杂种落叶松扦插不定根发育过程中差异表达蛋白分析及功能探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扦插生根率低是制约利用扦插进行无性系林业发展的瓶颈,因此,提高难生根植物插穗生根率和生根质量成为研究的热点。落叶松是我国重要速生用材和生态造林树种,属难生根植物。目前,对落叶松扦插生根的研究虽然已在生理生化水平上取得一定进展,但其生根机理仍不清楚。开展本项研究,为探索落叶松插穗不定根发育的分子机制奠定理论基础。
     本研究以杂种落叶松全同胞无性系为实验材料,从对插穗不定根发育的解剖学观察及内源激素分析入手,利用蛋白质组学技术研究不定根发育过程中蛋白差异表达及其功能,采用基因克隆技术获得部分蛋白全长基因并进行转录水平上的表达分析,探讨落叶松插穗不定根发育的分子机制。主要结果如下:
     1插穗不定根形成方式及发育关键时期
     通过对落叶松插穗不定根发育过程中外观形态和解剖观察发现,不定根原基发生于髓射线正对的形成层部分,属于诱导生根型。不定根发育的完整周期大约55-60天,其中扦插第14-18天、25-30天、35-40天是不定根发育的三个关键时期,分别是不定根诱导期、不定根原始细胞形成期、不定根原基形成伸长期。
     2内源激素与插穗生根性状的关系及复合激素的互作效应
     通过对不同无性系及IBA处理下同一无性系插穗不定根发育过程中内源激素含量的测定,认为采穗母株的激素水平,尤其是IAA和ABA,影响不同无性系插穗的生根性状,IAA越高、ABA越低,有利于生根;外源IBA对插穗不定根发育的促进作用主要是显著提高不定根诱导之前IAA含量、抑制ABA含量。不同无性系和IBA处理下同一无性系插穗不定根发育过程中IAA+GA+ZR /ABA的变化与最终生根性状一致,可以作为衡量插穗生根好坏的指标。
     通过测定复合激素处理下四类激素含量的变化,认为激素之间存在互作效应。与单独使用IBA相比,IBA+6BA和IBA+GA表现出增效作用,IBA+ABA表现出拮抗作用。因此,在生产中可以加入适当浓度的细胞分裂素或赤霉素配合生长素使用,可以更好地发挥促进生根的作用。
     3 LKCcO6b和LKMDH在插穗不定根发育过程中发挥调控作用
     通过对不定根发育过程中参与三羧酸循环和线粒体电子传递的两个关键蛋白LKMDH和LKCcO6b在蛋白及转录水平的分析,认为他们主要在不定根诱导期发挥调控作用,IBA诱导下蛋白和mRNA两个水平均上调表达,为此期髓射线和正对髓射线形成层的细胞分裂和新细胞的合成提供碳骨架和能量来源,促进不定根原始细胞的形成。
     通过对复合激素处理下LKCcO6b和LKMDH表达水平分析,认为适当浓度的细胞分裂素或赤霉素能增效生长素对LKCcO6b和LKMDH的调控作用,而脱落酸拮抗该作用。这与复合激素对内源激素水平的影响效果一致,表明LKCcO6b和LKMDH在不定根的形成发育过程中起到调控作用。
     4插穗不定根发育的分子机制
     通过对不同无性系(不同基因型)和IBA诱导下同一无性系(相同基因型)插穗不定根发育关键期差异表达蛋白功能分析,认为插穗不定根发育的分子机制表现在以下两个方面:
     1)碳和能量代谢调控不定根形成发育。无论是不同无性系还是IBA诱导下同一无性系插穗不定根发育过程中都能鉴定到大量碳和能量代谢相关蛋白,这些蛋白在生根较好的无性系或IBA处理下显著上调表达,尤其是在不定根诱导期,为形成层细胞分裂和新细胞合成提供稳定的碳水化合物和能量来源,促进不定根原始细胞的形成。
     2)信号转导调控不定根的形成发育。从不同无性系和IBA诱导下同一无性系插穗不定根发育过程中鉴定到生长素信号转导相关蛋白,这些蛋白在生根较好的无性系或IBA处理下显著上调表达。不定根诱导前期,内源IAA出现瞬时高峰,高于生长素信号转导中IAA的阈值;同时泛素降解相关蛋白上调表达,降解生长素信号转导途径中的抑制因子,共同促进IAA信号转导通路中下游基因的表达,调控不定根的形态建成。
     综上所述,落叶松插穗不定根形成和发育是一个非常复杂的多基因调控过程,上述研究结果为探索落叶松插穗不定根发育机制奠定理论基础,同时为其他针叶树不定根发育研究提供参考。
Larix is an important fast-growing and ecological forestation species, but is difficult to root, which restricts the development of clonal forestry using cuttings, so how to improve the rooting rate and rooting quality become a research hotspot. Currently, the research on physiological and biochemical level of Larix rooting make some progress, but the molecular mechanism of cuttings rooting remains unclear.
     To make clear the molecular mechanism of cuttings rooting of hybrid Larix, anatomic development of adventitious roots was investigated, proteins expressed during adventitious roots development were extracted and identified using proteomics technique, and the expressions of some important proteins on transcription level were analyzed by gene cloning technology and qRT-PCR. The main results were as follows:
     1 The formation and the key development period of adventitious root
     The changes of morphology and anatomy were observed during adventitious root development, root primordia formed from cambium which opposite to pith rays, the formation of adventitious root was induce-to-root type. The period of adventitious roots development was about 55-60 days, the 14-18、25-30、35-40 days after cuttage were three key time-point for adventitious root induction, adventitious root primordia initiative cell formation and adventitious root primordia formation respectively.
