R, Csatorday K, Berns DS, Traeger E. Chromophore interactions in allophycocyanin. Biochemistry, 1980, 19: 2817-2820
    MacColl R, Csatorday K, Berns DS, Traeger E. The relationship of the quaternary structure of allophycocyanin to its spectrumrch. Biochem. Biophys., 1981, 208: 42-48
    MacColl R, Guard-Friar D. The chromophore assay of phycocyanin 645 from the cryptomonad protozoa Chroomonas species. J. Biol. Chem., 1983, 258(23): 14327-14329
    MacColl R. Cyanobacterial phycobilisomes. J. Struct. Biol.,1998,124:311-334
    Marquez LA, Dunford HB. Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds I and II. Implications for lipoprotein peroxidation studies. J. Biol. Chem., 1995, 270(51): 30434-30440
    Mazel D, Houmard J, Tandeau de Marsac N. A multigene family in Calothrix sp. PCC7601 encodes phycocyanin, the major component of the cyanobacterial light harvesting antenna. Mol. Gen. Genet., 1988, 211: 296-304
    Morcos N C, Berns M, HenryW L. Phycocyanin: laser activation, cytotoxic effects, and uptake in human atherosclerotic plaque. Lasers. Surg. Med., 1988, 8(1):10-17
    Moreno A, Bermejo R, Talavera E, et al. Purification, crystallization and preliminary X-ray diffraction studies of C-phycocyanin and allophycocyanin from Spirulina platensis. Acta. Cryst., 1997, 53: 321-326
    Mullineaux CW. Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterium. Biochim. Biophys. Acta., 1992,1100:285-292
    Nakajima Y, Fujiwara S, Sawai H, Imashimizu M, Tsuzuki M. A phycocyanin-deficient mutant of Synechocystis PCC 6714 with a single-base substitution upstream of the cpc operon. Plant Cell Physiol., 2001, 42(9): 992-998
    Nield J, Rizkallah P J, Barber J, Chayen N E. The 1.45? three-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongates. J. Struct. Biol., 2003, 141: 149-155
    O’Carra P, Killilea SD. Subunit structures of C-phycocyanin and C-phycoerythrin. Biochem. Biophys. Res. Commun., 1971, 45: 1192-1197
    Padyana AK, Bhat VB, Madyastha KM, Rajashankar KR, Ramakumar S Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 2001, 282:893-898
    Patent claim filed by Dainippon Ink and Chemicals and Tokyo Kenkyukai for“Anti-tumor agents containing phycobilin-also used to treat ulcers and hemorrhoid bleeding”(1983, JP58065216-A830418)
    Parks DR, Hardy RR, Herzenberg L A. Three-color immunofluorescence analysis of mouse B-lymphocyte subpopulations. Cytometry, 1984, 5: 159-168
    Pilot TJ, Fox JL. Cloning and sequencing of the genes encoding theαandβsubunits of C-phycocyanin from the cyanobacterium Agmenellum quadruplilcatum. Proc. Natl. Acad. Sci. USA., 1984, 81(22): 6983-6987
    Pinero Estrada JE, Bermejo Bescos P, Villar del Fresno AM. Antioxidant activity of different fractions of Spirulina platensis protean extract. Farmaco, 2001, 56: 497-500
    Qin S, Kawata Y, Yano S, Tseng CK, Kojima H. Cloning and sequencing of the Allophycocyanin genes from Spirulina maxima (Cyanophyta). Chin. J. Oceanol. Limnol., 1998, 16 (Suppl): 6-11
    Qin S, Tong S, Zhang P, Tseng CK. Isolation of plasmid from the blue-green alga Spirulina platensis. Chin. J. Oceanol. Limnol., 1993, 11: 285-288
    Ren Y, Ge B, Jin H, Tang Z, Guo C, Qin S. Effect of lanthanum on expression of recombinant allophycocyanin gene in Pichia pastoris. J. Rare. Earth, 2005, 23: 491-495
    Reuter W, Wiegand G, Huber R, Than ME. Structural analysis at 2.2 ? of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP·LC7.8, from phycobilisomes of Mastigocladus laminosus. Proc. Natl. Acad. Sci. USA, 1999, 96: 1363-1368
    Rimbau V, Camins A, Romay C, González R, Pallàs M. Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neurosci. Lett., 1999, 276: 75-78
    Rimbau V, Camins A, Pubill D et al. C-phycocyanin protects cerebellar granule cells from low potassium/serum deprivation-induced apoptosis. Naunyn. Schmiedebergs. Arch. Pharmacol., 2001, 364(2): 96-104
    Ritter S, Hiller RG, Wrench PM, Welte W, Diederichs K. Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-? resolution. J. Struct. Biol., 1999, 126: 86-97
    Romay C, Armesto J, Remirez D, Gonzalez R, Ledon N, Garcia I. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm. Res. 1998, 47: 36–41
    Romay Ch, Gonzalez R, Ledon N, Remirez D, Rimbau V. C-phycocyanin: a biliprotein with antioxidant, antiinflammatory and neuroprotective effects. Curr. Protein Pept. Sci., 2003, 4:207-216
    Romay C, Armesto J, Remirez D, Gonzalez R, Ledon N, Garcia I. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm. Res., 1998, 47: 36–41
    Rowan KS. Photosynthetic pigments of algae. New York: Cambridge University Press, 1989: 166-189
    Sawaki H., Sugiyama T., Omata T. Promoters of the phycocyanin gene clusters of the cyanobacterium Synechococcus sp. strain PCC7942. Plant Cell Physiol., 1998. 39(7): 756-761
    Schwartz J Z, Shkiar G. Growth inhibition and destruction of cancer cells by oral extracts of Spirulina. Proc. Amer. Acad. Oral. Pathol., 1986, 40: 23-27
    Schmidt M, Krasselt A, Reuter W. Local protein flexibility as a prerequisite for reversible chromophore isomerization inα-phycoerythrocyanin. Biochem. Biophys. Acta., 2006, 1764: 55-62
    Schmidt M, Patel A, Zhao Y, Reuter W. Structural basis for the photochemistry of α-phycoerythrocyanin. Biochemistry, 2007, 46: 416-423
    Schneider S, Prenzel CJ, Brehm G, et al. Resonance-enhanced CARS spectroscopy of biliproteins. Influence of aggregation and linker proteins on chromophore structure in allophycocyanin Mastigocladus laminosus. Photochem. Photobiol., 1995, 62: 847-854
    Sharkov AV, Kryukov IV, Khoroshilov EV, et al. Femtosecond spectral and anisotropy study of excitation energy transfer between neighbouringα-80 andβ-81 chromophores of allophycocyanin trimers, Biochim. Biophys. Acta., 1994, 1188: 349-356
    Shih SR, Tsai K N, Li Y, et al. Inhibition of enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis. J. Med. Virol., 2003, 70(1): 119-125
    Shinohara K, Okura Y, Koyano T. Algal phycocyanin promote growth of human cells in culture. In vitro Cell Dev. Biol., 1988, 24:1057-1060
    Sidler WA. Phycobilisome and phycobiliprotein structures [M]. In: Bryant, D. A. (ed): The Molecular Biology of cyanobacteria. Kluwer Academic Publishers, 1994, 139-216
    Stec B, Troxler R F, Teeter M M. Crystal structure of C-phycocyanin from Cyanidium caldariumprovides a new perspective on phycobilisome assembly. Biophys. J., 1999, 76: 2912-2921
    Storf M, Parbel A, Meyer M, et al. Chromophore attachment to biliproteins: specificity of PecE/PecF, a lyase-isomerase for the photoactive 31-Cys-α84-phycoviolobilin chromophore of phycoerythrocyanin. Biochemistry, 2001, 40: 12444-12456
