Asia 1型口蹄疫病毒空衣壳在昆虫细胞中的组装及其免疫原性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2005年我国江苏等省暴发Asia 1型口蹄疫(foot-and-mouth disease, FMD),对国民经济造成巨大损失,引起此次流行的口蹄疫病毒(foot-and-mouth disease, FMDV)与Asia 1/YNBS/1958等历史毒株不同,为新传入的毒株,命名为Asia 1/JS/2005。该毒株除使牛、羊发病外,猪也有确诊病例,说明该毒株对猪也存在很大威胁。本研究以该新发毒株为材料,利用昆虫杆状病毒表达系统,研究Asia 1型FMDV空衣壳的组装,以期研制一种安全、高效的Asia 1型FMDV基因工程空衣壳亚单位疫苗。
     通过克隆分析细胞传代的Asia 1/JS/05株FMDV的衣壳蛋白P12A和蛋白酶3C基因,表明其P1结构蛋白编码区全长为2145bp,编码715aa。4个结构蛋白VP4、VP2、VP3、VP1分别为207bp、648bp、657bp、633bp,推导的氨基酸序列分别为69aa、216aa、219aa、211aa。各结构蛋白之间的连接氨基酸分别为Ala/Asp(VP4/VP2)、Glu/Gly(VP2/VP3)、Gln/Thr(VP3/VP1)。细胞传代毒的细胞受体结合位点(VP1 143-145)RGD变为RDD。VP3上140位和143位为组氨酸。2A全长48bp,编码16aa。3C全长639bp,编码213aa。分析P12A和3C基因序列与已发表Asia 1/JS/05毒株相应基因序列(GenBank No. EF149009)的核苷酸同源性分别为99.27%、99.4%,氨基酸序列同源性分别为98.9%、99.1%。
     采用了三种不同的策略来研究Asia 1型FMDV空衣壳的组装:一是将P12A和3C基因序列分别插入分泌型杆状病毒表达载体pMel-Bac B中,探讨目的基因的分泌表达;二是将空衣壳组装必需的3C基因和P12A基因插入带双启动子的表达载体pFastBac? Dual中,两种基因分别置于不同的启动子控制之下,同时表达P12A和3C蛋白,在昆虫细胞内裂解组装空衣壳粒子;三是通过耐酸性改造,研究提高空衣壳酸稳定性的条件;当pH值低于7时,FMDV二十面体对称的衣壳结构就会裂解成12S的五聚体,而昆虫细胞培养基的正常pH值在6.2左右,为了提高空衣壳的耐酸性,应用定点突变技术改变VP3上的H140和H143为亮氨酸,再将改造后的基因插入双启动子载体,以期提高其空衣壳的稳定性。
     结果表明,(1)采用分泌表达的策略,仅有少量的P12A结构蛋白和3C蛋白分泌到细胞培养基中,但大部分的蛋白仍位于细胞膜的内侧面,没有分泌出来,说明这一策略具有继续完善的空间,需要在基因表达盒的构建和诱导分泌表达的条件方面进行深入的研究。(2)采用双启动子表达自然蛋白的策略,目的蛋白在High Five?细胞中均得到了较高水平的表达, Western blotting分析结果表明衣壳蛋白P12A被3C蛋白酶成功的裂解为VP0、VP1和VP3。免疫电镜观察,在昆虫细胞中组装形成了直径约为25~30nm左右的空衣壳结构,以及直径约为10nm的五聚体结构。将这种粗纯的表达产物(约含1.2μg空衣壳粒子或中间体)经乳化后肌肉注射免疫豚鼠,空衣壳免疫组豚鼠和灭活苗免疫组豚鼠均产生了较高水平的FMDV特异性中和抗体,而野生型杆状病毒感染细胞蛋白对照没有检测到中和抗体,结果证明,杆状病毒表达组装的空衣壳或中间体具有较好的免疫原性,这为深入研制FMD空衣壳亚单位疫苗奠定了基础。(3)改造的P12A基因和3C基因在昆虫细胞中获得较好的表达,通过Western blotting检测也证明衣壳蛋白被3C蛋白酶成功地加工裂解,通过电镜也观察到在昆虫细胞内产生了直径为25~30 nm的空衣壳结构。通过耐酸性分析表明将VP3 H140和H143变为亮氨酸提高了已组装空衣壳的稳定性,但是空衣壳的产量却显著下降,这一研究思路仍然具有继续探索的价值。
The outbreaks of foot-and-mouth (FMD) serotype Asia 1 in large areas of China had caused great economic losses since it occurred in Jiangsu Province in 2005. The FMD virus (FMDV) strain that cause these outbreaks was a new isolate different from the history strain Asia 1/YNBS/1958 once appeared in Yunnan province. This new isolate was given the name Asia 1/JS/2005. The virus strain mainly affects ruminant animals and cause clinical and subclinical infection in cattle and sheep, however, pig could also be infected and several clinical cases were reported. In this study, we investigated the assembly of Asia 1 foot-and-mouth disease virus empty capsid particles in insect cells using baculovirus expression system based on this new incurred Asia 1 FMDV, and with the hope to achieve a safe, high potency subunit vaccine based on empty capsid particles for Asia 1 FMDV.
     The P12A and 3C sequences of cell passaged Asia 1/JS/2005 FMDV were amplified and sequenced. The results showed that the whole length of structural protein coding region was 2145 base pairs (bp) and encoded 715 amino acids (aa). The four capsid proteins, VP4, VP2, VP3, and VP1, were 207bp, 648bp, 657bp, 633bp in length, respectively, and the deduced amino acid sequences were 69aa, 216aa, 219aa, and 211aa. Residues at the VP4/VP2, VP2/VP3, and VP3/VP1 cleavage sites were Ala/Asp, Glu/Gly, and Gln/Thr, which could be recognized and processed by 3C proteinase. The RGD motif in VP1 protein of FMDV changed into RDD in the cell passaged Asia 1/JS/2005. Positions 140aa and 143aa in VP3 were histidine residues which were likely involved in acid sensitivity of empty capsid particles. 2A was 48bp in length and the deduced amino acid sequences were about 16aa, and 3C was 639bp in length and the deduced amino acid sequences were about 213aa.
     Three different strategies were used to investigate the assembly of empty capsid particles of Asia 1 FMDV. (1) Structural protein P12A and proteinase 3C genes were inserted into the baculovirus transfer vector pMelBac B with a melittin secretion signal sequence to test whether the target proteins could be secreted into culture medium, respectively. (2) A recombinant baculovirus that simultaneously expressed the genes for the P12A and 3C proteins from individual promoters was constructed using baculovirus transfer vector pFastBac? Dual to assembly empty capsid particles in insect cells. (3) Study the factors that affect the capsid stability after assembly in insect cell medium with pH value 6.2. It is demonstrated that the icosahedral virus capsid of FMDV dissociates into 12 pentamers at pH below 7. In this study, two histidine residues at positions 140 and 143 in VP3 were changed into leucine by site-directed mutation to improve acid resistance of empty capsid particles.
     The results showed: (1) Only a small amount of expressed P12A and 3C proteins were secreted into cell supernatant, and lots of them were unable to secrete into the medium and accumulated in the cell, which indicated the existence of rate-limiting steps in the secretion of foreign proteins. Therefore further study was needed to improve the construction of new cDNA cassettes and conditions for secretory expression of foreign proteins in insect cells. (2) The capsid proteins expressed in High Five? insect cells were successfully processed by viral 3C protease, as shown by Western blotting. Both empty capsid particles with a diameter of about 25~30nm and pentamers with a diameter of approximately 10 nm were observed using immunoelectron microscopy. Furthermore, the empty capsid particles or intermediates induced high levels of FMDV-specific antibodies in guinea pigs following immunization, and neutralizing antibodies were induced in the second week after vaccination. These recombinant, non-infectious, FMDV empty capsids are potentially useful for the development of new diagnostic techniques and vaccines. (3) The modified P12A and 3C were successfully expressed in insect cells by Western blotting, and that expressed capsid proteins were also processed by expressed viral 3C proteinase. Furthermore, only empty capsid particles were observed in lystate of High Five? cells infected with recombinant baculoviruses with mutated P12A under electron microscope, and no pentamers were detected, suggesting that replacing the histidines with leucines could, indeed, improve the stability of empty capsid particles under acidic conditions, but somewhat reduced the efficiency of assembly.