     2 The relation between endogenous hormones and rooting traits, and the interaction between hormones
     The hormones content during adventitious roots development between different clones and treatments were determined. The hormones level of different donors, especially IAA and ABA, were important for cutting traits, the higher the IAA, the lower the ABA, the better the rooting traits. The effects of IBA on cuttings rooting were increasing IAA and decreasing ABA at the early stage of adventitious root development. The trend of (IAA+GA+ZR)/ABA between different clones or treatments were similar to rooting traits, so (IAA+GA+ZR)/ABA could be used as an index of rooting ability.
     The interaction between hormones was confirmed by measuring hormones content under different treatments. Compared with IBA using alone, IBA +6 BA and IBA + GA showed synergism, while the IBA + ABA showed antagonism. Therefore, the appropriate concentration of cytokinin or gibberellin could be used with auxin for promoting cuttings rooting.
     3 The regulation of LKCcO6b and LKMDH on adventitious root development
     The analysis on protein and transcription level of LKCcO6b and LKMDH which participated in the citric acid cycle and mitochondrial electron transport during adventitious root development showed these two proteins mainly played a regulation during adventitious roots induction, the protein and mRNA levels were up-regulated treated with IBA, which provided carbon skeletons and energy for cambium cells opposite to pith rays division and synthesis, promoted the formation of adventitious root initial cells.
     The expression analysis of LKCcO6b and LKMDH treated with combined hormones indicated that the appropriate concentration of cytokinin or gibberellic acid could increase the efficiency of auxin, while the abscisic acid could decrease the efficiency. These results were consistent with endogenous hormones changes treated with compound hormones. Therefore, LKCcO6b and LKMDH regulated adventitious roots formation and development.
     4 The molecular mechanism of adventitious root development
     The function of differentially expressed proteins during key time-point of adventitious roots development between different clones (different genotype) or treatments (same genotype) were analyzed, the two-part research suggested the molecular mechanism of adventitious root development.
     1) The carbon and energy metabolism regulated adventitious root formation and development. Large amounts of carbon and energy metabolism related proteins were identified during adventitious root development of different clones or treatments, these proteins were significantly up-regulated in better-root clones or IBA treatments, especially at the adventitious root induction stage, which provided a stable source of carbohydrates and energy for cambium cells division and synthesis, promoted the formation of adventitious root initial cells.
     2) Signal transduction regulated adventitious root formation and development. Auxin signal transduction related proteins were identified during adventitious root development of different clones or treatments, these proteins were significantly up-regulated in better-root clones or IBA treatments. At the early stage of adventitious root induction, endogenous IAA appeared instantaneous peak higher than the threshold of IAA auxin signal transduction, while ubiquitin-related protein up-regulated for degradation the inhibitor of auxin signal transduction pathway, these changes jointly promoted the expression of genes down-stream of IAA signal transduction, regulated adventitious root morphogenesis.
     In summary, the formation and development of adventitious roots of Larix stem cuttings is a very complex and multi-gene regulation process, these results was a basis for study the mechanism of adventitious root development, while provided a reference for the other conifers.
引文
敖红,王昆,陈一菱等.长白落叶松插穗内的营养物质及其对扦插生根的影响.植物研究, 2002a,22(3):301~304
    敖红,王昆,冯玉龙.长白落叶松插穗的内源激素水平及其与扦插生根的关系.植物研究, 2002b,22(2):190~195
    柴宝峰,李洪建,王孟本等.植物抗旱的分子生物学机制研究进展.山西大学学报(自然科学版),1999, 22(4): 400~405
    蔡秋华,张积森,郭春芳等.高等植物体内多胺的生理功能及其分子生物学研究进展.福建教育学院学报,2006,7(10): 118~124
    陈晓亚,叶和春.植物次生代谢及其调控/李承森.植物科学进展(第1卷),北京:高等教育出版社,1998:293~304
    陈四维,徐继忠.茎插条中不定根的起源与发育.河北农业大学学报,1987,10(3):86 ~89
    陈正华,周奕华,万里红等.植物防御系统中抗病相关基因的研究进展.遗传,2002,24(4):486~492
    陈国强,刘辉,张海婧等.人红细胞20S蛋白酶体的蛋白质组学表征及不同来源20S蛋白酶体异质性的研究.分析化学,2009,37(12):1711~1716
    杜继煜,白岩,白宝璋.植物的插条繁殖生理.农业与技术, 2004, 24(5): 96~97
    杜金友,陈晓阳,李伟等.干旱胁迫诱导下植物基因的表达与调控.生物技术通报, 2004,(2):10~14
    杜志如,席江,万佳等.水稻核糖体蛋白(OsRPL14)基因的克隆及表达分析.农业生物技术科学,2008,24(4):130~134
    冯健.日本落叶松×长白落叶松无性系间生根差异的分子机制.中国林业科学研究院博士论文,2008.
    郭函子.缺铁胁迫下小金海棠根特异蛋白的表达鉴定及M×SAMS基因克隆.2004.