    Subhashini J, Mahipal SV, Reddy MC, Mallikarjuna Reddy M, Rachamallu A, Reddanna P. Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem. Pharmacol., 2004, 68: 453–462
    Sui Z, Zhang X, Cheng X. Comparison of phycobiliproteins from Gracilaria lemaneiformis (Rhodophyceae) and its pigment mutants in spectral and molecular respects. Acta. Bot. Sin., 2002, 44: 557-561
    Sun, L, Wang, SM., Chen, LX., Gong, XQ. Promising fluorescent probes from phycobiliproteins. IEEE Journal of Quantum Electronics, 2003, 9: 177–188
    Tooley A J, Cai Y A, Glazer A N. Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-alpha subunit in a heterologous host. Proc. Natl. Acad. Sci. USA, 2001, 98(19): 10560-10565
    Tooley AJ, Glazer AN. Biosynthesis of the cyanobacterial light-harvesting polypeptide phycoerythrocyanin holo-alpha subunitin a heterologous host. J. Bacteriol., 2002, 184(17): 4666-4671
    Wang X, Li L, Chang W, Zhang J, Gui L, Guo B, Liang D. Structure of C-phycocyanin from Spirulina platensis at 2.2 ? resolution: a novel monoclinic crystal form for phycobiliproteins in phycobilisomes. Acta. Crystallogr., Sect D, 2001, 57: 784-792
    Wildman RB, Bowen CC. Phycobilisomes in blue-green algae, J.Bacteriol., 1974, 117: 866-881
    Vadiraja BB, Gaikwad NW, Madyastha KM. Hepatoprotective effect of C-phycocyanin: protection for carbon tetrachloridend R-(+)-pulegone mediated hepatotoxicity in rats. Biochem. Biophys. Res. Commun., 1998, 249: 428-431
    Vadiraja BB, Madyastha KM. C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochem. Biophys. Res. Commun., 2000, 275: 20-25
    Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J. Carcinog., 2006, 5:14
    Winyard PG, Moody CJ, Jacob C. Oxidative activation of antioxidant defence. Trends Biochem.Sci., 2005, 30: 453-461
    Zhao K, Deng M, Zheng M, Zhou M, Parbel A, Storf M, Meyer M, Strohmann B, Scheer H. Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon. FEBS Lett., 2000, 469: 9-13
    Zhao K H, Zhu J P, Song B, Zhou M, Storf D, Stephan B, et al. Nonenzymatic chromophore attachment in biliproteins: conformational control by the detergent Triton X-100. Biochimica. et. Biophysica. Acta., 2004, 1657(2): 131-145
    Zhao KH, Su P, B?hm S, et al. Reconstitution of phycobilisome core-membrane linker, Lcm,by autocatalytic chromophore binding to ApcE. Biochim. Biophys. Acta., 2005, 1706: 81-87
    Zhao K, Su P, Li J, Tu J, Zhou M, Bubenzer C, Scheer H. Chromophore attachment to phycobiliproteinβ-subunits: phycocyanobilin:cysteine-β84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena sp. PCC7120. J. Biol. Chem., 2006, 281: 8573-8581
    Zhao KH, Su P, Tu JM, et al. Phycobilin: cystein-84 biliprotein lyase, a nearuniversal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins. Proc. Natl. Acad. Sci. USA, 2007, 104(36): 14300-14305
    Zilinskas BR, Greenwald LS. Phycobilisome structure and function. Photosynthesis Res., 1986, 10: 7-35
    蔡心涵,何立明.藻蓝蛋白用于激光治癌的研究.中华实验外科杂志, 1995, 12: 290-292
    陈红兵,郭云良,孙圣刚,童萼塘,金丽英.藻蓝蛋白对大鼠脑缺血再灌流后神经元损伤的保护作用.中国全科医学, 2004, 7: 527-530
    陈美珍,张永雨,余杰等.龙须菜藻胆蛋白的分离及清除自由基作用的初步研究.食品科学, 2004, 3: 159-162
    董强,钱凯先等.藻蓝蛋白的抗癌活性研究.浙江大学学报(工学版),2001,35(6): 672-675
    高天荣,韦小岿等.螺旋藻综合利用工艺研究.云南师范大学学报,2002,22(2): 42-43
    葛保胜.抗肿瘤新药重组别藻蓝蛋白(雷普克)的药学研究及抗肿瘤机理探索[D].中国科学院海洋研究所,博士学位论文, 2005
    关燕清,徐和德,郭宝江.光固定化藻蓝蛋白对体外肝癌细胞7402的抑制作用.离子交换与吸附, 2000, 16(6): 547-552
    郭宝江,吴燕清.硒化藻蓝蛋白的生物材料抗肝癌作用的研究.华南师范大学学报(自然科学版),2001(3):40-44
    郭宝江,徐和德等.光固定化藻蓝蛋白对体外肝癌7402的抑制作用.离子交换与吸附,2000,16(6):547-552
    韩璐.六种重组别藻蓝蛋白的抗氧化活性研究[D].中国科学院海洋研究所,硕士学位论文, 2006
    何佳,赵启美等.螺旋藻藻蓝蛋白稳定性的研究.生物学杂志,1998,15(5): 17
    侯建设.我国螺旋藻食品的研制与开发现状.食品研究与开发,2000,21(4): 23-26
    胡鸿钧.蓝裸甲藻(新种)(Gymnodinium cyaneum Hu sp.nov.)藻胆素的发现及其意义.科学通报, 1980, 25 (14 ): 651-654
    李定梅.我国微藻产业的发展概况和前景(一).粮食与饲料工业,2001,(5): 26-27
    李冠武,王广策. R-藻红蛋白介导的光敏反应对DNA分子的生物学效应.生物化学与生物物理进展, 2000, 27: 621-624
    李冠武,王广策.多管藻R-藻红蛋白的激光光敏作用对体外培养的肿瘤细胞生存的影响. 激光生物学, 1997, 6: 1119-1121
    李岩,王兆熊.CT对鼻咽癌的诊断及在该病放疗中的作用.海南医学.1991, 2: 10-13
    林凡.一种新型重组别藻蓝蛋白及其活性的初步研究[D].中国科学院海洋研究所,硕士学位论文, 2004
    林红卫,伍正清等.钝顶螺旋藻蓝蛋白的提取新工艺.广西化工, 1997,26(4): 5-7
    林红卫,覃海错等.钝顶螺旋藻中藻蓝蛋白的提取纯化新工艺.精细化工,1998, 15(1): 18-20
    林红卫,梁宏.钝顶螺旋藻中藻胆蛋白体的分离纯化.广西化工,2002,31(1): 30-31
    刘其芳,王后乐等.盐泽螺旋藻藻胆蛋白的分离和特性研究.水生生物学报,1988,12(2): 146-153
    刘宇峰,程霓.螺旋藻藻蓝蛋白对人血癌细胞K562生长的影响.南京大学学报(自然科学版), 2000, 36: 640-642
    刘兆乾,丁健等.含藻蓝蛋白提取物的抗病毒组合物及藻蓝蛋白的提取[P]. CN1281727A, 1999
    卢永忠.钝顶节旋藻cpcB基因上游序列结构功能的研究[D].中国海洋大学, 2005
    彭为民,商树田等.螺旋藻藻胆蛋白研究进展.农业生物技术学报,1998,6(2): 173-177
    彭卫民,商树田等.钝顶螺旋藻藻胆蛋白性质的研究.中国农业大学学报,1999,4(增刊): 35-38
    沈海雁,王习霞等.螺旋藻藻蓝蛋白对人血癌细胞株HL-60、K-552和μ-937生长影响.海洋科学,2000,24(1): 45-48
    隋正红,张学成.龙须菜藻红蛋白亚基基因的克隆及其在大肠杆菌中的表达.高技术通讯, 2001, 11: 14-19
    汤国枝,张鹤云,金以丰,倪军,曾昭琪.一种具有刺激红细胞集落生成的螺旋藻(Spirulina platensis)蛋白.南京大学学报(自然科学版), 1994, 3: 377-380
    汤朝晖,蒋加伦.钝顶螺旋藻藻胆蛋白的提取及其特性初报.东海海洋,1993,(12):49-54
    唐玫,金鹰,郭宝江等.螺旋藻藻蓝蛋白对小鼠免疫功能的影响.暨南大学学报(自然科学与医学版), 1998, 19(5): 93-97
    唐书明,王希华.基因重组别藻蓝蛋白对小鼠S180肉瘤的抑制作用.药物生物技术, 1999, 6: 168-171
    唐书明. rAPC抗癌免疫药理学研究[D].中国药科大学,硕士学位论文, 2000
    唐志红,秦松,吴少杰等.镭普克的制备及对小鼠H22肝癌的抑制作用.高技术通讯, 2004, 3: 83-86
    王广策,邓田等.藻胆蛋白的研究概况(I)—藻胆蛋白的种类与组成.海洋科学, 2000a, 24(2): 22-25
    王广策,邓田等.藻胆蛋白的研究概况(II)—藻胆蛋白的结构及其光谱特性.海洋科学, 2000b, 24(3): 19-22
    王勇,钱凯先等.高纯度藻蓝蛋白分离纯化及光谱特性研究.生物化学与生物物理进展,1999,26(5): 457-460
    王仲孚,赵谋明,彭志英,田庚元.藻胆蛋白研究.生命的化学, 2000, 20: 72-75
    韦萍,李环等.极大螺旋藻藻蓝蛋白的提取与纯化.南京化工大学学报,1999,21(3): 62-64
    吴乃虎.基因工程原理(上册) (第二版) [M].科学出版社,北京, 1998: 43-44
    吴萍.藻胆蛋白与荧光免疫分析.生理科学进展, 2000, 31: 82-84 吴萍,顾铭,戚艺华,欧阳藩.藻胆蛋白荧光探针及其标记.生命科学研究, 2001, 5: 109-113
    殷钢,尹进等.阴离子交换和羟基磷灰石色谱从螺旋藻中提纯藻胆蛋白的研究.离子交换与吸附,2000,6(2): 128-133
    殷钢,刘铮等.钝顶螺旋藻中藻蓝蛋白的分离纯化及特性研究.清华大学学报(自然科学版),1999,39(6): 20-22
    俞丽君,李永明,陈艳丽,张尔贤.钝顶螺旋藻藻胆蛋白的纯化及其清除氧自由基的作用.台湾海峡, 1999, 2: 172-176
    于平,岑沛霖,励建荣,张燕萍,秦松.极大螺旋藻藻蓝蛋白基因在巴斯德毕赤酵母X-33中表达的研究.科技通报, 2004, 20: 22-27
    张爱琴,姜泉,谢小军等.不同光质对钝顶螺旋藻生长和放氢的影响.植物生理学通讯,1989,(4): 23-26
    张成武,殷志敏,欧阳平凯.藻胆蛋白的开发与应用.中国海洋药物, 1995, 55: 52-53
    张成武,曾昭琪等.钝顶螺旋藻藻胆蛋白的分离、纯化及其理化特性.天然产物研究与开发,1996a,8(2): 29-34
    张成武,曾昭琪,张媛贞,罗成基,郭朝华,施炎.藻蓝蛋白对小鼠粒单系祖细胞生成的影响.中国海洋药物, 1996b, 15: 25-28
    章军,宋新强等.利用同源重组质粒pUTK转化蓝藻Synechococcus sp.PCC7942及胸腺素A1的表达.海洋科学,2001,25(6):1-3
    张以芳,刘旭川等.螺旋藻藻蓝蛋白提取及稳定性试验.云南大学学报(自然科学版),1999,21(3):230-232
    赵方庆,唐志红,林凡,鲍莉,秦松,窦昌贵.表达rAPC大肠杆菌的高密度发酵及纯化产物的抑瘤活性.高技术通讯, 2003, 2: 29-32
    郑江.藻蓝蛋白的提取纯化研究进展.食品科学,2002,23(11):159-161
    周明,王鲁,郑雷,赵开弘.藻红蓝蛋白连接/异构酶重组体系.华中科技大学学报(自然科学版), 2002, 30: 114-116
    周占平,陈秀兰,陈超,张玉忠.藻胆蛋白脱辅基蛋白对其抗氧化活性的影响.海洋科学, 2003, 27(5): 77-80
    Berkelman T, Lagarias JC. Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Anal. Biochem., 1986, 156: 194-201
    Bermejo R, Fernandez E, Alvarez-Pez JM, Talavera EM. Labeling of cytosine residues with biliproteins for use as fluorescent DNA probes. J. Lumin., 2002, 99: 113-124