引文
1.刘湘涛,刘在新,张强,尚佑军,陈涓,马军武,郭建宏,常惠芸,王永录,杨亚民,张永光,才学鹏,谢庆阁. Asia 1型口蹄疫流行病学研究.中国兽医科学, 2007, 37(S1): 2~3.
    2.卢永干. 1997年台湾省口蹄疫流行概况.中国兽医科技, 1998, 28(5): 43~45.
    3.王海伟.口蹄疫病毒Asia 1/1/YZ/CHA/06的全基因组序列分析[硕士学位论文].哈尔滨:中国农业科学院研究生院哈尔滨兽医研究所, 2008.
    4.徐为燕.兽医病毒学[M] .北京:农业出版社,1993: 56~59.
    5.易咏竹,陈寅,张志芳,何家禄,秦俭.宿主域扩大的重组救活昆虫杆状病毒表达载体的构建及外源基因的表达.蚕业科学,2002, 28 (4): 304~307.
    6.赵启祖,谢庆阁.口蹄疫病毒抗原位点的研究及应用[ A ] .畜禽重大疫病免疫防制研究进展[ C] .谢庆阁,翟中和.北京:中国农业出版社,1996, 14~23.
    7.赵渝, Zhao R.B.,孙健和.口蹄疫紧急疫苗研究进展.动物科学与动物医学, 2002, 19(8): 36~37.
    8. Abrams C.C., King A.M.Q., Belsham G.J. Assembly of foot-and-mouth disease virus empty capsids synthesized by vaccinia virus expression system. J Gen Virol, 1995, 76: 3089~3098.
    9. Acharya R., Fry E., Stuart D. I., Fox G., Rowlands D., Brown F. The three-dimersional structure of foot and mouth disease virus at 2.9?. Nature, 1989, 337: 709~716.
    10. Airenne K. J., Peltonaa E., Hytonen V. P., Laitinen O. H., Yla-Herttuala S. Improved generation of recombinant baculovirus genomes in Escherichia coli. Nucleic Acids Res, 2003, 31(17):e101.
    11. Almeida M.R., RiederE., Chinsangaram J., Ward G., Beard C., Grubman M.J. and Mason P.W. Construction and evaluation of an attenuated vaccine for foot-and-mouth disease: difficulty adapting the leader proteinase-deleted strategy to the serotype O1 virus . Virus Res, 1998, 55 ( 1 ) : 49 ~ 60.
    12. Altmann F., Staudacher E., Wilson I.B.H., Marz L. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj, 1999, 16: 109~123.
    13. Ansardi D. C., Porter D. C. & Morrow C. D. Co-infection with recombinant vaccinia viruses expressing poliovirus P1 and P3 proteins results in polyprotein processing and formation of empty capsid structures. Journal of Virology, 1991, 65:2088~2092.
    14. Bachrach H. L. Foot-and-mouth disease. Annu Rev Microbiol, 1968, 22: 201~244.
    15. Bachrach H.L. Foot-and-mouth disease virus: properties, molecular biology and immunogenicity. Beltsville Symp Agric Res, 1977, 1:3~22.
    16. Baranowski E., Ruiz-Jarabo C. M., Sevilla N., Andreu D., Beck E., Domingo E. Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J Virol, 2000, 74: 1641~1647.
    17. Barrett A. J., Rawlings N. D. Evolutionary lines of cysteinepeptidases. Biol Chem, 2001,382(5): 727~733.
    18. Barteling S. J., Vreeswijk J. Developments in foot-and-mouth disease vaccines. Vaccine, 1991, 9: 75~88.
    19. Beard C., Ward G., Rieder E., Chinsangaram J., Grubman M. J., and Mason P. W. Development of DNA vaccines for foot-and-mouth disease, evaluation of vaccines encoding replicating and non-replicating nucleic acids in swine. J. Biotechnol, 1999, 73:243~249.
    20. Beck E., Forss S., Strebel K., Cattaneo R., Feil G. Structure of the FMDV translation initiation site and of the structural proteins. Nucl Acids Res, 1993, 11:7873~7885.
    21. Belsham G. J., Abrams C. C., King A. M., Roosien J., and Vlak J. M. Myristoylation of foot-and-mouth disease virus capsid protein precursor is independent of other viral proteins and occurs in both mammalian and insect cells. J Gen Virol, 1991, 72:747~751.
    22. Belsham G. J., Mclnerney G. M.,&Ross-Smith N. Foot-andmouthdisease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J Virol, 2000, 74(1): 272~280.
    23. Belsham G. L., Brangwyn J. K., Ryan M. D., Abrams C.C., King A.M.Q. Intracellular expression and processing of foot-and-mouth disease virus capsid precursors using vaccinia virus vectors influence of the L protease. Virology, 1990, 176:524~530.
    24. Belsham G.J. Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure. Prog Biophy Mol Biol, 1993, 60: 241~260.
    25. Benvenisti L., Rogel A., Kuznetzova L., Bujanover S., Becker Y., Stram Y. Gene gun-mediate DNA vaccination against foot-and- mouth disease virus. Vaccine, 2001, 19: 3885~3895.
    26. Berinstein A., Tami C., Taboga O., Smitsaart E., and Carrillo E. Protective immunity against foot-and-mouth disease virus induced by a recombinant vaccinia virus. Vaccine, 2000, 18: 2231~2238.
    27. Biron C., and Sen G.C. Interferons and other cytokines. In: Field’s Virology (Howley P.M., and Knipe D.M., Eds.), pp. 321 ~351. Philadelphia: Lippincott Williams & Wilkins, 2001.
    28. Birtley J R., Knox S. R., Jaulent A. M., Brick P., Leatherbarrow R. J., Curry S. Crystal structure of foot-and-mouth disease virus 3C protease: New insights into catalytic mechanism and cleavage specificity. J Biol Chem, 2005, 280(12): 11520~11527.
    29. Bittle J.L., Houghten R.A., Alexander H., Shinnick, T.M., Sutcliffe, J.G., Lerner R.A., Rowlands D.J. and Brown F. Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature, 1982, 298 (5869): 30 ~33.
    30. Brautigam S., Snezhkov E., Bishop D. H. Formation of poliovirus-like particles by recombinant baculoviruses expressing the individual VP0, VP3, and VP1 proteins by comparison to particles derived from the expressed poliovirus polyprotein. Virology, 1993,192(2):512~524.
    31. Brooksby J. B. Portraits of viruses: foot-and-mouth disease virus. Intervirology, 1982, 18:1~23.
    32. Brooksby J.B., Roger J. Methods of typing and cultivation of foot and mouth disease virus. Project 208 of OEEC, Paris, 1957, 31~34.
    33. Brown F. New approaches to vaccination against foot-and-mouth disease. Vaccine, 1992, 10 (14): 1022 ~ 1026.
    34. Caron L., Brum M.C.S., Moraes M.P., Golde W.T., Arns C.W. and Grubman M.J. The effect of granulocyte-macrophage colonystimulating factor on the potency and efficacy of a foot-and-mouth disease virus subunit vaccine. Pesqui Vet Bras, 2005, 25: 150 ~ 158.