    郭春芳,孙云,赖呈纯等.聚乙二醇胁迫下茶树叶片的蛋白质组分析.茶叶科学,2009, 29(2):79~88
    谷瑞升,刘群录,陈雪梅等.木本植物蛋白提取方法和SDS-PAGE分析方法的比较和优化.植物学通报,1999, 16 (12): 171~177
    谷俊涛,鲍金香,王效颖等.利用cDNA-AFLP技术分析小麦应答低磷胁迫的特异表达基因.作物学报,2009,35(9):1597~1605
    黄华宏,童再康,朱玉球等.矮化杉木蛋白质组的差异凝胶电泳分析.浙江林学院学报, 2006,23(3): 265~269
    黄志华,刘铭,王宝光等.甲酸脱氢酶用于辅酶NADH再生的研究进展.过程工程学报,2006,6(6): 1011~1016
    何瑞锋,丁毅,张剑锋等.植物叶片蛋白质双向电泳技术的改进与优化.遗传,2000, 22 (5):319~321
    何文亮,黄承红,杨颖丽等.盐胁迫过程中抗坏血酸对植物的保护功能.西北植物学报,2004,24(12):2196~2201
    胡建广,赵相山,刘军等.玉米苹果酸脱氢酶基因的分离与结构分析.植物学报,1999,41(1):40~44
    李继华.扦插的原理与应用.上海:上海科学技术出版社,1987
    李正理.植物制片技术(第二版) .北京:科学出版社,1987,138~148
    李宗霆,周燮.植物激素及其免疫测定技术.南京:江苏科学技术出版社, 1996
    李晓泽,刘关君,杨传平.西伯利亚蓼甘油醛-3-磷酸脱氢酶基因的cDNA克隆与序列分析.植物生理学通讯,2007,43(1):41~48
    李俊华,种康.植物生长素极性运输调控机理的研究进展.植物学通报,2006, 23 (5): 466~477
    梁玉堂,龙庄如.树木营养繁殖原理和技术.北京:中国林业出版社,1989
    廖靖军,安成才,吴思等.查尔酮合酶基因在植物防御反应中的调控作用.北京大学学报(自然科学版),2000,36(4):566~575
    刘何,谢令琴,赵建军.植物抗性相关基因的研究.华北农学报,2007,22(增刊):17~20
    刘桂丰,杨传平,曲冠正等.落叶松杂种插穗生根过程中4种内源激素的动态变化.东北林业大学学报,2001, 29(6):1~3
    刘桂丰,庄振东,由香铃等.杂种落叶松扦插生根过程中可溶性蛋白的比较分析.植物研究, 2003, 23(2): 195~197
    刘关君,李绪尧,张静等.长白落叶松插穗内源激素变化与不定根产生的关系.东北林业大学学报,2000,28(1):19~20
    廖翔,应天翼,王恒樑等.考马斯亮蓝染色双向电泳凝胶胶内酶切方法的改进.生物技术通讯,2003,14(6): 509~511
    孟庆芳,张养军,蔡耘等.亲和标记-基质辅助激光解吸电离飞行时间质谱用于蛋白质相对定量方法的研究.分析化学,2006,34 (7): 899~904
    潘健,夏日红,程家寿等.柃木插条生根的解剖学研究.植物资源与环境学报,2008,17(1):62~65
    裴东.核桃不定根发生调控机制与蛋白质组学探讨.北京林业大学博士论文,2004.
    钱小红,贺福初.蛋白质组学:理论与方法.北京:科学出版社,2003
    秦国锋.马尾松嫩枝扦插繁殖.林业科学研究,1994, 7:96~103
    祁德富,马明呈,李军. 4种植物生长激素对大果沙棘温室扦插成活率的影响.中国农学通报,2007,23(1):234~236
    时兰春,王益川,王伯初.植物细胞骨架与细胞生长.植物生理学通讯,2007,43(6):1175~1181
    任俐,刘小东,李耀文.三种植物激素对紫丁香扦插的影响.哈尔滨商业大学学报(自然科学版),2006,22(2):33~39
    孙晓梅,韩华,王笑山.不同株龄日本落叶松插穗的内源激素含量与生根的关系.植物生理学通讯, 2009.45(3):217~222
    孙晓梅,张守攻,王笑山等.生长调节剂对落叶松杂种生根和幼苗生长的影响.北京林业大学学报, 2006,28(2):68~72
    孙晓梅,张守攻,周德义等.落叶松种间及种内和种间杂种家系间物候变异与早期选择.林业科学, 2008, 44(1): 77~84
    史云峰,禹利君,刘富知等.茶树内源激素研究进展.茶叶通讯, 2001,(2):28~39
    谢志南,赖瑞云,林丽仙等.三角梅插穗扦插生根过程解剖学观察.闽西职业技术学院学报,2008,10(3):97~99
    王战.中国落叶松林.北京:中国林业出版社,1992:1
    王建华,孙晓梅,王笑山等.母株年龄、激素种类和浓度对落叶松扦插生根的影响.林业科学研究,2006,19(1):102~108
    王笑山,郑先武,王建华等.采穗园母株生根性状遗传变异和选择效应.林业科学研究,1995,8(1):48~53
    王笑山,马浩,王建华等.落叶松杂种大规模繁殖配套技术研究.林业科学研究, 2000, 13(5):469~476 王忠.植物生理学.中国农业出版社,2004,147
    王昕,种康.植物小G蛋白功能的研究进展.植物学通报,2005,22,1~10
    王义琴,张利明,李文彬.孙勇如植物病原相关蛋白研究进展.生物工程进展,2000,20(5):36~38
    汪家政,范明.蛋白质技术手册.北京:科学出版社,2000,8:77~100
    吴颂如,陈婉芬,周燮.酶联免疫法(ELISA)测定内源植物激素.植物生理学通讯,1988,(5): 53~57
    吴娇娇,张谦,刘士平等.细胞周期因子与植物根系发育.植物生理学通讯,2008, 44(4):621~629
    许晓岗,童丽丽,赵九洲.垂丝海棠插穗的内源激素水平及其与扦插生根的关系.江西林业科技,2007,(1):20~24
    徐继忠,陈四维.桃硬枝插条内源激素(ABA、IAA)含量变化对生根的影响.园艺学报.1989,16(4):275~278
    夏瑞,陆旺金,李建国等.简并引物的程序化设计与荔枝HMGR基因片段的克隆.果树学报,2006,23(6):903~906
    姚永宏,吴全,李中林.茶树插穗生根过程中内源激素动态变化.西南农业大学学报, 2005,27(6):795~798
    严顺平.水稻响应盐胁迫和低温胁迫的蛋白质组研究.中国科学院研究生院博士学位论文,2006
    印莉萍,孙彤,李伟等.缺铁诱导的水稻根转录本组和蛋白质组分析与膜泡运输.自然科学进展, 2004,14 (5):522~527
    余光辉,李玲,曾福华.水分胁迫的基因表达和信号转导.亚热带植物科学, 2002,31(l):57~62
    杨洪强,贾文锁,张大鹏.植物水分胁迫信号识别与转导.植物生理学通讯, 2001,37(2):149~154
    张卫国,刘鹏,程伟燕等.不同浓度生长激素对鹅掌柴扦插生根的影响.内蒙古民族大学学报(自然科学版),2007,22(2):157~160
    朱宏,马旭俊,马兴宏等.小麦叶片蛋白质的双向电泳分析.哈尔滨师范大学自然科学学报, 2001, 17 (l):98~101
    郑先武,田砚亭.金丝小枣插条中外源激素和内源激素的关系.北京林业大学学报,1995,17(4):44~49
    赵秋雁,赵晓红,刘广平等.苏云金杆菌对落叶松毛虫的毒力测定.东北林业大学学报,1998,26(1):70~71
    甄艳,许淑萍,赵振洲等.2D-DIGE蛋白质组技术体系及其在植物研究中的应用.分子植物育种,2008(6)2:405~412
    张长波,孙红霞,巩中军等.植物萜类化合物的天然合成途径及其相关合酶.植物生理通讯,2007,43(4):779~786
    Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature, 2003, 2422: 198~207
    Anderson JA, Huprikar SS, Kochian LV.et al. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA , 1992,89 :3736~3740
    Apel K, Hirt H. Reactive oxygen species: metabolism,oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004,55, 373~399
    Arulanantham AR.,Terry N. Evidence that a 25KDa protein associated with sugar beet root plasmalemma may be involved in the enhanced uptake of iron by iron stressed plants. J. Plant. Nutr. 1988,11:1127~1138
    Bertone P, Snyder M. Prospects and challenges in proteomics. Plant Physiol. 2005, 138: 560~562
    Bishopp, A., Mahonen, A. P., Helariutta, Y. Development. 2006,133, 1857~1869