    Drets ME. BANDSCAN-a computer program for on-line linear scanning of human banded chromosomes. Comput. Programs. Biomed., 1978, 8: 283-289
    Glazer A N. Phycobilisomes. Methods Enzymol., 1988, 167: 291–303
    MacColl R. Cyanobacterial Phycobilisomes. J. Struct. Biol., 1998, 124: 311-334
    Maniatis T, Fritsch EF, Sambrook J. Molecular Cloning, 1982, A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
    Sambrook J, Russell DW. Molecular Cloning, 2001, A Laboratory Manual, the third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY Sidler WA. Phycobilisome and phycobiliprotein structures. 1994, In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, Netherlands Sun L, Wang SM, Chen LX, Gong XQ. Promising Fluorescent Probes From Phycobiliproteins. IEEE. J. Quantum. Elect., 2003, 9: 177-188
    Patel A, Mishra S, Pawar R, Ghosh PK. Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expres. Purif., 2005, 40: 248-255
    Tooley AJ, Cai YA, Glazer AN. Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-αsubunit in a heterologous host. PNAS., 2001, 98: 60-65
    Tooley A J, Glazer A N. Biosynthesis of the cyanobacterial light-harvesting polypeptide phycoerythrocyanin holo-alpha subunitin a heterologous host. J. Bacteriol., 2002, 184: 4666-4671
    Apt KE, Collier JL, Grossman AR. Evolution of the phycobiliproteins. J. Mol. Biol., 1995, 248: 79-96
    Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol., 2004, 22: 1399-1408
    Berkelman T, Lagarias JC. Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Anal. Biochem., 1986, 156: 194- 201
    Bermejo R, Talavera EM, Alarez-Pez JM, Orte JC. Chromatographic purification of biliproteins from Spirulina plarensis, highperformance liquid chromatographic separation of their and subunits. J. Chromatogr. A., 1997, 778: 441-450
    Bhat VB, Madyastha KM. C-Phycocyanin: A Potent Peroxyl Radical Scavenger in Vivo and in Vitro. Biochem. Biophys. Res. Commun., 2000, 275: 20-25
    Burnette W N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem., 1981, 112: 195-203
    Donovan RS, Robinson CW, Glick BR. Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J. Ind. Microbiol., 1996, 16: 145-154
    Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408: 239-247
    Ge, B.S., Tang, Z.H., Zhao, F.Q., et al. Scale-up of fermentation and purification of recombinant allophycocyanin over-expressed in Escherichia coli. Process Biochem., 2005, 40: 3190-3195
    Ge BS, Qin S, Han L, Lin F, Ren YH. Antioxidant properties of recombinant allophycocyanin expressed in Escherichia coli. J. Photochem. Photobio. B: Biology, 2006, 84: 175-180
    Georgiou G, Bahra SS, Mackie AR, Wolfe CA, O'Shea P, Ladha S, Fernandez N, Cherry RJ. Measurement of the lateral diffusion of human MHC class I molecules on HeLa cells by fluorescence recovery after photobleaching using a phycoerythrin probe. Biophys. J., 2002,82:1828-1834
    Guan XY, Qin S, Su ZhL , Zhao FQ, Ge BS, Li FC, Tang XX. Combinational Biosynthesis of a Fluorescent Cyanobacterial Holo-α-Phycocyanin in Escherichia coli by Using One Expression Vector. Appl. Biochem. Biotech., 2007, 142: 52-59
    Gupta R, Sharma P, Vyas VV. Effect of growth environment on the stability of a recombinant shuttle plasmid, pCPPS-31, in Escherichia coli. J. Biotech., 1995, 41: 29-37
    Huang Z, Guo BJ, Wong RNS, Jiang Y. Characterization and antioxidant activity of selenium-containing phycocyanin isolated from Spirulina platensis. Food Chem., 2007, 100: 1137-1143
    Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol., 23: 21-48.
    Klein JA, Ackerman SL. Oxidative stress, cell cycle, and neurodeneneration. J. Clin. Invest., 2003, 111:785-793
    Lissi EA, Pizarro M, Aspee A, Romay C. Kinetics of phycocyanine bilin groups destruction by peroxyl radicals. Free Radic Biol. Med., 2000, 28: 1051–1055
    MacColl R (1998) Cyanobacterial Phycobilisomes J Struct Biol 124: 311–334
    McCord J. Oxidative stress related disease—overview. In: Cutler R, Rodriguez H (eds) Critical Reviews of Oxidative Stress and Aging. World Scientific Publishing, Singapore. 2003, 487-502
    Minkova KM, Tchernov AA, Tchorbadjieva MI, Fournadjieva ST, Antova RE, Busheva MC (2003) Purification of C-phycocyanin from spirulina (Arthrospira) fusiformis source. J Biotechn, 102: 55–59
    Morcos NC. Phycocyanin laser activation cytotoxic effect and uptake in human atherosclerotic plaque. Lasers. Surg. Med., 1988, 8: 7-10
    Niu ZY, Pan L, Liu YJ, Zhang XJ, Suo XH. Effects of integrin beta1 on phycocyanin inhibiting proliferation of K562 cells. J. Experim. Hemat., 2006, 14: 658-661
    Pinero Estrada JE, Bermejo Bescos P, Villar del Fresno AM. Antioxidant activity of different fractions of Spirulina platensis protean extract. Farmaco., 2001, 56: 497-500
    Priet B, Bonizzi C, Merville MP, et al. NFKB Transcription Factor Activation: Important of the Redor Regulation. In: Montagnier L et al. (eds) Oxidative Stress in Cancer, AIDS andNeurodegenerative Diseases, Marcel Dekker Press, NY. 1998, 63-74
    Riss J, DécordéK, Sutra T, Delage M, Baccou JC, Jouy N, Brune JP, Oréal H, Cristol JP, Rouanet JM. Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J. Agric. Food Chem., 2007, 55: 7962-7967
    Robert M, Leslie EAM. Allophycocyanin: trimers, monomers, subunits, and homodimers. Biopolymers, 2003, 72: 352-365
    Romay Ch, Gonzalez R, Ledon N, Remirez D, Rimbau V. C-phycocyanin: a biliprotein with antioxidant, antiinflammatory and neuroprotective effects. Curr. Protein Pept. Sci., 2003, 4: 207-216
    Roy KR, Arunasree KM, Dhoot A, Aparna R, Reddy GV, Vali S, Reddanna P. C-Phycocyanin inhibits 2-acetylaminofluorene-induced expression of MDR1 in mouse macrophage cells: ROS mediated pathway determined via combination of experimental and In silico analysis. Arch. Biochem. Biophys., 2007, 459:169-77
    Serena B, Francesca B, Silvia P, Sonia F, Stefano S, Franco C. Antioxidant properties of a novel phycocyanin extracts from the bluegreen alga Aphanizomenon flos-aquae. Life Sci., 2004, 75: 2353-2362
    Shen G, Saunée NA, Williams SR, Gallo EF, Schluchter WM, Bryant DA. Identification and Characterization of a New Class of Bilin Lyase Responsible for Attachment of Phycocyanobilin to Cys-153 on the b-subunit of Phycocyanin in Synechococcus sp. PCC 7002. J. Biol. Chem., 2006, 27: 17768-17778
    Subhashini J, Mahipal SV, Reddy MC, Mallikarjuna Reddy M, Rachamallu A, Reddanna P. Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem. Pharmacol., 2004, 68: 453-462
    Sulkowski E. Purification of proteins by IMAC. Trends Biotechnol., 1985, 3: 1-7 Sun L, Wang SM, Chen LX, Gong XQ. Promising Fluorescent Probes from Phycobiliproteins. IEEE. J. Quantum. Elect., 2003, 9: 177-188.