    35. Carrillo C., Tulman E. R., Delhon G., Lu Z., Carreno A., Vagnozzi A., Kutish G. F., Rock D. L. Comparative genomics of foot-and-mouth disease virus. J Virol, 2005, 79: 6487~6504.
    36. Casal J.I. Use of parvovirus-like particles for vaccination and induction of multiple immune responses. Biotechnol Appl Biochem, 1999, 29: 141~150.
    37. Cedillo-Barron L., Foster-Cuevas M., Belsham G.J., Lefe`vre F., Parkhouse R.M.E. Induction of a protective response in swine vaccinated with DNA encoding foot-and-mouth disease virus empty capsid proteins and the 3D RNA polymerase. J Gen Virol, 2001, 82:1713~1724.
    38. Cha H.J., Dalal N.G., Pham M.Q., Bentley W.E. Purification of human interleukin-2 fusion protein produced in insect larvae is facilitated by fusion with green fluorescent protein and metal affinity ligand. Biotechnol Prog, 1999b, 15(2):283~286.
    39. Cha H.J., Dalal N.G., Pham M.Q., Vakharia V.N., Rao G., Bentley W.E. Insect larval expression process is optimized by generating fusions with green fluorescent protein. Biotechnol Bioeng, 1999a, 65(3): 316~324.
    40. Chinsangaram J., Beard C., Mason P. W., Zellner M. K., Ward G., and Grubman M. J. Antibody response in mice inoculated with DNA expressing foot-and-mouth disease virus capsid proteins. J Virol, 1998, 72:4454~4457.
    41. Chinsangaram J., Mason P.W. and Grubman M.J. Protection of swine by live and inactivated vaccines prepared from a leader proteinase-deficient serotype A12 foot-and-mouth disease virus. Vaccine, 1998 b, 16 (16): 1516~ 1522.
    42. Chinsangaram J., Moraes M.P., Koster M. and Grubman M.J. Novel viral disease control strategy: adenovirus expressing alpha interferon rapidly protects swine from foot-and-mouth disease. J Virol, 2003, 77: 1621 ~ 1625.
    43. Chung W.B., Sorensen K.J., Liao P.C., Yang P.C., Jong M.H. Differentiation of foot-and-mouth disease virus-infected from vaccinated pigs by enzyme-linked immunosorbent assay using nonstructural protein 3AB as the antigen and application to an eradication program. HJ Clin Microbiol, 2002, 40(8):2843~2848.
    44. Chung Y.C., Huang J.H., Lai C.W., Sheng H.C., Shih S.R., Ho M.S., Hu Y.C. Expression,purification and characterization of enterovirus 71 virus-like particles. World J Gastroenterol, 2006, 12:921~927.
    45. Congote L.F., Li Q. Accurate processing and secretion in the baculovirus expression system of anerythroid-cell-stimulating factor consisting of a chimaera of insulin-like growth factor II and an insect insulin-like peptide. Biochem J, 1994, 299(1): 101~107.
    46. Conner M.E., Zarley C.D., Hu B., Parsons S., Drabinski D., Greiner S., Smith R., Jiang B., Corsaro B., Barniak V., Madore H.P., Crawford S., Estes M.K. Virus-like particles as a rotavirus subunit vaccine. J Infect Dis, 1996, 174: S88~S92.
    47. Couch R. B., Chanock R. M., Cate T. R., Lang D. J., Knight V., and Heubner R. J. Immunization with types 4 and 7 adenovirus by selective infection of the intestinal tract. Am Rev Intestin Dis, 1963, 88: 394~403.
    48. Cox S.J., Voyce C., Parida S., Reid S.M., Hamblin P.A., Paton D.J., and Barnett P.V. Protection against direct-contact challenge following emergency FMD vaccination of cattle and the effect on virus excretion from the oropharynx . Vaccine, 2005, 23 (9): 1106 ~ 1113.
    49. Curry S., Abrams C. C., Fry E., Crowther J. C., Belsham G. J., Stuart D. I., King A. M. Q. Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. Journal of Virology, 1995, 69: 430~438.
    50. de Avila Botton S., Brum M.C., Bautista E., Koster M., Weiblen R., Golde W.T., and Grubman M.J. Immunopotentiation of a foot-and- mouth disease virus subunit vaccine by interferon alpha . Vaccine, 2006, 24 (17): 3446~ 3456.
    51. de Felipe P., Hughes L.E., Ryan M.D.,Brown J.D. Co-translation, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem, 2003, 278(16): 11441~11448.
    52. DiFalco M.R., Bakopanos E., Patricelli M., Chan G., Congotel F. The influence of various insect cell lines, p10 and polyhedrin promoters in the production of secreted insulin-like growth factor-interleukin-3 chimeras in the baculovirus expression system. J Biotechnol, 1997, 56(1):49~56.
    53. DiMarchi R., BrookeG., Gale C., Cracknell V., Doel T., and Mowat N. Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science, 1986, 232 (4750): 639~ 641.
    54. Doel T. R. FMD vaccines. Virus Reserch, 2003, 91, 81~89.
    55. Doel T. R., and Baccarini P. J. Thermal stability of foot-and-mouth disease virus. Arch Virol, 1981, 70: 21~32.
    56. Doel T. R., and Pullen L. International bank for foot-and-mouth disease vaccine: stability studies with virus concentrates and vaccines prepared from them. Vaccine, 1990, 8: 473~478.
    57. Doel T.R., Williams L., and Barnett P.V. Emergency vaccination against foot-and-mouth disease: rate of development of immunity and its implications for the carrier state. Vaccine, 1994, 12 (7): 592~ 600.
    58. Domingo E., Escarmis C., Baranowski E., Ruiz-Jarabo C.M., Carrillo E., Nunez J.I., and Sobrino F. Evolution of foot-and-mouth disease virus. Virus Res, 2003, 91 (1): 47~ 63.
    59. Ellard F.M., Drew J., Blakemore W.E., Stuart D.I., King A.M.Q., Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. J Gen Virol, 1999, 80: 1911~1918.
    60. Eloit M., Gilardi-Hebenstreit P., Toma B., and Perricaudet M. Construction of a defective adenovirus vector expressing the pseudorabies virus glycoprotein gp50 and its use as a live vaccine. J Gen Virol, 1990, 71: 2425~2431.
    61. Filgueira D. M. P., Wigdorovitz A., Zamorano P. I., Ostermann W., Fernandez F.M., Romera A., Borca M.V., Sadir A.M. Effect of Mycobacterium sp. wall and Aviridine on the antibody response, IgG isotype profile and proliferative response induced by foot-and-mouth disease virus vaccination in cattle.Vaccine, 1999, 17(4): 345~352.
    62. Fooks A. R., Jeevarajah D., Lee J., Warnes A., Niewiesk S., ter Meulen V., Stephenson J. R., and Clegg J. C. Oral or parenteral administration of replication-deficient adenoviruses expressing the measles virus haemagglutinin and fusion proteins: protective immune responses in rodents. J Gen Virol, 1998, 79: 1027~1031.
    63. Fox G., Parry N.R., Barnett P. V., McGinn B., Rowlands D.J., Brown F. The cell attachment site on foot-and-month disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid).J Gen Virol, 1989, 70: 625~637.
    64. Francis M.J., Hasting G.Z., Brown F., McDermed J., Lu Y.A., and Tam J.P. Immunological evaluation of the multiple antigen peptide (MAP) system using the major immunogenic site of foot-and-mouth disease virus . Immunology, 1991, 73 (3): 249~254 .
    65. Frenkel H.S. Research on foot-and-mouth disease. II. The cultivation of the virus in explanations of tongue epithelium of bovine animals. Am J Vet Res, 1950, 11: 371 ~ 373.