    Blilou,I., Xu,J., Wildwater,M., et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature,2005, 433:39~44
    Bouchereau A, AzizA, Larher F et al. Polyamines and environmental challenges: Recent development. Plant Science, 1999, 140(2) : 103~125
    Banaszak LJ, Bradshaw RA. Malate dehydrogenase. In:Boyer P D ed. The Enzymes.Vol;XI. New York: Academic Press,1975:369~396
    Bryan JK.Biosynthesis and regulation of amino acid. In:Boner J, Varner J E eds. Plant Biochemistry. 3nd ed. New York: Academic Press,1976:351~371
    Bohler S., Bagard M., Oufir M. et al. A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics, 2007, 7(10): 1584~1599
    Canovas FM, Dumas-Gaudot E, Recorbet G et al. Plantproteomeanalysis. Proteomics, 2004, 4,285~298
    Cameron RJ and Thomson GV. The vegetative propagation of Pinus radiata: root initiation in cuttings. Bot.Gaz.,1969,130(4):242~251
    Cao YW, Ward JM, Kelly WB et al. Multiple genes , tissues specificity , and expression-dependent modulation contribute to the functional diversity of potassium channels in Arabidopsis thaliana. Plant physiol.,1995 , 109 : 1093~1106
    Ce′line Sorin, Luc Negroni, Thierry Balliau, et al. Proteomic Analysis of Different Mutant Genotypes of Arabidopsis Led to the Identification of 11 Proteins Correlating with Adventitious Root Development. Plant Physiology, 2006, 140:349~364
    Cui, D.Y., Neill, S.J., Tang, Z.C. et al. Gibberellinregulated XETis differentially induced by auxin in rice leaf sheath bases during gravitropic bending. J. Exp. Bot.,2005, 56, 1327~1334
    Costa P, Bahrman N, Frigerio JM et al. Water-deficit-responsive proteins in maritime pine. Plant Mol.Biol., 1998, 38: 587~596
    Davidson J, Ekramoddoullah AKM. Analysis of bark proteins in blister rust-resestant and susceptible western white pine (Pinus monticola). Tree Physiol., 1997, 17: 663~669
    Debi, B.R., Chhun, T., Taketa, S., et al. Defects in root development and gravity response in the aem1 mutant of rice are associated with educed auxin efflux. Plant Physiol, 2005,162:678~685
    De Klerk GJ, Van Der Krieken WM, De Jong JC. The formation of adventitious roots; new concepts, new possibilities. In Vitro Cell Dev. Biol., 1999,35: 189~199
    Dello Ioio, R.D., Linhares, F.S., Scacchi, E. et al. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr. Biol.,2007, 17, 678~682
    Davletova S, Rizhsky L, Liang H et al. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. The Plant Cell, 2005,17, 268~281
    David L, Guo XJ, Villard C, et al. Purification and molecular cloning of porcine intestinal glycerol-ester hydrolase--evidence for its identity with carboxylesterase[J]. Eur J Biochem, 1998, 257(1): 142~148
    del Pozo JC, Diaz-Trivino S, Cisneros N et al. The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. Plant Cell, 2006,18:2224~2235
    Díaz-Sala, C., Hutchison, K.W., Goldfarb, B., et al. Maturation-related loss in rooting competence by loblolly pine stem cutting: the role of auxin transport,metabolism and tissue sensitivity. Physiol. Plant., 1996, 97: 481~490
    Dharmasiri,S., Swarup,R.,Mockaitis,K., et al. AXR4 is required for localization of the auxin influxfacilitator AUX1. Science,2006,312:1218~1220
    Edson LJ, Wenny LD, Fins L. Propagation of western larch by stem cuttings. Western Journal of Applied Forestry, 1991, 6(2): 47~49
    Farmer JR, Durst JT, ShaoTang D et al. Effect of clones, primary ramets, and age of stock plants on tamarack rooting. Silvae Genetiea,1992,41(1):22~24
    Ekramoddoullah AKM. Analysis of needle proteins and N-terminal amino acid sequences of two photosystem II proteins of western white pine (Pinus monticola D.Don). Tree Physiol., 1993, 12:101~106
    Eliana N, Antonio M, Federica B. Characterization of two Arabidopsis thaliana glutathione-S-transferases. Plant Cell Rep, 2006, 25(9): 997~1005
    Farmer JR, Durst JT, Deng ST, Yang J-T. Effect of clones, primary ramets, and age of stock plants on tamarack rooting. Silvae Genet, 1992, 41 (1): 22~24
    Feilner T, Hultschig C, Lee J et al. High throughput identification of potential Arabidopsis mitogen-activated protein kinases substrates. Mol. Cell. Proteomics, 2005, 4: 1558~1568