    Sun L, Wang SM, Qiao ZY.Chemical stabilization of the phycocyanin from cyanobacterium Spirulina platensis. J. Biotech., 2006, 121: 563–569
    Tooley AJ, Cai YA, Glazer AN. Biosynthesis of a fluorescent cyanobacterial C-phycocyaninholo-αsubunit in a heterologous host. Proc. Natl. Acad. Sci. USA, 2001, 98: 60-65
    Zhao KH, Su P, Li J, Tu JM, Zhou M, Bubenzer C, Scheer H. Chromophore attachment to phycobiliprotein beta-subunits: phycocyanobilin:cysteine-beta84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena sp. PCC7120. J. Biol. Chem., 2006, 281: 8573–8581
    Wang H, Liu Y, Gao X, Carter CL, Liu ZR. The recombinant beta subunit of C-phycocyanin inhibits cell proliferation and induces apoptosis. Cancer Lett., 2007, 247: 150-158
    Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. 2006, J. Carcinog., 5:14
    Weickert MJ, Pagratis M, Curry SR, Blackmore R. Stabilization of apoglobin by low temperature increases yield of soluble recombinant hemoglobin in Escherichia coli. Appl. Environ. Microbiol., 1997, 63: 4313-4320
    Winyard PG, Moody CJ, Jacob C. Oxidative activation of antioxidant defence. Trends Biochem. Sci., 2005, 30: 453-461
    陈浩,陈于红,朱德煦,刘建宁.重组蛋白质纯化技术.中国生物工程杂志, 2002, 22: 87-92
    葛保胜.抗肿瘤新药重组别藻蓝蛋白(雷普克)的药学研究及抗肿瘤机理探索[D].中国科学院海洋研究所,博士学位论文, 2005
    方敏,黄华梁.包涵体蛋白体外复性的研究进展.生物工程学报, 2001, 17: 608-612
    林凡.一种新型重组别藻蓝蛋白及其活性的初步研究[D].中国科学院海洋研究所,硕士学位论文, 2004
    孙旭东,李红旗,隋洪艳,沈忠耀.金属螯合亲和层析分离蛋白质的研究.生物工程学报, 2000, 16: 495-499
    唐志红.雷普克关键工艺的建立及抗肿瘤活性的研究[D].中国科学院海洋研究所,博士学位论文, 2004
    杨雨.光学活性重组别藻蓝蛋白的初步研究[D].中国科学院海洋研究所,硕士学位论文, 2007
    叶姣,陈长华,杨雅琴,付水林,蔡宝菊.乳糖诱导重组人SOD基因在大肠杆菌中的表达.中国医药工业杂志, 2001, 32: 536-539
    张毅,屈贤铭,杨胜利.乳糖作为诱导剂对重组目的蛋白表达的影响.生物工程学报, 2000, 16: 464-468
    张惟材,朱厚础.重组大肠杆菌的发酵与代谢工程.微生物学通报, 1999, 26: 289-293
    赵方庆,唐志红,林凡,鲍莉,秦松,窦昌贵.表达rAPC大肠杆菌的高密度发酵及纯化产物的抑瘤活性.高技术通讯, 2003, 2: 29-32
    Bermejo R, Fernandez E, Alvarez-Pez JM et al. Labeling of cytosine residues with biliproteins for use as fluorescent DNA probes. J. Lumin., 2002, 99: 113-124
    Estrada JE, Bescós P, Villar Del Fresno AM. Antioxidant activity of different fractions of Spirulina platensis protean extract. Farmaco., 2001, 56: 497-500
    Ge BS, Qin S, Han L et al. Antioxidant properties of recombinant allophycocyanin expressed in Escherichia coli. J. Photochem. Photobio. B: Biology, 2006, 84: 175-180
    Guan XY, Qin S, Su ZhL et al. Combinational Biosynthesis of a Fluorescent Cyanobacterial Holo-α-Phycocyanin in Escherichia coli by Using One Expression Vector. Appl. Biochem. Biotechnol., 2007, 142: 52-59
    Hu IC, Lee TR, Lin HF, Chiueh CC, Lyu PC. Biosynthesis of fluorescent allophycocyanin α-subunits by autocatalytic bilin attachment. Biochemistry, 2006, 45: 7092-7099
    Kami C, Mukougawa K, Muramoto T et al. Complementation of phytochrome chromophore-deficient Arabidopsis by expression of phycocyanobilin: ferredoxin oxidoreductase. Proc. Natl Acad. Sci. USA., 2004, 101: 1099-1104
    MacColl, R. Cyanobacterial Phycobilisomes. J. Struct. Biol., 1998, 124, 311-334
    Migita CT, Zhang X, Yoshida T. Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme. Eur. J. Biochem., 2003, 270: 687-98
    Mukougawa K, Kanamoto H, Kobayashi T et al. Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli. FEBS Lett., 2006, 580: 1333-1338
    Riss J, DécordéK, Sutra T et al. Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J. Agric. Food. Chem., 2007, 55: 7962-7967
    Romay C, Armesto J, Remirez D et al. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm. Res., 1998, 47: 36-41
    Storf M, Parbel A, Meyer M, Strohmann B, Scheer H, Deng M, Zheng M, Zhou M and Zhao K. Chromophore attachment to biliproteins: specificity of PecE/PecF, a lyase-isomerase for the photoactive 31-Cys-α84-phycoviolobilin chromophore of phycoerythrocyanin. Biochemistry, 2001, 40: 12444-12456
    Swanson RV, Zhou J, Leary JA et al. Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment. J. Biol. Chem., 1992, 267: 16146-16154
    Shen G, Saunée NA, Williams SR, Gallo EF, Schluchter WM, Bryant DA. Identification and Characterization of a New Class of Bilin Lyase Responsible for Attachment of Phycocyanobilin to Cys-153 on the b-subunit of Phycocyanin in Synechococcus sp. PCC 7002. J. Biol. Chem., 2006, 27: 17768-17778
    Sidler W.A. Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The molecular biology of cyanobacteria [M]. 1994, Kluwer Academic Publishers, Dordrecht, Netherlands Song, b, Ping ZJ, Zhou M, Zhao KH. Site-directed Mutation of theβ-Subunit of Phycocyanin and Phycoerythrocyanin and the Study of Reconstitution in Vitro. Acta. Hydrobio. Sinica., 2004, 28, 344-348
    Tu SL, Gunn A, Toney MD et al. Biliverdin Reduction by Cyanobacterial Phycocyanobilin: Ferredoxin Oxidoreductase (PcyA) Proceeds via Linear Tetrapyrrole Radical Intermediates. J. Am. Chem. Soc., 2004, 126: 8682-8693
    Yang Y, Ge BS, Guan XY, Zhang WJ, Qin S. Combinational biosynthesis of a fluorescent cyanobacterial holo-α-allophycocyanin in Escherichia coli. Biotechnol. Letts., 2008
    Zhao K H,Zhu J P,Song B,et a1. Nonenzymatic Chromophore Attachment in Biliproteins: Conformational Control by the Detergent Triton X 100. Biochim. Biophys. Acta., 2004, 1657: 131-145
    Zhao KH, Su P, Li J, Tu JM, Zhou M, Bubenzer C, Scheer H. Chromophore attachment to phycobiliprotein beta-subunits: phycocyanobilin:cysteine-beta84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena Sp. PCC7120. J. Biol. Chem., 2006a, 281: 8573-8581
    Zhao KH, Wu D, Zhang L et al. Chromophore attachment in phycocyanin: Functional amino acids of phycocyanobilin–α-phycocyanin lyase and evidence for chromophore binding.FEBS. J., 2006b, 273: 1262-1274
    Adir N, Vainer R, Lerner N. Refined structure of c-phycocyanin from the cyanobacterium Synechococcus vulcanus at 1.6 ?: insights into the role of solvent molecules in thermal stability and co-factor structure. Biochim. Biophys. Acta., 2002, 1556: 168-174
    Adir N, Lerner N. The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in phycobilisomes. J. Biol. Chem., 2003, 278: 25926-25932
    Ajlani G, Vernotte C. Deletion of the PB-loop in the L (CM) subunit does not affect phycobilisome assembly or energy transfer functions in the cyanobacterium Synechocystis sp. PCC 6714. Eur. J. Biochem., 1998, 257: 154-159
    Anderson LK, Toole CM. A model for early events in the assembly pathway of cyanobacterial phycobilisomes. Mol. Microbiol., 1998, 30: 467-474
    Apt KE, Hoffman NE, Grossman AR. The gamma subunit of Rphycoerythrin and its possible mode of transport into the plastid of red algae. J. Biol. Chem., 1993, 268: 16208-16215
    Apt KE, Collier JL, Grossman AR. Evolution of the phycobiliproteins. J. Mol. Bol., 1995, 248: 79-96
    Apt KE, Metzner S, Grossman AR. The g subunits of phycoerythrin from a red alga: position in phycobilisomes and sequence characterization. J. Phycol., 2001, 3764-70
    Badger JH, Olsen GJ. CRITICA: Coding region identification tool invoking comparative analysis. Mol. Biol. Evol., 1999, 16: 512-524
    Bermejo R, Talavera EM, Alvarez-Pez JM. Chromatographic purification and characterization of B-phycoerythrinfrom Porphyridium cruentum. Semipreparative high-performance liquid chromatographic separation and characterization of its subunits, J. Chromatogr., 2001, 917: 135-145