    66. Garcea R.L., Gissmann L. Virus-like particles as vaccines and vessels for the delivery of small molecules. Curr Opin Biotechnol, 2004, 15: 513~517.
    67. Gerhardt E., Bruss V. Phenotypic mixing of rodent but not avian hepadnavirus surface proteins into human hepatitis B virus particles. J Virol, 1995, 69: 1201~1208.
    68. Ghosh S., Parvez M. K., Banerjee K., Sarin S.K., Hasnain S.E. Baculovirus as mammalian cell expression vector for gene therapy: an emerging strategy. Molecular Ther, 2002, 6 (1): 5~11.
    69. Gillock E.T., Rottinghaus S., Chang D., Cai X., Smiley S.A., An K., Consigli R.A. Polyomavirus major capsid protein VP1 is capable of packaging cellular DNA when expressed in the baculovirus system. J Virol, 1997, 71: 2857~2865.
    70. Golde W.T., Pacheco J.M., Duque H., Doel T., Penfold B., Ferman G.S., Gregg D.R., and Rodriguez L.L. Vaccination against foot-and-mouth disease virus confers complete clinical protection in 7 days and partial protection in 4 days: use in emergency outbreak response . Vaccine, 2005, 23 (50): 5775 ~ 5782.
    71. Gonzalo R.M., del Real G., Rodriguez J.R., Rodriguez D., Heljas- vaara R., Lucas P., Larraga V., Esteban M. A heterologous prime-boost regime using DNA and recombinant vaccinia virus expressing the Leish- mania infantum P36/LACK antigen protects BALB/c mice from cutaneous leishmaniasis. Vaccine, 2002, 20: 1226~1231.
    72. Graham F. L., and Prevec L. Adenovirus-based expression vectors and recombinant vaccines. Bio/Technology, 1992, 20: 363~390.
    73. Graham F. L., Smiley J., Russell W. C., and Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus 5. J Gen Virol, 1977, 36: 59~74.
    74. Grubman M. J., Lewis S. A., and Morgan D. O. Protection of swine against foot-and-mouth disease with viral capsid proteins expressed in heterologous systems. Vaccine, 1993, 11: 825~829.
    75. Grubman M. J., Morgan D. O., Kendall J., Baxt B. Capsid intermediates assembled in a foot-and-mouth disease virus genome RNA programmed cell-free translation system and in infected cells. Journal of Virology, 1985, 56: 120~126.
    76. Grubman M.J. and Baxt B. Foot-and-mouth disease. Clin Microbiol Rev, 2004, 17 (2): 465 ~ 493.
    77. Grubman M.J. Development of novel strategies to control foot-and-mouth disease: marker vaccines and antivirals. Biologicals, 2005, 33: 227 ~234.
    78. Grubman M.J. New approaches to rapidly control foot-and-mouth disease outbreaks. Expert Rev Anti Infect Ther, 2003, 1(4): 579 ~ 586.
    79. Guo H., Liu X., Liu Z., Yin H., Ma J., Wang Y., Shang Y., Zhang Q., Li D., Guo J., Lu Z., Xie Q. Recent outbreaks of foot-and-mouth disease type Asia 1 in china. J Vet Med, 2006, B53: 29~33.
    80. Halpin C., Cooke S.E., Barakate A., El Amrani A., Ryan M.D. Self-procissing
    2A-polyproteins----a system for co-ordinate expression of multiple proteins in transgenic plants. The Plants Journal, 1999, 17(4): 453~459.
    81. Hanke T., Blanchard T.J., Schneider J., Hannan C.M., Becker M., Gilbert S.C., Hill A.V.S., Smith G.L., McMichael A. Enhancement of MHC class I-restricted peptide-specific T cell induction by a DNA prime/MVA boost vaccination regime. Vaccine, 1998, 16(5): 439~445.
    82. Ho Y., Lin P.H., Liu C.Y.Y., Lee S.P., Chao Y.C. Assembly of human severe acute respiratory syndrome coronavirus-like particles. Biochem Biophys Res Commun, 2004, 318: 833~838.
    83. Ho Y., Lo H.R., Lee T.C., Wu C.P., Chao Y.C. Enhancement of correct protein folding in vivo by a non-lytic baculovirus. Biochem J, 2004, 382: 695~702.
    84. Hollister J.R., Jarvis D.L. A stably-transformed insect cell line engineered to support asialoglycoprotein production by baculovirus expression vectors. Glycobiology. 1999, 9: 1124.
    85. Hollister J.R., Shaper J.H., Jarvis D.L. Stable expression of mammalian beta 1,4-galactosyltransferase extends the N-glycosylation pathway in insect cells. Glycobiology, 1998, 8: 473~480.
    86. Hu Y. C., Hsu J. T., Huang J.H., Ho M. S., Ho Y. C. Formation of enterovirus-like particle aggregates by recombinant baculoviruses co-expressing P1 and 3CD in insect cells. Biotechnology Letters, 2003, 25(12): 919~925.
    87. Hu Y.C., Bentley W.E., Edwards G.H., Vakharia V.N. Chimeric infectious bursal disease virus-like particles expressed in insect cells and purified by immobilized metal affinity chromatography. Biotechnol Bioeng, 1999, 63: 721~729.
    88. Huang H., Yang Z., Xu Q., Sheng Z., Xie Y., Yan W., You Y., Sun L., Zheng Z. Recombinant fusion protein and DNA vaccines against foot and mouth disease virus infection in guinea pig and swine. Viral Immunol, 1999, 12: 1~8.
    89. Ikonomou L.Y., Schneider J.S., Agathos N. Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol, 2003, 62: 1~20.
    90. Imler J. L. Adenovirus vectors as recombinant viral vaccines. Vaccine, 1995, 13: 1143~1151.
    91. Jarvis D.L. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology, 2003, 310: 1~7.
    92. Jarvis D.L., Aumiller J.J., Hollister J.R., Kawar Z.S., Pilon J., Vadaie N. Analysis and manipulation of the protein N-glycosylation pathway in the baculovirus-insect cell system. Glycobiology, 2004, 14: 1059~1060.
    93. Jarvis D.L., Fleming J., Kovacs G.R., Summers M.D., Guarino L.A. Use of early baculovirus promoters for continuous expression and efficient processing of foreign gene products in stably transformed lepidopteran cells. Biotechnology, 1990, 8: 950~955.
    94. Jarvis D.L., Summers M.D., Garcia A. J., Bohlmeyer D.A. Influence of different signal peptides and prosequences on expression and secretion of human tissue plasminogen activator in the baculovirus system. J Biol Chem, 1993, 268(22): 16754~16762.
    95. Jin H., Kang Y., Xiao C., Zhu K., Ma Y., Xie Q., Ma J., Xie Q., He C., Yang Z., Sun Z., Zhang X., Chen M., Zhang F., Wang B. DNA prime followed by protein boost enhances neutralisation and Th1 type immunity against FMDV. Viral Immunol, 2005, 18(3): 539~548.
    96. Juillard V., Villefroy P., Godfrin D., Pavirani A., Venet A., and Guillet J.G. Long-term humoral and cellular immunity induced by a single immunization with replication-defective adenovirus recombinant vector. Eur J Immunol, 1995, 25: 3467~3473.
    97. Kajigaya S., Fujii H., Field A., Anderson S., Rosenfeld S., Anderson L.J., Shimada T., Young N.S. Self-assembled B19 parvovirus capsids, produced in a baculovirus system, are antigenically and immunogenically similar to native virions. Proc Natl Acad Sci USA, 1991, 88: 4646~ 4650.
    98. Kit M., Kit S., Little S.P., Di Marchi R.D., and Gale C. Bovine herpesvirus-1 (infectious bovine rhinotracheitis virus)-based viral vector which expresses foot-and-mouth diseaseepitopes . Vaccine, 1991, 9 (8) : 564 ~572 .