    Fu HH, Luan S. AtKUP1 : A dual-affinity K+ transporter from Arabidopsis. Plant Cell,1998, 19:63~73
    F Le Guen-Le Saos, A. Hourmant. Stimulation of putrescine biosynthesis via the ornithine decarboxylase pathway by gibberellic acid in the in vitro rooting of globe artichoke (Cynara scolymus). Plant Growth Regulation, 2001, 35: 277~284
    Friml, J. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature,2003, 426, 147~153
    Ftiml,J.,Yang,X., Michniewica,M., et al. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs anxin efflux. Scinece,2004, 306,862~865
    Fu,X.D., Harberd, N.P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature,2003, 421, 740~743
    Frigerio, M., Alabadi, D., Perez-Gomez, J. et al. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol.,2006, 142, 553~563
    Forsthoefel NR, Cushman MAF, Cushman JC. Posttranscriptional and posttranslational control of enolase expression in the facultative crassulacean acid metabolism plantMesembryanthemum CrystallinumL.PlantPhysiol.,1995,108,1185~1195
    Grifiths WT. Protochlorophylllde reduction. CRC Press, Boca Raton. 1991: 433~450
    Guilfoyle TJ, Hagen G. Auxin response factors. J Plant Growth Regul , 2001,20: 281~291
    Gagne JM, Downes BP, Shiu SH et al. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA,2002,99: 11519~11524
    Galston AW, Sawhney RK. Polyamines in p lant physiology. Plant Physiology, 1990,94 (2) : 406~410
    Giustino Tonon, Claire Kever, Thomas Gaspar. Changes in polyamines, auxins and peroxidase activity during in vitro rooting of Fraxinus angustifolia shoots: an auxin - independent rootingmodel. Tree Physiology, 2001, 21: 655~663
    Gong H, Hu WW, Jiao Y et al. Molecular characterization of a Phi-class mustard (Brassica juncea) glutathione-S-transferase gene in Arabidopsis thaliana by 5-deletion analysis of its promoter. Plant Cell Rep, 2005,24(7): 439~447
    Gygi SP, Rist B, Gerber SA et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol., 1999b, 17: 994~999
    Hacket W. Cellular, Biochemical, and molecular analysis of maturation related Characteristics in Hedera Helix. Woody Plant Biotechnology. Edited by M.R. Ahuja Plenun Press,1991, 77~81
    Hare RC. Chemical and environmental treatments promoting rooting of pine cuttings. Can J For Res, 1974, 29: 446~454
    Herbik A. Girotch A. Horstrmann C. et al. Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianaimine-free mutant chloronerva. Plant Physiol. 1996, 111:533~540
    Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem,1998, 67: 425~479
    Hochholdinger F, Sauer M, Dembinsky D, et al. Proteomic dissection of plant development. Proteomics,2006, 6:4076~4083
    Hochholdinger F,Woll K,Guo L et al. The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.). Protemics, 2005,5:4885~4893
    Horton P. Prospects for crop improvement through the genetic manipulation of photosynthesis:morphological and biochemical aspects of light capture. J. Exp. Bot., 2000, 51: 475~485
    Holmes-Davis R, Tanaka CK, Vensel WH et al. Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics,2005,5, 4864~4884
    Hellmann H, Estelle M. Plant development:regulation by protein degradation. Science, 2002,297:793~797
    Hajheidari M, Noghabi MA, Askari H et al. Proteome analysis of sugar beet leaves under drought stress. Proteomics, 2005, 5: 950~960
    Hagen, G., Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol.,2002, 49:373~385
    Hussey PJ, Allwood EG, Smertenko AP. Actin-binding proteins in the Arabidopsis genome database: properties of functionally distinct plant actin-depolymerizingfactors/cofilins. Philos.Trans. R.Soc.Lond.BBiol. Sci.,2002,357,791~798
    Ishikawa T, Yoshimura K, Tamoi M et al. Alternative mRNA splicing of 3’-terminal exons generates ascorbate peroxidase isoenzymes in spinach (Spinacia oleracea) chloroplasts. Biochemical Journal,1997,328, 795~800
    Ikram Blilou, Jian Xu, Marjolein Wildwater, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature,2005, 433,6.