    Bernard C, Etienne A, and Thomas JC. Synthesis and binding of phycoerythrin and its associated linkers to the phycobilisomes in Rhodella violacea (Rhodophyta): compared effects of high light and translation inhibitors. J. Phycol., 1996, 32: 265-271
    Betz M, Ruegsegger U, Esteban AM, Sidler WA, Zuber H. Reconstitution of the core complex (aβ)3 APC Lc 8.9 of the phycobilisome from Mastigocladus laminosus using the Lc 8.9 linker polypeptide overexpressed in Escherichia coli. Biol. Chem. Hoppe-Seyler, 1993, 374: 435-443
    Betz M. One century of protein crystallography: the phycobiliproteins. Biol. Chem., 1997, 378: 167-176
    Bickel PJ, Kechris KJ, Spector PC, Wedemayer G.J, Glazer AN. Finding important sites in protein sequences. Proc. Natl. Acad. Sci. USA, 2002, 99:14764-14771
    Bryant DA, Stirewalt VL, Glauser M, Frank G, Sidler W, Zuber H. A small multigene family encodes the rod-core linker polypeptides of Anabaena sp. PCC 7120 phycobilisomes. Gene, 1991, 107: 91-99
    Bullerjahn GS, Jensen TC, Sherman DM. Immunological characterization of the Prochlorothrix hollandica and prochloron sp. Chlorophyll a/b antenna proteins. FEMS Microbiol. Lett., 1990, 67: 99-106
    Burja AM, Abou-Mansour E, Banaigs B, Payri C, Burgess JG, Wright PC. Culture of the marine cyanobacterium, Lyngbya majuscula (Oscillatoriaceae), for bioprocess intensified production of cyclic and linear lipopeptides. J Microbiol Methods, 2002, 48 (2-3): 207-219
    Bustos SA, Schaefer MR, Golden SS. Different rapid response of four cyanobacterial psbA transcripts to changes in light intensity. J. Bacteriol., 1990, 172(4): 1998-2004
    Capuano V, Braux AS, Tandeau de Marsac N, Houmard J. The‘‘anchor polypeptide’’of cyanobacterial phycobilisomes. Molecular characterization of the Synechococcus sp. PCC 6301 apcE gene. J. Biol. Chem., 1991, 266: 7239-7247
    Carroll JM. (Ed.) Scenario-based design: Envisioning work and technology in system development. New York, NY, 1995
    Chisholm SW, Olson RJ, Zettler ER, Waterbury J, Goericke R, Welschmeyer N. A novel free-living prochlorophyte occurs at high cell concentrations in the oceanic euphotic zone. Nature (London), 1988, 334: 340-343
    Cobley JG, Clark AC, Weerasurya S, et al. CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR). Mol. Microbiol., 2002, 44:1517-1531
    Cornejo J, Willows RD, Beale SI. Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxindependent heme oxygenase from Synechocystis sp. PCC 6803. Plant J., 1998, 15: 99-107
    Casamatta DA, Vis ML, Sheath RG. Cryptic species in cyanobacterial systematics: a case study of Phormidium retzii (Oscillatoriales) using RAPD molecular markers and 16S rDNA sequence data. Aqua. Bot., 2003, 77: 295-309
    de Lorimier R, Bryant D A, Porter R D, et al.. Genes for the alpha and beta subunits of phycocyanin. Proc. Natl. Acad. Sci. USA, 1984, 81(24): 7946-7950
    de Lorimier R, Bryant DA, Stevens Jr SE. Genetic analysis of a 9 kDa phycocyanin-associated linker polypeptide. Biochim. Biophys. Acta., 1990, 1019: 29-41
    Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved mircrobiol gene identification with GLIMMER. Nucleic Acids Res., 1999, 27: 4636-4641
    Dickerson RE. The structure of cytochrome c and the rates of molecular evolution. J. Mol. Evol., 1971, 1: 26-45
    Doust AB, Marai CNJ, Harrop SJ, Wilk KE, Curmi PMG, Scholes GD. Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy. J. Mol. Biol., 2004, 344: 135-153
    Dufresne A, Salanoubat M, Partensky F, et al. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc. Natl. Acad. Sci. USA., 2003, 100(17): 10020-10025
    Ernst A, Becker S, Wollenzien UIA, Postius C. Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiol., 2003, 149 (Pt 1): 217-228
    Ficner R, Lobeck K, Schmidt G, Huber R. Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 A°resolution. J. Mol. Biol., 1992, 228: 935-950
    Ficner R, Huber R. Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the gamma subunit. Eur. J. Biochem., 1993, 218:103-106
    Fillat MF, Flores E, Gomez-Moreno C. Homology of the N-terminal domain of the petH gene product from Anabaena sp. PCC 7119 to the CpcD phycobilisome linker polypeptide. Plant Mol Biol., 1993, 22: 725-729
    Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA and Merrick JM. Whole genome random sequencing and assembly of Haemophilus influenzae Rd. Science., 1995, 269: 496-512
    Foder SPA, Read J. Light-directed, spatially addressable parallel chemical synthesis. Science, 1991, 251: 767-773
    Fuglistaller P, Rumbeli R, Suter F, Zuber H. Minor polypeptides from the phycobilisomes of the cyanobacterium, Mastigocladus laminosus. Isolation, characterization and amino acid sequences of a colorless 8.9 kD polypeptide and of a 16.2 kD phycobiliprotein. Hoppe-Seyler Z. Physiol. Chem., 1984, 365: 1085-1096
    Füglistaller P, Suter F, Zuber H. Linker polypeptides of the phycobilisome from the cyanobacterium Mastigocladus laminosus: I. Isolation and characterization of phycobiliprotein-linker-polypeptide complexes. Biol. Chem. Hoppe-Seyler, 1986, 367: 601-614
    Gantt E. Structure and function of phycobilisomes: light harvesting pigment complexes in red and blue-green algae. Int. Rev. Cytol., 1980, 66: 45-48
    Gantt E, Lipschultz C A. Phycobilisomes of Porphyridium cruentum: Pigment analysis. Biochemistry, 1974, 13: 2960-2966
    Gantt E, Edwards MR, Provasoli L. Chloroplast structure of the Cryptophyceae. Evidence for phycobiliproteins within intrathylakoidal spaces. Michrosc. Res. Tech., 1971, 38: 280-290
    Garnier F, Dubacq JP, Thomas JC. Evidence for a transient association of new proteins with the Spirulina maxima phycobilisome in relation to light intensity. Plant Physiol., 1994, 106: 747-754
    Gehring WJ. The master control gene for morphogenesis and evolution of the eye. Genes and Cells, 1996, 1:11-5
    Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR. Evolutionary relationships among Cyanobacteria and green chloroplasts. J. Bacteriol., 1988, 170: 3584-3592
    Glauser M, Stirewalt VL, Bryant DA, Sidler W, Zuber H. Structure of the genes encoding therod–core linker polypeptides of Mastigocladus laminosus phycobilisomes and functional aspects of the phycobiliprotein/linker-polypeptide interactions. Eur. J. Biochem., 1992, 205: 927-937
    Glauser M, Sidler W, Zuber H. Isolation characterization and reconstitution of phycobiliprotein rod-core linker polypeptide complex from the phycobilisome of Mastigocladus laminosus. Photochem. Photobiol., 1993, 57: 344-351
    Glazer AN, Apell GS. A common evolutionary origin for the biliproteins of cyanobacteria rhodophyta and cryptophyta. FEMS Lett., 1977, 1: 113-116
    Glazer AN. The biochemistry of plants. Photosynthesis, 1981, 8: 51-96
    Glazer AN. Light harvesting by phycobilisomes. Annu. Rev. Biophys. Biophys. Chem., 1985, 14: 47-77
    Glazer AN. Phycobilisomes. Meth. Enzymol., 1988, 167: 304-312
    Glauser M, Stirewalt VI, Bryant DA, Sidler W, Zuber H. Structures of the genes encoding the rod-core linker polypeptides of Mastigocladus laminosus phycobilisomes and functional aspects of the phycobiliprotein/ linker-polypeptide interactions. Eur. J. Biochem., 1992a, 205: 927-973
    Glauser M, Sidler WA, Graham KW, Bryant DA, Frank G, Wehrli E, Zuber H. Three C-phycoerythrin-associated linker polypeptides in the phycobilisome of green-light-grown Calothrix sp. PCC 7601 (cyanobacteria). FEBS Lett., 1992, 297: 19-23