    99. Kitson J.D., Burke K.L., Pullen L.A., Belsham G.J., and Almond J.W. Chimeric polioviruses that include sequences derived from two independent antigenic sites of foot-and-mouth disease virus (FMDV) induce neutralizing antibodies against FMDV in guinea pigs. J Virol, 1991, 65 (6): 3068~3075.
    100. Kitts P. A., Possee R. D. A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques, 1993,14: 810~817.
    101. Kleid D.G., Yansura D., Small B., Dowbenko D., Moore D.M., Grubman M.J., McKercher P.D., Morgan D.O., Robertson B.H. and Bachrach H.L. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine. Science, 1981, 214 (4525): 1125 ~ 1129.
    102. Ko Y.J., Kang S.C., Nah J.J., Paton D.J., Oem J.K., Wilsden G., Kang S.Y., Jo N.I., Lee J.H., Kim J.H., Lee H.W., Park J.M. Noninfectious virus-like particle antigen for detection of swine vesicular disease virus antibodies in pigs by enzyme-linked immunosorbent assay. Clinical and diagnostic laboratory immunology, 2005, 12(8): 922~929.
    103. Kost T.A., Condreay J.P., Jarvis D.L. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature biotechnology, 2005, 23(5): 567~575.
    104. Koutsky L.A., Ault K.A., Wheeler C.M., Brown D.R., Barr E., Alvarez F.B., Chiacchierini .LM., Jansen K.U. A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med, 2002, 347: 1645~1651.
    105. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes .Cell, 1986, 44 (2):283~292.
    106. Krausslich H.G., Holscher C., Reuer Q., Harber J., Wimmer E. Myristoylation of the poliovirus polyprotein is required for proteolytic processing of the capsid and viral infectivity. Journal of Virology, 1990, 64: 2433~2436.
    107. Kweon C.H., Ko Y.J., Kim W.I., Lee S.Y., Nah J.J., Lee K.N., Sohn H.J., Choi K.S., Hyun B.H., Kang S.W., Joo Y.S., Lubroth J. Development of a foot-and-mouth disease NSP ELISA and its comparison with differential diagnostic methods. Vaccine, 2003, 21(13-14):1409~1414.
    108. Lenz P., Day P.M., Pang Y.Y., Frye S.A., Jensen P.N., Lowy D.R., Schiller J.T. Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol, 2001, 166: 5346~5355.
    109. Leusch M. S., Lee S. C., Olins P.O. A novel host-vector system for direct selection of recombinant baculoviruses (bacmids) in Escherichia coli. Gene, 1995, 160 (2): 191~194.
    110. Lewis S.A., Morgan D.O., and Grubman M.J. Expression, processing, and assembly of foot-and-mouth disease virus capsid structures in heterologous systems: induction of a neutralizing antibody response in guinea pigs. J Virol, 1991, 65 (12): 6572 ~ 6580.
    111. Li W., Ross-Smith N., Proud C.G., Melsham G.J. Cleavage of translation initiation factor4AI (eIF4AI) but not eIF4AII by foot-and-mouth disease virus 3C protease: Identification of the eIF4AI cleavage site. FEBS Lett, 2001, 507(1): 1~5.
    112. Li Y. M., Stirling C. M. A., Denyer M. S., Hamblin P., Hutchings G., Takamatsu H.H., Barnett P.V. Dramatic improvement in FMD DNA vaccine efficacy and cross-serotype antibody induction in pigs following a protein boost. Vaccine, 2008, 26 (21): 2647~2656.
    113. Li Y., Aggarwal N., Takamasu H.H., Stirling C.M., Voyce C., Barnett P.V. Enhancing immune responses against a plasmid DNA vaccine encoding a FMDV empty capsid from serotype O. Vaccine, 2006, 24: 4602~4606.
    114. Li Y., Luo L., Thomas D.Y., Kang C.Y. Control of expression, glycosylation, and secretion of HIV-1 gp120 by homologous and heterologous signal sequences. Virology, 1994, 204(1): 266~278.
    115. Li Z.Y., Yi Y.Z., Yin X.P., Zhang Z.F., Liu J.X. Expression of foot-and-mouth disease virus capsid proteins in silkworm-baculovirus expression system and its utilization as a subunit vaccine. PLoS ONE, 2008, 3 (5), e2273.
    116. Likhoradova O.A, Bachurina E., Azimova S.S. Biosynthesis of recombinant human hepatitis B M-HBsAg in silkworm larvae. Mol Biol(Mosk), 2004, 38(4): 717~722.
    117. Lu Z. J., Bao H. F., Cao Y. M., Sun P., Guo J. H., Li P. H., Bai X. W., Chen Y. L., Xie B. X., Li D., Liu Z. X., Xie Q.G. Protection of guinea pigs and swine by a recombinant adenovirus expressing O serotype of foot-and-mouth disease virus whole capsid and 3C protease. Vaccine, 2008, 26S: G48~G53.
    118. Lubroth J., López A., Ramalho A.K., Meyer R.F., Brown., Darsie G.C. Cattle response to foot-and-mouth disease virus nonstructural proteins as antigens within vaccines produced using different concentrations. Vet Q, 1998, 20 (Suppl 2): S13~S17.
    119. Luckow V.A., Lee S.C., Barry G.F., Olins P.O. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol, 1993, 67 (8): 4566~4579.
    120. Luckow V.A., Summers M.D. High level expression of nonfused foreign genes with Autographa californica nuclear polyhedrosis virus expression vectors. Virology, 1989, 170: 31~39.
    121. Luo L., Li Y., Cannon P., Kim S., Kang C.Y. Chimeric gag-V3 viruslike particles of human immunodeficiency virus induce virusneutralizing antibodies. Proc Natl Acad Sci USA, 1992, 89: 10527~ 10531.
    122. Ma M.X., Jin N.Y., Liu H.J., Zheng M., Shen G.S., Zhu G.Z., Lu H.J., Huo X.W., Jin M.L., Li X., Ma H.L., Ji Y., Yin G.F., Jin K.S. Immunogenicity of plasmids encoding P12A and 3C of FMDV and swine IL-18. Antiviral Research, 2007, 76(1): 59~67.
    123. Mackett M., Smith G. L., and Moss B. Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci USA, 1982, 79: 7415~7419.
    124. Martin W.B. and Edwards L.T. A field trial in South Africa of an attenuated vaccine againstfoot-and-mouth disease. Res Vet Sci, 1965, 36: 196 ~ 201.
    125. Mason P.W., Grubman M.J. Foot-and-mouth disease. Vaccine for biodefense and emerging and neglected disease, 2009, 361~377.
    126. Mason P.W., Grubman M.J., and Baxt B. Molecular basis of pathogenesis of FMDV. Virus Res, 2003, 91(1): 9 ~ 32.
    127. Mason P.W., Piccone M.E., McKenna T.S., Chinsangaram J., and Grubman M.J. Evaluation of a live-attenuated foot-and-mouth disease virus as a vaccine candidate. Virology, 1997, 227(1): 96 ~ 102.
    128. Mateu M.G. Antibody recognition of picornaviruses and escap from neut ralization: a structural view. Virus Rec, 1995, 38: 1~24.
    129. Matthews D.A., Dragovich P.S., Webber S.E., Fuhrman S.A., Patick A.K., Zalman L.S., Hendrickson T.F., Love R.A., Prins T.J., Marakovits J.T., Zhou R., Tikhe J., Ford C.E., Meador J.W., Ferre R.A., Brown E.L., Binford S.L., Brothers M.A., Delisle D.M., Worland S.T. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc Natl Acad Sci USA, 1999, 96(20): 11000~11007.