    Islam N, Tsujimoto H, Hirano H. Wheat proteomics: Relationship between fine chromosome deletion and protein expression. Proteomics, 2003, 3: 307~316
    Jutta Ludwig-Müller, Amy Vertocnik, Christopher D. Town. Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. Journal of Experimental Botany,2005,56(418): 2095~2105
    Jou Y, Chou PH, He M et al. Tissue-specific expression and functional complementation of a yeast potassium-uptake mutant by a salt-induced ice plant gene mcSKD1. Plant Mol Biol, 2004, 54: 881~893
    Kersten B, Feilner T, Kramer A et al. Generation of Arabidopsis protein chips for antibody and serum screening. Plant Mol. Biol, 2003, 52: 999~1010
    Koller A, Washburn MP, Markus-Lange B., et al. Proteomic survey of metabolic pathways in rice. Proc.Natl. Acad. Sci, 2002, 99: 11969~11974
    Konishi H., Kitano H., Komatsu S., et al. Identification of rice root proteins regulated by gibberellin using proteome analysis. Plant, Cell and Environment,2005,28: 328~339
    Koo Y., Hyun J. Initial root development of Larix leptolepis Gordon cuttings as related to organic substances and cutting date. J.Kor.Forestry Soc. 1996,85:300~308
    Kramer A, Feilner T, Possling A et al. Identification of barley CK2 alpha targets by using the protein microarray technology. Phytochemistry, 2004, 65: 1777~1784
    Kristiina Himanen, Elodie Boucheron, Steffen Vanneste, et al. Auxin-Mediated Cell Cycle Activation during Early Lateral Root Initiation. The Plant Cell, 2002, 14: 2339~2351
    Krisantini S., Johnston M., Williams R.R., et al. Adventitious root formation in Grevillea(Proteaceae), an Australian native species. Scientia Horticulture, 2006,107(2):171~175
    Kubis S., Baldwin A., Patel R. et al. The Arabidopsis ppi1 mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins. Plant Cell, 2003, 15(8): 1859~1871
    Kubis S., Patel R., Combe J. et al. Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell, 2004,16(8): 2059~2077
    Kyle P,Michael G. Mass production of hybrid larch families. Annual Report and Research Summary of theCooperative Forestry Research Unit. University of Maine, Orono, Maine 04469: Miscellaneous Report ,1997,406, 24~26
    Kyozuka, J. Control of shoot and root meristem function by cytokinin. Curr. Opin. Plant Biol.,2007, 10, 442~446
    Kim EJ, Kwak JM, Uozumi N et al. AtKUP1: An Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell, 1998,10:51~62
    Liao Zhihua, Chen Min, Gong Yifu, et al. Isop renoid biosynthesis in p lants: pathway, genes, regulation and metabolic engineering. J Bio Sci,2006 (6) : 209~219
    Lieven De Veylder, Gerrit T.S. Beemster, Tom Beeckman, et al. CKS1At overexpression in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell-cycle progression. The Plant Journal, 2001, 25: 617~626
    Liu Y, Lamkemeyer T, Jakob A, et al. Comparative proteome analyses of maize (Zea mays L.) primary root prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant ruml. Protecmics,2006,6:4300~4308
    Lilley K.S., Dupree P., Methods of quantitative proteomics and their application to plant organelle characterization, J. Exp. Bot., 2006,57(7): 1493~1499
    Lal SK, Lee CF, Sachs MM. Differential regulation of enolase during anaerobiosis in maize. PlantPhysiol.,1998,118,1285~1293
    LuanS. Signalling droughtinguard cells.PlantCellEnviron., 2002,25,229~237
    Lloyd CW.The cytoskeletal basis of plant growth and form. Academic Press,London, 1991,85~89
    Lorbiecke R, Sauter M. Adventitious root growth and cellcycle induced in deepwater rice. Plant Physiol, 1999,119:21~30
    Li, L., Xu, J., Xu, Z.H. et al. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell,2005a,17, 2738~2753
    Myrto Raftopoulou. PINOID pinpoints auxin. Nature Cell Biology, 2004,6,12.