    Gomez-Lojero C, Pe′rez-Go′mez B, Krogmann DW, A. Pen?a-Diaz. The tricylindrical core of the phycobilisome of the cyanobacterium Arthrospira (Spirulina) maxima. Int. J. Biochem. Cell Biol., 1997, 29: 959-970
    Gomez-Lojero C, Perez-Gomez B, Shen G, et al. Interaction of ferredoxin:NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp.strain PCC 7002. Biochemistry, 2003, 42(47): 13800-13811
    Gottschalk L, Lottspeich F, Scheer H. Reconstitution of an allophycocyanin trimer complex containing the C-terminal 21-23 kDa domain of the core-membrane linker polypeptide Lcm. Z. Naturforsch., C., 1994, 49: 331-336
    Guan XY, Qin S, Zhao FQ, Zhang XW, Tang XX. Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution. Int. J. Biol. Sci., 2007, 3: 434-445
    Haldane JBS. The cost of natural selection. J. Genet., 1957, 55: 511-524
    Harder T, Simons K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr. Opin. Cell Biol., 1997, 9:534-542
    Hess WR, Partensky F, Van der Staay GWM, Garcia-Fernandez JM, B?rner T, Vaulot D. Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc. Nat. Acad. Sci. USA, 1996, 93: 11126-11130
    Houmard J, Mazel D, Moguet C, Moguet C, Bryant D A, Tandeau de Marsac N. Organization and nucleotide sequence of genes encoding core components of the phycobilisomes from Synechococcus 6301. Mol. Gen. Genet., 1986, 205: 404-410
    Houmard J, Capuano V, Colombano MV, Coursin T, Tandeau M. Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes, Proc. Natl. Acad. Sci. USA, 1990, 87: 2152-2156
    Huber R. A structural basis of light energy electron transfer in biology. EMBO J., 1989, 8: 2125-2147
    Ishida T, Watanabe MM, Sugiyama J, Yokota A. Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol. Lett., 2001, 201: 79-82
    Janson S, Graneli E. Phylogenetic analyses of nitrogen-fixing cyanobacteria from the Baltic Sea reveal sequence anomalies in the phycocyanin operon. Int. J. Syst. Evol. Microbiol., 2002, 52 (4): 1397-1404
    Jiang T, Zhang JP, Chang WR, Liang DC. Crystal structure of Rphycocyanin and possible energy transfer pathways in the phycobilisome. Biophys. J., 2001, 81: 1171-1179
    Kapp OH, Moens L, Vanfleteren J, et al. Alignment of 700 globin sequences: extent of amino acid substitution and its correlation with variation in volume. Protein science, 1995, 4(10): 2179-2190
    Kikuchi H, Wako H, Yura K, Go M, Mimuro M. Significance of a two-domain structure in subunits of phycobiliproteins revealed by the normal mode analysis. Biophys. J., 2000, 79: 1587-1600
    Kimura M. Evolutionary rate at the molecular level. Nature, 1968, 217: 624-626
    Kimura M. Preponderance of synonymous changes as evidence for the neutral theory of molecularevolution. Nature 1977, 267: 275-276
    King JL, Jukes TH. Non-Darwinian evolution. Science, 1969, 164:788-798
    Li RH, Watanabe. DNA base composition of planktonic species of Anabaena (Cyanobacteria) and its taxonomic value. J. Gen. Appl. Microbiol., 2002, 48(2): 77-82
    Lind P. Immunological partial identity between insect and mite allergens. Allergy, 1985, 40, Suppl: 361-363
    Liu JY, Jiang T, Zhang JP, Liang DC. Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-A°resolution. J. Biol. Chem., 1999, 274: 16945-16952
    Liu LN, Chen XL, Zhang XY, Zhang YZ, Zhou BC. One-step chromatography method for efficient separation and purification of Rphycoerythrin from Polysiphonia urceolata, J. Biotechnol., 2005, 116: 91-100
    Liu L N, Chen X L, Zhang Y Z, Zhou B C. Characterization, structure and function of linker ploypeptides in phycobilisomes of cyanobacteria and red algae: An overview, Biochimica et Biophysica Acta., 2005, 1708(2): 133-142
    Lokstein H, Steglich C, WR Hess. Light-harvesting antenna function of phycoerythrin in Prochlorococcus marinus. Biochimica et Biophysica Acta., 1999, 1410: 97-98
    Lundell DJ, Glazer AN. Linker polypeptides of cyanobacterial phycobilisomes, Fed. Proc., 1980, 39: 1676
    Lundell DJ, Williams RC, Glazer AN. Molecular architecture of a light-harvesting antenna. In vitro assembly of the rod substructures of Synechococcus 6301 phycobilisomes, J. Biol. Chem., 1981, 256: 3580-3592
    MacColl R. Cyanobacterial phycobilisomes. J. Struct. Biol., 1998, 124: 311-334
    MacColl R. Allophycocyanin and energy transfer. Biochim. Biophys. Acta., 2004, 1657: 73-81
    Martinez-Oyanedel J, Contreras-Martel C, Bruna C, Bunster M. Structural-functional analysis of the oligomeric protein R-phycoerythrin. Biol. Res., 2004, 37(4 Suppl A): 733-745
    Maxson P, Sauer K, Zhou J, Bryant DA, Glazer AN. Spectroscopic studies of cyanobacterial phycobilsomes lacking core polypeptides. Biochim. Biophys. Acta., 1989, 977: 40-51
    Mazel D, Houmard J, Castets AM. Highly repetitive DNA sequence in cyanobacterial genomes. J. Baceriol., 1991, 172: 2755-2761Marsac NT. Phycobiliproteins and phycobilisomes: the early observations. Photosynth. Res., 2003, 76: 197-205
    Musacchio A, Caputo P, Bonelli E. Isoenzymatic analysis of some freshwater Anabaena strains from Southern Italy. Biochem. Syst. Ecol., 1992, 20: 753-759
    Nei M. Selectionism and neutralism in molecular evolution. Mol. Biol. Evol., 2005, 22: 2318-2342
    Neilan BA, Jacobs D, Goodman AE. Genetic diversity and phylogeny of toxic Cyanobacteia deterimined by DNA polymorphisms within the phycocyanin locus. Appl. Environ. Microbiol., 1995, 61: 3875-3883
    Nubel U, Garcla-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from Cyanobacteria. Appl. Environ. Microbiol., 1997, 63:3327-3332
    Ong LJ, Glazer AN. R-Phycocyanin II, a new phycocyanin occurring in marine Synechococcus species. Identification of the terminal energy acceptor bilin in phycocyanins. J. Biol. Chem., 1987, 262: 6323-6327
    Ong LJ, Glazer AN. Phycoerythrin of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins. J. Biol. Chem., 1991, 266: 9515-9527
    Padyana AK, Bhat VB, Madyastha KM, Rajashankar KR, Ramakumar S. Crystal structure of a light-harvesting protein Cphycocyanin from Spirulina platensis. Biochem. Biophys. Res. Commun., 2001, 282: 893-898
    Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA and Waterbury J. The genome of a motile marine Synechococcus. Nature, 2003, 424(28): 1037-1042
    Pan ZZ, Zhou BC, Tseng CK. Comparative studies on spectral properties of R-phycoerythrin from the red seaweeds from Qingdao, Chin. J. Oceanol. Limnol., 1986, 4: 353-359
    Parbel A, Scheer H. Model for the phycobilisome rod with interlocking disks based on domain-weighted linker-polypeptide sequence homologies of Mastigocladus laminosus. Int. J. Photoenergy, 2000, 2: 31-40
    Pastore A, Lesk AM. Comparison of the structures of globins and phycocyanins: evidence for evolutionary relationship. Proteins, 1990, 8: 133-155
    Pizarro SA, Sauer K. Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides. Photochem. Photobiol., 2001, 73: 556-563
    Qin S, Kawata Y, Yano S, Tseng C K, Kojima H. Cloning and sequencing of the Allophycocyanin genes from Spirulina maxima (Cyanophyta). Chin. J. Oceanol. Limnol., 1998, 16 (Suppl): 6-11
    Qin S, Zhao FQ, Tseng CK. Evidence for positive selection in phycoerythrin genes of red algae and cyanobacteria Prochlorococcus and Synechococcus. Photosynth., 2005, 43: 141-146