    130. Mayr G.A., O’Donnell V., Chinsangaram J., Mason P.W., Grubman M.J. Immune response and protection against foot-and-mouth disease virus challenge in swine vaccinated with adenovirus-FMDV constructs. Vaccine, 2001, 19: 2152~2162.
    131. Mayr, G.A., Chinsangaram J., and Grubman M.J. Development of replication-defective adenovirus serotype 5 containing the capsid and 3C protease coding regions of foot-and-mouth disease virus as a vaccine candidate. Virology, 1999, 263 (2): 496 ~506.
    132. McCullough K.C., Pullen L., and Parkinson D. The immune response against foot-and-mouth disease virus: influence of the T lymphocyte growth factors IL-1 and IL-2 on the murine humoral response in vivo. Immunol Lett, 1992, 31 (1): 41 ~ 46.
    133. McKenna T.S., Lubroth J., Rieder E., Baxt B., and Mason P.W. Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD. J Virol, 1995, 69 (9): 5787 ~ 5790.
    134. Medin J.A., Hunt L., Gathy K., Evans R.K., Coleman M.S. Efficient, low-cost protein factories: expression of human adenosine deaminase in baculovirus-infected insect larvae. Proc Natl Acad Sci USA, 1990, 87(7): 2760~2764.
    135. Medina M., Lopez-Rivas A., Zuidema D., Belsham G. J., Domingo E., Vlak J.M. Strong buffering capacity of insect cells. Implications for the baculovirus expression system. Cytotechnology, 1995, 17: 21~26.
    136. Mezencio J.M., Babcock G.D., Meyer R.F., Lubroth J., Salt J.S., Newman J.F., Brown F. Differentiating foot-and-mouth disease virus-infected from vaccinated animals with baculovirus-expressed specific proteins.Vet Q, 1998, 20 (Suppl 2):S11~13.
    137. Miyajima A., Schreurs J., Otsu K., Kondo A., Aral K., Maeda S. Use of the silkworm,Bombyx mori, and an insect baculovirus vector for high-level expression and secretion of biologically active mouse interleukin-3. Gene, 1987, 58 (2-3): 273~281.
    138. Moore A.C., Hill A.V. Progress in DNA-based heterologous prime- 799 boost immunization strategies for malaria. Immunol Rev, 2004, 199: 126~143.
    139. Moraes M.P., Mayr G.A., Mason P.W., and Grubman M.J. Early protection against homologous challenge after a single dose of replication-defective human adenovirus type 5 expressing capsid proteins of foot-and-mouth disease virus (FMDV) strain A24 . Vaccine, 2002, 20(11 ~12): 1631 ~ 1639.
    140. Moraes M.P., Chinsangaram J., Brum M. C. S., and Grubman M. J. Immediate protection of swine from foot-and-mouth disease: a combination of adenoviruses expressing interferon alpha and a foot-and-mouth disease virus subunit vaccine. Vaccine, 2003, 22: 268~279.
    141. Moraes M.P., de los Santos T., Koster M., Turecek T., Wang H., Andreyev V.G., and Grubman M.J. Enhanced antiviral activity against foot-and-mouth disease virus by a combination of type I and II porcine interferons . J Virol, 2007, 81(13): 7124~ 7135 .
    142. Mortola E., Roy P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS lett, 2004, 576: 174~178.
    143. Mowat G.N., and Chapman W.G. Growth of foot-and-mouth disease virus in a fibroblastic cell line derived from hamster kidneys. Nature, 1962, 194: 253 ~255.
    144. Murphy C.I., McIntire J.R., Davis D.R., Hodgdon H., Seals J.R., Young E. Enhanced expression, secretion, and large-scale purification of recombinant HIV-1 gp120 in insect cell using the baculovirus egt and p67 signal peptides. Protein Expr Purif, 1993, 4(5): 349~357.
    145. Muyrers J. P., Zhang Y., Testa G., Stewart A. F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res, 1999, 27(6):1555~1557.
    146. Nagaya H., Kanaya T., Kaki H., Tobita Y., Takahashi M., Takahashi H., Yokomizo Y., Inumaru S. Establishment of a large-scale purification procedure for purified recombinant bovine interferon-tau produced by a silkworm-baculovirus gene expression system. J Vet Med Sci, 2004, 66(11): 1395~1401.
    147. Nargi F., Kramer E., Mezencio J., Zamparo J., Whetstone C., Van Regenmortel M.H., Briand J.P., Muller S. and Brown F. Protection of swine from foot-and-mouth disease with one dose of an all-D retro peptide. Vaccine, 1999, 17(22): 2888 ~ 2893.
    148. Nayak A., Goodfellow I. G.,Woolaway K. E., Birtley J., Curry S., Melsham G.J. Role of RNA structure and RNA binding activity of the foot-and-mouth disease virus 3C protein in VPg uridylylation and virus replication. J Virol, 2006, 80(19): 9865~9875.
    149. Nayak A., Goodfellow I.G., Belsham G. J. Factors required for the uridylylation of the foot-and-mouth disease virus 3B1, 3B2, and 3B3 peptides by theRNA-dependentRNApolymerase (3Dpol) in vitro. J Virol, 2005, 79(12): 7698~7706.
    150. Oem J. K., Park J. H., Lee K. N., Kim Y. J., Kye S. J., Park J. Y., Song H. J. Characterization of recombinant foot-and-mouth disease virus pentamer-like structures expressed bybaculovirus and their use as diagnostic antigens in a blocking ELISA. Vaccine, 2007, 25: 4112~4121.
    151. Onodera S., Cardamone J. J., Phillips B. A. Biological activity and electron microscopy of poliovirus 14S particles obtained from alkali-dissociated procapsids. Journal Virology, 1986, 58(2): 610~618.
    152. Orsel K., de Jong M.C., Bouma A., Stegeman J.A., and Dekker A. Foot and mouth disease virus transmission among vaccinated pigs after exposure to virus shedding pigs. Vaccine, 2007, 25(34): 6381 ~6391.
    153. Pacheco J.M., Brum M.C., Moraes M.P., Golde W.T., and Grubman M.J. Rapid protection of cattle from direct challenge with foot-and-mouth disease virus (FMDV) by a single inoculation with an adenovirus-vectored FMDV subunit vaccine. Virology, 2005, 337 (2): 205 ~ 209.
    154. Palhan V.B., Sumathy S., Gopinathan K.P. Baculovirus mediated high-level expression of luciferase in silkworm cells and larvae. Biotechniques, 1995, 19(1):97~8, 100, 02~4.
    155. Panicali D., and Paoletti E. Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc Natl Acad Sci USA, 1982, 79: 4927~4931.
    156. Pastoreta P. P., Vanderplasschen A. Poxviruses as vaccine vectors. Comp Immunol Microbiol Infect Dis, 2003, 26:343~355.
    157. Pfaff E., Mussgay M., Bohm H.O., Schulz G.E., and Schaller H. Antibodies against a preselected peptide recognize and neutralize foot and mouth disease virus. EMBO J, 1982, 1 (7): 869~ 874.
    158. Piccone M.E., Rieder E. Mason P.W., and Grubman M.J. The foot-and-mouth disease virus leader proteinase gene is not required for viral replication. J Virol, 1995, 69 (9): 5376 ~ 5382.
    159. Pluimers F.H., Akkerman A.M., van der Wal P., Dekker A., Bianchi A. Lessons from the foot and mouth disease outbreak in the Netherlands in 2001. Rev Sci Tech Off Int Epiz, 2002, 21:711e21.
    160. Raju T.S., Lerner L., O’Connor J.V. Glycopinion: biological significance and methods for the analysis of complex carbohydrates of recombinant glycoproteins. Biotechnol Appl Biochem, 1996, 24: 191~194.