    Mackay VL,Li X,Flory MR, et al. Gene expression analyzed by high-resolution state array analysis and quantitative proteomics: Response of yeast to mating pheromone. Mol.Cell.Proteomics,2004, 3,478~489
    Mason WL. Vegetative propagation of hybrid larch (Larix×eurolepis Henry) using winter cuttings. Forestry Supplement, 1989, 62: 189~199
    Malone J.P., Radabaugh M.R., Leimgruber R.M. et al. Practical aspects of fluorescent staining for proteomic applications, Electrophoresis,2001, 22(5): 919~932
    Maltman D.J., Gadd S.M., Simon W.J. et al. Differential proteomic analysis of the endoplasmic reticulumfrom developing and germinating seeds of castor (Ricinus communis) identifies seed protein precursors as significant components of the endoplasmic reticulum. Proteomics, 2007, 7(9):1513~1528
    Medrano H, Parry MAJ, Socias X et al. Long term water stress inactivates RuBisCO in submediterranean clover. Ann. Appl. Biol., 1997, 131: 491~501
    Martin W, Brinkmann H, Savonna C et al. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA, 1993,90: 8692~8696
    Mager WH. Control of ribosomal protein gene expression.Biochem. Biophys. Acta., 1988, 949:1~15
    Marie-Claire Heloir, Claire Kevers, Jean-Fran ois Hausman, et al. Changes in the concentrations of auxins and polyamines during rooting of in-vitro-propagated walnut shoots. Tree Physiology, 1996, 16: 515~519
    Mayne MB, Coleman J R, Bluwald E. Differential expression during drought conditioning of a root-specfic S-adnosyl methionine synthetase from jack pine (Pinus banksiasna Lamb.) seedling. Plant Cell Environ, 1996, 19:958~966
    Mauseth JD. Botany, an Introduction to Plant Biology. Florida:Saunders College Publishing, 1991:272~296
    Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002,7, 405~410 Moons A. Regulatory and functional interactions of plant growth regulators and plant glutathione-S-transferases (GSTs). Vitam Horm, 2005, 72: 155~202
    Masuda T, Takamiya K. Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophylide oxidoreductase in angiosperms. Photosynthesis Research, 2004, 81:1~29
    Nonami H, Boyer J S. Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues at low water potentials. Plant physiol, 1990, 93: 1610~1619
    Ndimba B.K., Chivasa S., Simon W.J. et al. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 2005, 5 (16): 4185~4196
    Napier RM. Models of auxin binding. J Plant Growth Regul, 2001, 20: 244~254
    O'Farrell,PH. High resolution two-dimensional electrophoresis of proteins. J. Biol Chem, 1975, 250:4007~4021
    O’Neill, D.P., Ross, J.J. Auxin regulation of the gibberellin pathway in pea. Plant Physiol., 2002, 130, 1974~1982
    Olson BJ, Skavdahl M, Ramberg H et al. Formate dehydrogenase in Arabidopsis thaliana : characterization and possible targeting to the chloroplast. Plant Sci., 2000 ,159 (2) :205~212
    Pandey A, Mann M. Proteomics to study genes and genomes. Nature, 2000, 405: 837~846
    Patterson SD, Aebersold H. Proteomics: the first decade and beyond. Nat. Genet., 2003, 33: 311~323
    Pope BJ, Gonsior SM, Yeoh S. et al. Uncoupling actin filament Fragmentation by cofilin from increased subunit turnover. JMol.Biol., 2000,298,649~661
    Rogg, L.E., Lasswell, J., Bartel, B. A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell, 2001, 13: 465~480
    Ross, J.J., O’Neill, D.P., Smith, J.J. et al. Evidence that auxin promotes gibberellin biosynthesis in pea. Plant J.,2000, 21, 547~552
    Rossignol M. Analysis of the plant proteome. Curr. Opin. Biotechnol., 2001, 12: 131~134
    Ruegger, M., Dewey, E., Hobbie, L. et al. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell, 1997,9, 745~757
    Rui Q, Xu LL. Degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in wheat leaves during dark-induced senescence. Acta. Bot. Sin., 2004, 46 (2): 137~141
    Rubio,F.,Gassmann,W., Schroeder J.I. Sodium-Driven Potassium Uptake by the Plant Potassium Transporter HKT1 and Mutations Conferring Salt Tolerance. Science,1995, 270:1660~1663
    Roxas,V.P. Stress Tolerance in Transgenic Tobacco Seedlings that Overexpress Glutathione S-Transferase/Glutathione Peroxidase. Plant and Cell Physiology,2000(41):1220~1234
    Richard C, Lescot M, InzéD et al. Effect of auxin, cytokinin and sucrose on cell cycle gene expression in Arabidopsis thaliana suspension cultures. Plant Cell Tiss Org Cult, 2002,69: 167~176
    Roudier F, Fedorova E, Lebris M et al. The Medicago species A2-type cyclin is auxin regulated and involved in meristem formation but dispensable for endoreduplication-associated developmental programs. Plant Physiol, 2003,131: 1091~1093
    Riccardi F, Gazeau P, de Vienne D et al. Protein changes in response to progressive water deficit in maize: Quantitative variation and polypeptide identification. Plant Physiol.,1998, 117, 1253~1263
    Rodriguez-Navarro,A. Potassium transport in fungi and plants. Biochim Biophys Acta,2000,1469:1~30
    Skoog, F., Miller, C.O. Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Symp. Soc. Exp. Biol.,1957, 54, 118~131
    Shiraishi T ,Fukusaki E ,Kobayashi A. Formate dehydrogenase in rice plant: growth stimulation effect of formate in rice plant. J . B iosci . Bioeng., 2000,89 (3) :241 ~246
    Sáez-Vásquez J,Gallois P, Delseny M. Accumulation and nuclear targeting of BnC24,a Brassica napus ribosomal protein corresponding to a mRNA accumulating in response to cold treatment. PlantScience,2000,156:35~46
    Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. Annu.Rev.Plant Biol.,2004,55:555~590
    Sauer M, Jakob A, Nordheim A et al. Proteomic analysis of shoot-borne root initiation in maize(Zea mays L.).Proteomics,2006,6:2530~2541
    Schiefebein, J.W. Cell-fate specification in the epidermis: A common patterning mechanism in the root and shoot. Curr. Opin.Plant Biol.2003,6:74~78
    Schnable PS, Hochholdinger F, Nakazono M. Global expression profiling applied to plant development. Curr. Opin. Plant Biol., 2004,7:50~56
    Smith DR and Thorpe TA. Root initiation in cuttings of Pinus radiate seedlings. Developmental sequence. J.Exp.Bot.,1975,26:184~192
    Swarup,R.,Friml,J., Marchant,A., et al. Localization of the auxin perrmease AUX1 suggests two functionally distinct hormone transport pathways opertate in the Arabidopsis root apes. Genes Dev., 2001,15:2648~2653
    Schachtman DP, Schroeder JI. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature ,1994,370 :655~658
    Shen W, Nada K, Tachibana S. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiology, 2000,124 (1) :431~439
    Sanguinetti CJ, Dias Neto E, Simpson A J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels . Biotechniques , 1994 , 17 (5) :914~921
    Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd edn. Beijing:Science Press, 1992: 880~888
    Stotz HU,Long SR.Expression of the pea (Pisum sativum L.) alpha-tubulin gene TubA1 is correlated with cell division acticity.Plant Mol.Biol.,1999,41:601~614
    Timothy,MR.,Jorja,GH, Steven,H. CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Research, 2003, 31(13) :3763~3766
    Timothy,MR., Emily, RS., Jorja,GH, et al. Consensus- degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Research, 1998, 26 (7) :1628~1635
    Tian Q, Stepaniants SB, Mao M, et al. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol.Cell.Proteomics,2004, 3,960~969
    Thomas B,Michael U,Jurgen F. cDNA cloning of cytoplasmic ribosomal protein S7 of winter rye (Secale cereale) and its expression in low-temperature-treated leaves.Biochim BiophysActa,2000,1492(1):276~279
    TakaiY,SasakiT,MatozakiT. Small GTP-Binding Proteins. Physiological Reviews,2001, 81:153~208
    Tom Beeckman, Sylvia Burssens, Dirk Inzé. The peri-cell-cycle in Arabidopsis. Joumal of Experimental Botany, 2001, 52: 403~411
    Tsugita, A., Kawakami, T., Uchiyama, Y. et al. Separation and characterization of rice proteins. Electrophoresis. 1994, 15: 708~720
    UedaT,NakanoA. Vesieulartraffie:an integral Part of Plant life. Curr Opin Plant Biols,2002,513~517
    UmedaM, HaraC, MatsubayashiY, et al. Expressed sequence tags from cultured-cells of rice (Oryza-Sativa L) under stressed conditions: analysis oftranscripts of genes engaged in ATP-generating pathways. Plant Mol.Biol.,1994, 25, 469~478
    Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis, 1997, 18: 2071~2077
    Venis MA, Napier RM. Auxin receptors and auxin binding proteins. Crit Rev Plant Sci., 1995,14: 27~47
    Vladimir IT, Vladimir OP. Catalytic mechanism and application of formate dehydrogenase. Biochemistry ,2004 ,69 (11) :1252~1267
    Vladimir I T, Vladimir O P. Protein engineering of formate dehydrogenase. Biomol Eng. 2006,23 :89~110
    Wool I G. The structure and function of Eukaryotic ribosomes. Annu.Rev. Biochem., 1979, 48: 719~754
    Wool IG. Extraribosomal functions ribosomal proteins.Trends. Biochem. Sci., 1996, 21(5):164~165
    Wagner U, Edwards R, Dixon DP et al. Probing the diversity of the Arabidopsis glutathione-S-transferase gene family. Plant Mol Biol, 2002, 49(5): 515~532
    Wasaki J,Yonetani R,Kuroda S et al. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant root.Plant Cell Environ.,2003,26:1515~1523
    Wasteneys GO, Galway ME. Remodelling the cytoskeleton for growth and form: An overview with some new views. Annu.Rev.PlantBiol., 2003,54,691~722
    Wolbang, C.M., Ross, J.J. Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta,2001, 214, 153~157
    Xiong L, Sehumaker KS, Zhu JK. Cell signaling during cold,drought,andsaltstress. Plant Cell,2002, SuPPI:S165~S183
    Xu,M., Zhu,L., Shou,H., et al. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol, 2005a, 46:1674~1681
    Yang J, Yen HE. Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiol,2002, 130: 1032~1042
    Yi-Fang Tsay, Gary Shankweilefl, James Laken et al. Localization of Saccharomyces cereuisiae Ribosomal Protein L16 on the Surface of 60 S Ribosomal Subunits by Immunoelectron Microscopy. THE JOURNOAFI.BIOLOCICAI.CHEMISTRY,1994,269(10):7579~7586
    Yuanqing Jiang, Bo Yang, Neil S. Harris et al. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 2007,58(13):3591~3607
    Zachary Nimchuk, Thomas Eulgem, Ben F Holt III et al. Recognition and response in the plant lmmune system annu. Annual Review of Genetics,2003,37 :579~609
    Zenser, N., Ellsmore, A., Leasure, C. et al. Auxin modulates the degradation rate of Aux/IAA proteins. Proc. Natl Acad. Sci.,2001, 98:11795~11800Zhu J, Chen S, Alvarez S et al. Cell wall proteome in the maize primary root elongation zone.I.extraction and identification of water-soluble and lightly ionically bound proteins. Plant Physiol.,2006,140:311~325
    Zhu H, SnyderM. Protein chip technology. Curr. Opin. Chem. Biol., 2003, 7(1): 55~63
    Zhu H, Klemic JF, Chang S et al. Analysis of yeast protein kinases using protein chips. Nat. Genet.,2000, 26: 283~289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700