    Redlinger T, Gantt E. A Mr 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc. Natl. Acad. Sci. USA, 1982, 79: 5542-5546
    Reuter W, Wiegand G, Huber R, Than ME. Structural analysis at 2.2 A°of orthorhombic crystals presents the asymmetry of the allophycocyanin–linker complex, APILC 7.8, from phycobilisomes of Mastigocladus laminosus. Proc. Natl. Acad. Sci. USA., 1999, 96: 1363-1368
    Richaud C, Zabulon G. The heme oxygenase gene (pbsA) in the red alga Rhodella violacea is discontinuous and transcriptionally activated during iron limitation. Proc. Natl. Acad. Sci. USA., 1997, 94: 11736-11741
    Ritter S, Hiller RG, Wrench PM, Welte W, Diederichs K. Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-A°resolution. J. Struct. Biol., 1999, 126: 86-97
    Robertson BR, Tezuka NR, Watanabe MM. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16s rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol., 2001, 51: 861-871
    Ruskowski M, Zilinskas BA. Allophycocyanin I and the 95 kilodalton polypeptide. The bridge between phycobilisomes and membranes. Plant Physiol., 1982, 70: 1055-1059
    Schaefer MR, Golden SS. Differential expression of members of a cyanobaterial psbA gene family in response to light. J. Bact., 1989, 171: 3973-3981
    Schena M, et al. Microarrays: biotechnology’s discovery platform for functional genomcis. Trends Biotechnol., 1998, 16: 301-306
    Schenk HEA, Kuhfittig G. Elektromorphe Phycochromoproteid-Muster:Eine Taxonomische Identifikationsmethode fur Cyanobakterien-Species. Biochem System. Ecol., 1983, 11:163-174
    Schirmer TD, Bode W, Huber R, Sidler W, Zuber H. X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J. Mol. Biol., 1985, 184: 257-277
    Schirmer T, Huber R, Schneider M, et al. Crystal structure analysis and refinement at 2.5 ? of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum The molecular model and its implications for light-harvesting. J. Mol. Biol., 1986, 188(4): 651-676
    Schneider S, Prenzel CJ, Brehm G., Gottschalk L, Zhao KH, Scheer H. Resonance-enhanced CARS spectroscopy of biliproteins: influence of aggregation and linker proteins on chromophore structure in allophycocyanin (Mastigocladus laminosus). Photochem. Photobiol., 1995, 62: 847– 854.
    Sidler WA. Phycobilisome and phycobiliprotein structures, in: D.A. Bryant (Ed.), Molecular Biology of the Cyanobacteria, Kluwer Academic Publishing, Dordrecht, The Netherlands, 1994, 139-216
    Stadnichuk IN, Khokhlachev AV, Tikhonova YV. Polypeptide gsubunits of R-phycoerythrin. J. Photochem. Photobiol., B Biol., 1993, 18: 169-175
    Steglich, C, Psot AF, Hess WR. Analysis of natural populations of Prochlorococcus spp. in the northern Red Sea using phycoerythrin gene sequence. Environ. Microbiol., 2003a, 5: 681-690
    Steglich C, Mullineaux CW, Teuchner K, Hess WR, Lokstein H. Photophysical properties of Prochlorococcus marinus SS120 divinyl chlorophylls and phycoerythrin in vitro and in vivo. FEBS. Lett., 2003b, 553: 79-84
    Steiner JM, Pompe JA, L?ffelhardt W.,Characterization of apcC, the nuclear gene for the phycobilisome core linker polypeptide L(c)(7.8) from the glaucocystophyte alga Cyanophora paradoxa. Import of the precursor into isolated cyanelles and integration of the mature protein into intact phycobilisomes. Curr. Genet., 2003, 44: 132-137
    Swanson RV, Glazer AN. Separation of phycobiliprotein subunits by reverse-phase high-pressure liquid chromatography. Anal. Biochem., 1990, 188: 295-299
    Tandeau MN, Cohen-Bazire G. Molecular composition of cyanobacterial phycobilisomes. Proc. Natl. Acad. Sci. USA, 1977, 74: 1635-1639
    Tandeau de Marsac N, Mazel D, Damerval T, Guglielmi G, Capoono V and Houmard J. Photoregulation of gene expression in the cyanobacterium Calothrix sp. PCC7601: light-harvesting complexes and cell differentiation. Photosynth. Res., 1988, 18: 99-132
    Ting CS, Rocap G, King J, Chisholm SW. Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: evidence for rapid evolution of genetic heterogeneity. Microbiol., 2001, 147: 3171-3182
    Ting CS, Rocap G, King J, Chisholm SW. Cyanobacterial Photosynthesis in the Oceans: Origins and Significance of Divergent Light-Harvesting Strategies. Trends in Microbiology, 2002, 10:134-142
    Van Thor JJ, Gruters OW, Matthijs HC, Hellingwerf KJ. Localization and function of ferredoxin: NADP (+) reductase bound to the phycobilisomes of Synechocystis. EMBO J., 1999, 18: 4128-4136
    Venter JC, Smith HO, Hood L. A new strategy for genome sequencing. Nature, 1996, 381: 364-366
    Wang S, Zhong FD, Wu ZJ, Lin QY, Xie LH. Analysis on subunit composition of a new phycoerythrin. J. Fujian Agric. For. Univ., 2004, 33: 69-71
    Wendler J, John W, Scheer H, Holzwarth AR. Energy transfer in trimeric C-phycocyanin studied by picosecond fluorescence kinetics. Photochem. Photobiol., 1986, 44: 79-85
    Wilbanks SM, Glazer AN. Rod structure of a phycoerythrin II-containing phycobilisome. I. Organization and sequence of the gene cluster encoding the major phycobiliprotein rod components in the genome of marine Synechococcus sp. WH8020. J. Biol. Chem., 1993a, 268: 1226-1235
    Wilbanks SM, Glazer AN. Rod structure of a phycoerythrin II-containing phycobilisome: II. Complete sequence and bilin attachment site of a phycoerythrin gamma subunit. J. Biol. Chem., 1993b, 268: 1236-1241
    Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G., Sharples F, Hiller RG, Curmi PMG.. Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63-A°resolution. Proc. Natl. Acad. Sci. US A., 1999, 96:8901-8906
    Willows RD, Mayer SM, Foulk MS, DeLong A, Hanson K, Chory J and Beale SI Phytobilinbiosynthesis: The Synechocystis sp. PCC 6803 heme oxygenase-encoding ho1 gene complements a phytochrome-deficient Arabidopsis thaliana hy1 mutant. Plant Mol. Biol., 2000, 113-120
    Wilmott A, Turner S, Van de Peer Y, Pacce NR. Taxonomic study of marine oscillatoriacean strains (cyanobacteria) with narrow trichomes II Nucleotide sequence analysis of the 16S rRNA ribosomal RNA. J. Phycol., 1992, 28: 828-838
    Wong WSW, Yang ZH, Goldman N, Nielsen R. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics, 2004, 168:1041-1051
    Yang Z, Nielsen R, Goldman N, Pedersen AM. Codon substitution models for heterogeneous selection pressure at amino acid sites. Genet., 2000, 15:1600-1611
    Yu MH, Glazer AN, Williams RC. Cyanobacterial phycobilisomes. Phycocyanin assembly in the rod substructures of Anabaena variabilis phycobilisomes. J. Biol. Chem., 1981, 256: 13130-13136
    Yu MH, Glazer AN. Cyanobacterial phycobilisomes. Role of the linker polypeptides in the assembly of phycocyanin. J. Biol. Chem., 1982, 257: 3429-3433
    Zhang YZ, Shi DX, Zhou BC, Zeng CK, Pang SJ. Study on the structure of C-phycocyanin in Spirulina platensis with scanning tunneling microscope. Acta Biochim. Biophys. Sin., 1997, 29: 521-525
    Zhao KH, Su P, B?hm S, Song B, Zhou M, Bubenzer C, Scheer H. Reconstitution of phycobilisome core-membrane linker, LCM, by autocatalytic chromophore binding to ApcE. Biochim. Biophys. Acta., 2005,1706: 81-87
    Zhao F, Qin S. Evolutionary analysis of phycobiliproteins: Implications for their structural and functional relationships. J Mol Evol., 2006, 63:330-340