    161. Rieder E., Baxt B., Lubroth J., and Mason P.W. Vaccines prepared from chimeras of foot-and-mouth disease virus (FMDV) induce neutralizing antibodies and protective immunity to multiple serotypes of FMDV. J Virol, 1994, 68 (11): 7092 ~ 7098 .
    162. Rieder E., Bunch T., Brown F., and Mason P.W. Genetically engineered foot-and-mouth disease viruses with poly(C) tracts of two nucleotides are virulent in mice. J Virol, 1993, 67 (9): 5139~ 5145.
    163. Robinson H.L. Prime boost vaccines power up in people. Nat Med, 2003, 9:642~3.
    164. Rombaut B. K., Andries and Boeye A.′A comparison of WIN 51711 and R70286 as stabilisers of poliovirus virions and procapsids. J Gen Virol, 1991, 72:2153~2157.
    165. Roosien J., Belsham G. J., Ryan M. D., King A .M. Q., Vlak J. M. Synthesis of foot-and-mouth disease virus capsid proteins in insect cells using baculovirus expression vectors. Journal of General Virology, 1990, 71:1703~1711.
    166. Rowlands D. J., Sangar D. V., Brown F. A comparative chemical and serological study of the full and empty particles of foot-and-mouth disease virus. Journal of General Virology, 1975, 26: 227~238.
    167. Roy P. Genetically engineered particulate virus-like structures and their use as vaccine delivery systems. Intervirology, 1996, 39: 62~71.
    168. Russell W. C. Update on adenovirus and its vectors. J Gen Virol, 2000, 8: 2573~2604.
    169. Rweyemamu M.M., Terry G., and Pay T. W. Stability and immunogenicity of empty particles of foot-and-mouth disease virus. Arch Virol, 1979, 59: 69~79.
    170. Sanz-Parra A., Jimenez-Clavero M. A., Garcia-Briones M. M., Blanco E., Sobrino F., Ley V. Recombinant viruses expressing the foot-and-mouth disease virus capsid precursor ploypeptide P1 induce cellular but not homoral antiviral immunity and partial protection in pigs. Virology (New York), 1999, 259(1): 129~134.
    171. Schiller J.T., Lowy D.R. Papillomavirus-like particle based vaccines: cervical cancer and beyond. Expert Opin Biol Ther, 2001, 1: 571~581.
    172. Scudamore J.M., Harris D.M. Control of foot and mouth disease: lessons from the experience of the outbreak in Great Britain in 2001. Rev Sci Tech Off Int Epiz, 2002, 21:699e710.
    173. Shieh J.J., Liang C.M., Chen C.Y., Lee F., Jong M.H., Lai S.S., Liang S.M. Enhancement of the immunity to foot-and-mouth disease virus by DNA priming and protein boosting immunization. Vaccine, 2001, 19: 4002~4010.
    174. Sisk W.P., Bradley J.D., Leipold R.J., Stoltzfus A.M., Ponce de Leon M., Hilf M., Peng C., Cohen G.H., Eisenberg R.J. High-level expression and purification of secreted forms of herpes simplex virus type 1 glycoprotein gD synthesized by baculovirus-infected insect cells. J Virol, 1994, 68(2):766~775.
    175. Skinner H.H. Propagation of strains of foot-and-mouth disease virus in unweaned white mice. Proc R Soc Med, 1951, 44: 1041~ 1044.
    176. S?rensen K.J., de Stricker K., Dyrting K.C., Grazioli S., Haas B. Differentiation of foot-and-mouth disease virus infected animals from vaccinated animals using a blocking ELISA based on baculovirus expressed FMDV 3ABC antigen and a 3ABC monoclonal antibody. Arch Virol, 2005, 150(4): 805~814.
    177. S?rensen K.J., Hansen C.M., Madsen E.S., Madsen K.G.Blocking ELISAs using the FMDV non-structural proteins 3D, 3AB, and 3ABC produced in the baculovirus expression system. Vet Q, 1998, 20 (Suppl 2): S17~S20.
    178. Spier R.E. FMD in the UK-the 2001 outbreak, what if? Vaccine, 2001, 19: 4339~4341.
    179. Sriram S., Palhan VB., Gopinathan K.P. Heterologous promoter recognition leading to high-level expression of cloned foreign genes in Bombyx mori cell lines and larvae. Gene, 1997, 190(1): 181~189.
    180. Strohmaier K., Franze R., and Adam K.H. Location and characterization of the antigenic portion of the FMDV immunizing protein. J Gen Virol, 1982, 59: 295 ~ 306.
    181. Su B.W., Wang J.P., Wang X., Jin H.L., Zhao G., Ding Z., Kang Y.M., Wang B. The effects of IL-6 and TNF-αas molecular adjuvants on immune responses to FMDV and maturation of dendritic cells by DNA vaccination. Vaccine, 2008, 26: 5111~5122.
    182. Sutmoller P., BartelingS.S., Olascoaga R.C., and Sumption K.J. Control and eradication of foot-and-mouth disease. Virus Res, 2003, 91 (1): 101 ~ 144.
    183. Suzich J.A., Ghim S.J., Palmer-Hill F.J., White W.I., Tamura J.K., Bell J.A., Newsome J.A., Jenson A.B., Schlegel R. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc Natl Acad Sci USA, 1995, 92: 11553~11557.
    184. Taboga O., Tami C., Carrillo E., Nunez J.I., Rodriguez A., Saiz J.C., Blanco E., Valero M.L., Roig X., Camarero J.A., Andreueu D., Mateu M.G., Giralt E., Domingo E., Sobrino F., and Palma E.L. A large-scale evaluation of peptide vaccines against foot-and-mouth disease: lack of solid protection in cattle and isolation of escape mutants. J Virol, 1997, 71(4): 2606 ~ 2614.
    185. Tacket C.O., Sztein M.B., Losonsky G.A., Wasserman S.S., Estes M.K. Humoral, mucosal, and cellular immune responses to oral Norwalk virus-like particles in volunteers. Clin Immunol, 2003, 108: 241~247.
    186. Tatman J.D., Preston V.G., Nicholson P., Elliott R.M., Rixon F.J. Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. J Gen Virol, 1994, 75: 1101~1113.
    187. Tegerstedt K., Andreasson K., Vlastos A., Hedlund K.O., Dalianis T., Ramqvist T. Murine pneumotropic virus VP1 virus-like particles (VLPs) bind to several cell types independent of sialic acid residues and do not serologically cross react with murine polyomavirus VP1 VLPs. J Gen Virol, 2003, 84: 3443~3452.
    188. Tessier D.C., Thomas D.Y., Khouri H.E., Laliberte F., Vernet T. Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide. Gene, 1991, 98(2): 177~183.
    189. Top F. H., Buescher E. L., Bancroft W. H., and Russell P. K. Immunization with live types 7 and 4 adenovirus vaccines. II. Antibody response and protective effect against acute respiratory disease due to adenovirus type 7. J Infect Dis, 1971, 24:155~160.
    190. Touze A., Bousarghin L., Ster C., Combita A.L., Roingeard P., Coursaget P. Gene transfer using human polyomavirus BK viruslike particles expressed in insect cells. J Gen Virol,2001, 82: 3005~3009.
    191. Tsao E., Mason M., Cacciuttolo M., Bowen S., Wassweman G. Production of parvovirus B19 vaccine in insect cells co-infected with double baculovirus. Biotechnol Bioeng, 1996, 49: 130~138.
    192. Twomey T., France L. L., Hassard S., Burrage T. G., Newman J. F. E., Brown F. Characterization of an acid-resistant mutant of foot-and-mouth cisease virus. Virology, 1995, 206: 69~75.