    Zhao F, Qin S. Comparative molecular population genetics of phycoerythrin locus in Prochlorococcus. Genetica. 2007, 129(3):291-299
    Zilinskas BR, Greenwald LS. Phycobilisome structure and function. Photosynthesis Res., 1986, 10: 7-35
    Zilinskas BA, Howell DA. Comparative immunology conserved of the phycobilisome linker polypeptides, in: J. Biggins (Ed.), Progress in Photosynthesis Research, vol. II,Martinus-Nijhoff, Dordrecht, The Netherlands, 1987, 161-164
    Zilinskas BA, Howell DA. Immunological conservation of phycobilisome rod linker polypeptide DNA fragment from natural populations of Trichodesmium sp. Appl. Environment Microbiol., 1987, 56: 3527-3531
    Zolla L, Bianchetti M. High-performance liquid chromatography coupled on-line with electrospray ionization mass spectrometry for the simultaneous separation and identification of the Synechocystis PCC 6803 phycobilisome proteins. J. Chromatogr., 2001, 912: 269-279
    Zolla L, Bianchetti M, Rinalducci S. Functional studies of the Synechocystis phycobilisomes organization by high performance liquid chromatography on line with a mass spectrometer, Eur. J. Biochem., 2002, 269: 1534-1542
    隋正红,张学成.龙须菜藻红蛋白亚基基因的克隆及其在大肠杆菌中的表达.高技术通讯, 2001, 11: 14-19
    王广策,邓田.藻胆蛋白的研究概况(Ⅰ)—藻胆蛋白的种类与组成.海洋科学, 2000, 24(2): 22-25
    王业勤,徐旭东,黎尚豪.蓝藻分子遗传学十年研究进展.水生生物学报, 1991, 14(5): 356-367
    徐涤,秦松.海洋褐藻分子系统学研究进展.海洋科学, 2002, 26(2): 19-22
    徐宏发,王静波.分子系统学研究进展.生态学杂志, 2001, 20(3): 41-46
    赵方庆.螺旋藻基因组结构分析和藻胆蛋白的适应性进化[D].中国科学院海洋研究所,博士学位论文, 2006
    Apt KE, Collier JL, Grossman AR. Evolution of the phycobiliproteins. J. Mol. Biol., 1995, 248: 79-96
    Apt KE, Metzner S, Grossman AR. Theγsubunits of phycoerythrin from a red alga: position in phycobilisomes and sequence characterization. J. Phycol., 2001, 37: 64-70
    Castenholz RW, Waterbury JB. Bergey’s manual of systematic bacteriology, 1989, 1710-1727. In J.T. Staley, M.P. Bryant, N. Pfennig, J.G. Holt (eds), Williams and Wilkins, Baltimore, M.D, USA
    Castenholz RW. Species usage, concept, and evolution in the cyanobacteria (blue-green algae). J. Phycol., 1992, 28: 737-745
    Chen C, Zhang YZ, Chen XL, Zhou BC, Gao PJ. Langmuir-Blodgett film of phycobilisomes from blue-green alga Spirulina platensis. Acta. Biochim. Biophys. Sin., 2003, 35: 952-955
    Cobley JG, et al. CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the chromatically-adapting cyanobacterium, Fremyella diplosiphon. Molecular Microbiology., 2002, 44: 1517-1531
    Ducret A, Sidler W, Frank G, and Zuber H. The complete amino acid sequence of R-phycocyanin-Ⅰαandβsubunits from the red alga Porphyridium cruentum. Structural and phylogenetic relationships of the phycocyanins with the phycobiliprotein families. Eur. J. Biochem., 1994, 221: 563-580
    Fujita Y. A study on the dynamic features of photosystem stoichiometry: accomplishments and problems for future studies. Photosynth. Res., 1997, 53: 83-93
    Glazer AN. Phycobilisomes a macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta. 1984, 768: 29-51
    Glazer AN. Directional energy transfer in a photosynthetic antenna, J. Biol. Chem., 1989, 264: 1-4
    Gralnick, J., E. Webb, B. Beck, DM Downs. Iron Stress in Open-Ocean Cyanobacteria (Synechococcus, Trichodesmium, and Crocosphaera spp.): Identification of the IdiA Protein. Appl. Environ. Microbiol., 2000, 67: 5444-5452
    Grossman A., Bhaya D., Apt K., Kehoe D. Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu. Rev. Genet., 1995, 29: 231-288
    Hess WR, Rocap G, Ting C, Larimer F, Lamerdin J, Stilwagon S, Chisholm SW. The photosynthetic apparatus of Prochlorococcus: Insights through comparative genomics. Photosynthesis Res. Minireview., 2001, 70: 53-71
    Huber R. A structural basis of light energy electron transfer in biology. EMBO J., 1989, 8: 2125-2147
    Kondo K., Geng X.X., Katayama M., Ikeuchi M. Distinct roles of CpcG1 and CpcG2 in phycobilisome assembly in the cyanobacterium Synechocystis sp PCC 6803. Photosynth Res 2005, 84: 269-273
    Kondo K, Ochiai Y, Katayama M, Ikeuchi M. The Membrane-Associated CpcG2-Phycobilisome in Synechocystis: A New Photosystem I Antenna. Plant Physiology, 2007; 144(2): 1200-1210
    Krogmann D.W., Gómez-Lojero C. The phycocyanin-associated rod linker proteins of the phycobilisomes of Gloeobacter violaceus PCC 7421 contain unusually located rod-capping domains. Biochim. Biophys. Acta. 2006, 1757: 130-134
    Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform., 2004, 5: 150-163
    Liu LN, Chen XL., Zhang YZ, Zhou BC. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: An overview. Biochim. Biophys. Acta., 2005, 1708: 133-142
    MacColl R. Cyanobacterial phycobilisomes. J Struct Biol., 1998, 124: 311-334
    Nakamura Y, Kaneko T, Sato S, et al. Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res., 2003, 10: 137-145
    Palenik B, Haselkorn R. Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature, 1992, 355: 265-267
    Parbel A, Scheer H. Model for the phycobilisome rod with interlocking disks based on domain-weighted linker polypeptide sequence homologies of Mastigocladus laminosus. Int. J. Photoenergy., 2000, 2: 31-40
    Piven I, Ajlani G, Sokolenko A. Phycobilisome linker proteins are phosphorylated inSynechocystis sp PCC6803. J. Biol. Chem., 1995, 280(22): 21667-72
    Rocap G, Distel DL, Waterbury JB, Chisholm SW. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl. Environ. Microbiol., 2002, 68: 1180-1191
    Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren, NA, et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature, 2003, 424: 1042-1047
    Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool: Identification of signaling domains. Proc. Natl. Acad. Sci. USA., 1998, 95: 5857-5864
    Six C, Thomas JC, Thion L, Lemoine Y, Zal F, Partensky F. Two Novel Phycoerythrin-Associated Linker Proteins in the Marine Cyanobacterium Synechococcus sp Strain WH8102. J. Bacteriol., 2005, 187: 1685-1694
    Sonnhammer ELL, Eddy SR, Birney E, Bateman A, Durbin R. Pfam: Multiplesequence alignments and HMM-profiles of protein domains. Nucleic. Acids. Res., 1998, 26: 320-322
    Talarico L, Maranzana G. Light and adaptive responses in red macroalgae: an overview. J. Photochem. Photobiol. B Biol., 2000, 56: 1-11
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic. Acids. Res., 1997, 25: 4876-4882
    Ting CS, Rocap G, King J, Chisholm SW. Cyanobacterial Photosynthesis in the Oceans: Origins and Significance of Divergent Light-Harvesting Strategies. Trends in Microbiology, 2002, 10:134-142
    Urbach E., Scanlan D.J., Distel DL, et al. Rapid diversification of marine picophytoplankton with dissimilar light harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (cyanobacteria). J. Mol. Evol., 1998, 46: 188-201
    Wilbanks SM., and Glazer AN. Rod structure of a phycoerythrin II-containing phycobilisome. I. Organization and sequence of the gene cluster encoding the major phycobiliprotein rod components in the genome. J Biol Chem. 1993, 268: 1226-1235
    Wilson GG and Murray NE. Restriction and modification systems. Annu Rev Genet. 1991, 25:585-627
    Zhao F, Qin S. Evolutionary Analysis of Phycobiliproteins: Implications for Their Structural and Functional Relationships. J. Mol. Evol., 2006, 63: 330-340

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700