    193. Urakawa T., Ferguson M., Minor P. D., Cooper J., Sullivan M., Almond J. W., Bishop D. H. L. Synthesis of immunogenic, but non-infectious, poliovirus particles in insect cells by a baculovirus expression vector. Journal of General Virology, 1989, 70: 1453~1463.
    194. Van der Geld Y.M., Smook M.L., Huitema M.G., Harmsen M.C., Limburg P.C., Kallenberg C.G. Expression of recombinant proteinase 3, the autoantigen in Wegener's granulomatosis, in insect cells. J Immunol Methods, 2002, 264(1-2): 195~205.
    195. van Rensburg H.G., Henry T.M., and Mason P.W. Studies of genetically defined chimeras of a European type A virus and a South African Territories type 2 virus reveal growth determinants for foot-and-mouth disease virus . J Gen Virol, 2004, 85(Pt 1): 61~ 68 .
    196. Van Vlijmen H. W. T., Curry S., Schaefer M., Karplus M. Titration calculations of foot-and-mouth disease virus capsids and their stabilities as a function of pH. Journal of Molecular Biology, 1998, 275: 295~308.
    197. Vihko P., Kurkela R., Porvari K., Herrala A., Lindfors A., Lindqvist Y., Schneider G. Rat acid phosphatase: overexpression of active, secreted enzyme by recombinant baculovirus-infected insect cells, molecular properties, and crystallization.Proc Natl Acad Sci U S A. 1993, 90(3): 799~803.
    198. Volpers C., Schirmacher P., Streeck R.E., Sapp M. Assembly of the major and the minor capsid protein of human papillomavirus type 33 into virus-like particles and tubular structures in insect cells. Virology, 1994, 200: 504~512.
    199. Wang C., Olsen J., Zhang Y., Barklis E. Assembly of HIV GAG-βgalactosidase fusion proteins into virus particles. Virology, 1994, 200: 524~34.
    200. Wang J., Zganiacz A., and Xing Z. Enhanced immunogenicity of BCG vaccine by using a viral-based GM-CSF transgene adjuvant formulation. Vaccine, 2002, 20(23 ~ 24): 2887 ~ 2898 .
    201. Wang X., Zhang X.Y., Kang Y.M., Jin H.L., Du X.G., Zhao G., Yu Y., Li J.Y., Su B.W., Huang C., Wang B. Interleukin-15 enhance DNA vaccine elicited mucosal and systemic immunity against foot and mouth disease virus. Vaccine, 2008, 26: 5135~5144.
    202. Wang Z.M., Tong L.L., Grant D., Cihlar T. Expression and characterization of soluble human parainfluenza virus type 1 hemagglutinin-neuraminidase glycoprotein. J Virol Methods, 2001, 98(1): 53~61.
    203. Ward G., Rieder E., Mason P.W. Plasmid DNA encoding replicating foot-and-mouth diseasevirus genomes induces antiviral immune responses in swine. J Virol, 1997, 71: 7442~7447.
    204. Warwicker J. Model for the differential stabilities of rhinovirus and poliovirus to mild acidic pH based on electrostatics calculations. Journal of Molecular Biology, 1992, 223: 247~257.
    205. Webb N.R., Summers M.D., Expression of proteins using recombinant baculovirus. Technique 2, 1990, 173~188.
    206. Wicker-Planquart C., Canaan S., Rivière M., Dupuis L., Verger R. Expression in insect cells and purification of a catalytically active recombinant human gastric lipase. Protein Eng, 1996, 9(12): 1225~1232.
    207. Wigdorovitz A., Carrillo C., Dus Santos M.J., Trono K., Peralta A., Gomez M.C., Rios R.D., Franzone P.M., Sadir A.M., Escribano J.M., and Borca M.V. Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1. Virology, 1999 a, 255 (2): 347 ~ 353.
    208. Wigdorovitz A., Perez Filgueira D.M., Robertson N., Carrillo C., Sadir A.M., Morris T.J. and Borca M.V. Protection of mice against challenge with foot and mouth disease virus (FMDV) by immunization with foliar extracts from plants infected with recombinant tobacco mosaic virus expressing the FMDV structural protein VP1. Virology, 1999 b, 264 (1): 85~91.
    209. Winokur P. L., Mclinden J. H., Stapleton J.T.The hepatitis A virus polyprotein expressed by a recombinant vaccinia virus undergoes proteolytic processing and assembly into virus like particles. Journal of Virology, 1991, 65: 5029~5036.
    210. Wong H.T., Cheng S.C., Chan E.W., Sheng Z.T., Yan W.Y., Zheng Z.X., and Xie Y. Plasmids encoding foot-and-mouth disease virus VP1 epitopes elicited immune responses in mice and swine and protected swine against viral infection. Virology, 2000, 278 (1): 27~ 35 .
    211. Wong H.T., Cheng S.C., Sin F.W., Chan E.W., Sheng Z.T., and Xie Y. A DNA vaccine against foot-and-mouth disease elicits an immune response in swine which is enhanced by co-administration with interleukin-2. Vaccine, 2002, 20 (21-22): 2641~2647 .
    212. Wu C.N., Lin Y.C., Fann C., Liao N.S., Shih S.R., Ho M.S. Protection against lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccines and inactivated virus. Vaccine, 2001, 20: 895~904.
    213. Wu Q., Brum M.C.S., Caron L., Koster M., and Grubman M.J. Adenovirus-mediated type I interferon expression delays and reduces disease signs in cattle challenged with foot-and-mouth disease virus. J Int Cyt Res, 2003, 23: 359~ 368.
    214. Wu X.F., Kamei K., Sato H., Sato S.I., Takano R., Ichida M., Mori H., Hara S. High-level expression of human acidic and basic fibroblast growth factors in the silkworm, Bombyx mori L. using recombinant baculovirus. Protein Expres Purif, 2001, 21(1): 192~200.
    215. Wu X.F., Yin Z.Z., Cao C.P., Huang L., Lu X.M., Liu J.X., Cui W.Z. Expression of human VEGF165 in silkworm (Bombyx mori L) by using a recombinant baculovirus and itsbioactivity assay. J Biotechnol, 2004, 111(3): 253~261.
    216. Xiang J., Wunschmann S., George S.L., Klinzman D., Schmidt W.N., LaBrecque D.R., Stapleton J.T. Recombinant hepatitis C virus-like particles expressed by baculovirus: utility in cell-binding and antibody detection assays. J Med Virol, 2002, 68: 537~543.
    217. Xiang Z. Q., Yang Y., Wilson J. M., and Ertl H. C. A replicationdefective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology, 1996, 219: 220~227.
    218. Yao Q., Bu Z., Vzorov A., Yang C., Compans R.W. Virus-like particle and DNA-based candidate AIDS vaccines. Vaccine, 2003, 21: 638~643.
    219. Yao Q., Qian P., Huang Q., Cao Y., Chen H. Comparison of immune responses to different foot-and-mouth disease genetically engineered vaccines in guinea pigs. J Virol Methods, 2008, 147(1): 143~150.
    220. Zhao Y., Chapman D. A., Jones I. M. Improving baculovirus recombination. Nucleic Acids Res, 2003, 31(2):E6~6.
    221. Zheng M., Jin N., Zhang H., Jin M., Lu H., Ma M., Li C., Yin G., Wang R., Liu Q., Construction and immunogenicity of a recombinant fowlpox virus containing the capsid and
    3c protease coding regions of foot-and-mouth disease virus. J Virol Methods, 2006, 136: 230~237.
    222. Zhu N. L., Li G. D., Wang Y. Physiochemical and immunological characterization of hepatitis A virus nucleocapsids expressed in a vaccinia/TT/EMCV system. Archives of Virology, 1994, 135: 443~449.
    223. Zibert A., Maass G., Strebel K., Falk M.M., and Beck E. Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA . J Virol, 1990, 64(6): 2467 ~ 2473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700