α-氨基腈类腈水合酶酶源的筛选及其在合成2-氨基-2,3-二甲基丁酰胺中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物腈水合酶作为腈转化酶家族的重要一员,能够催化腈类化合物的水合反应生成高附加值的酰胺,被广泛应用于制备医药、农药中间体和精细化工产品等。2-氨基-2,3-二甲基丁酰胺是广谱、高效的咪唑啉酮除草剂合成的关键中间体。腈水合酶催化转化2-氨基-2,3-二甲基丁腈制备2-氨基-2,3-二甲基丁酰胺具有产率高、反应条件温和、环境友好等特点,符合“绿色化学”的要求。本论文以该工艺路线为核心,从生物催化剂的发现、表征、制备与应用,产物的分离、提纯等方面展开研究。
     本文首先创建了一个以α-氨基腈或α-氨基酰胺为底物的腈水合酶和酰胺酶高通量筛选模型。研究并提出了其显色反应的机理,是基于亚铁离子和铁离子与α-氨基腈溶液中的氰离子或α-氨基酰胺溶液中的氢氧根离子的反应。通过该模型,从418株菌种中筛选到了3株能转化2-氨基-2,3-二甲基丁腈生产2-氨基-2,3-二甲基丁酰胺的腈水合酶产生菌。其中两株筛选自土壤样品,编号ZA0707和P4;另外一株菌Rhodococcus boritolerans CCTCC M 208108来自本实验室的微生物菌库。该模型是第一个直接、快速的腈水合酶高通量筛选模型,同时也是第一个集腈水合酶和酰胺酶的筛选于一体的筛选模型。
     通过形态学、生理生化试验、API自动鉴定系统、16S rDNA序列及系统发育分析,菌株ZA0707被鉴定为庆笙红球菌(Rhodococcus qingshengii)。这是该种内首次报道的产腈水合酶的菌株。进而研究并对比了菌株ZA0707和R. boritolerans CCTCC M 208108胞内腈水合酶的氰离子耐受性、产物耐受性、热稳定性和对2-氨基2,3-二甲基丁腈活力等方面的特性,优选R. boritolerans CCTCC M 208108作为酶法转化2-氨基2,3-二甲基丁腈制备2-氨基2,3-二甲基丁酰胺的生物催化剂并用于后续实验。
     通过单因素和响应面优化法对R. boritolerans CCTCC M 208108产腈水合酶的培养基成分进行了优化。确定了较佳的产酶培养基组分为(g/l):蔗糖7.00,柠檬酸钠3.04,牛肉膏5.13,酵母粉5.00,己内酰胺1.50,KH2PO4 1.0,K2HPO4 1.0,NaCl 1.0,FeCl3 0.005,CoCl2 0.005,MnSO4 0.005。随后研究并选定了较适宜的培养条件为:初始pH6.5,30°C,装液量40 ml/250 ml,接种量1.5 ml。在上述培养条件下培养60 h后,生物量达到6.21 g/l,腈水合酶的活力达到5393 U/g CDW。
     论文还研究了酶催化反应的环境和介质对该腈水合酶活力的影响。结果表明,最适宜的缓冲液体系是Tris-HCl溶液,pH8.9;最高酶活出现在30?35°C范围内;向反应体系中添加30%(v/v)正己烷和1 mM Ni2+,酶活力可分别提高30%和23%。对酶促反应动力学参数的研究发现,反应的Vmax和Km分别为:15.73μmol·min?1·mg?1和44.30 mM。发现了降低温度可以使2-氨基-2,3-二甲基丁腈溶液更加稳定,特别是在10°C,由底物自发解离产生的氰离子浓度仅为2.01 mM,不足30°C下的四分之一。在深入了解影响反应的主要因素以后,放大反应体系至800 ml,建立了水相和以正己烷为共溶剂的两相反应体系;对关键的反应参数优化后,有效地减轻了氰离子和底物对腈水合酶的抑制,使得产物浓度、产率和催化剂生产力分别达到50 g/l、91%和6.3 g product/g catalyst。在优化条件下,菌体至少可以重复利用两次,使得催化剂生产力进一步提高到12.3 g product/g catalyst。
     论文随后选用膨胀型珍珠岩作为固定化的载体,采用吸附培养法固定R. boritolerans CCTCC M 208108细胞,以提高细胞的氰离子耐受性和重复使用性能。从提高酶活的角度,优化珍珠岩吸附固定化细胞的制备条件,确定较佳条件为:初始培养pH值7.0,固定化培养温度30°C,载体用量40 ml(培养基用量40 ml,250 ml三角瓶),最佳培养时间54 h。在此条件下,固定化细胞和游离细胞相比氰离子耐受性和重复使用次数分别提高了16%和3批次。这是有关珍珠岩用于固定化腈水合酶或其产生菌的首次报道。研究了固定化细胞转化2-氨基-2,3-二甲基丁腈的动力学参数:Vmax-固= 13.59μmol·min~(-1)·mg~(-1),Km-固= 47.98 mM;并求得固定化细胞催化反应的达姆科勒数,Da = 4.9×104。固定化细胞的Km-固值大于游离细胞的Km值,而且Da远大于1,说明外部传质阻力(底物从主体溶液到固定化载体上的细胞表面所受的阻力)影响了固定化细胞转化2-氨基-2,3-二甲基丁腈,并且可能成为反应的限速因素。
     论文最后开发了一个从反应体系中分离、纯化产物2-氨基-2,3-二甲基丁酰胺的新方法。利用离心、活性炭吸附除杂、减压蒸馏、乙酸乙酯/正己烷重结晶等分离手段对酶催化反应体系中的重结晶产物进行了有效分离、提纯(纯度达98.5%)。并通过FT-IR、1H NMR和13C NMR等分析方法对产物结构进行了表征,进一步确定该结晶产物为2-氨基-2,3-二甲基丁酰胺。
Nitrile hydratase (NHase) is one of the important enzymes of nitrile metabolism in numerous microbes that catalyses the hydration of nitriles to higher-value amides, and has been successfully adopted in the chemical industry for production of pharmaceuticals, agrochemicals and fine chemicals. 2-Amino-2,3-dimethylbutyramide (ADBA) is a key intermediate of highly potent and broad spectrum imidazolinone herbicides. Enzymatic hydration of 2-amino-2,3-dimethylbutyronitrile (ADBN) by NHase offers alternative to conventional ADBA production due to the high yield, mild conditions and environment-friendly nature. This paper focused on the bioconversion of ADBN to ADBA and investigated in respect of screening, identification, cultivation and application of the biocatalysts, as well as separation and purification of product.
     A combination of ferrous and ferric ions was used to establish a novel colorimetric screening method for nitrile hydratase and amidase withα-amino nitriles andα-amino amides as substrates, respectively. Mechanisms of color changes were further proposed. It was due to the reactions involved ferrous ions, ferric ions, cyanide ions dissociated spontaneously fromα-amino nitriles solution and hydroxyl ions in theα-amino amides solution. Using this method, 3 strains with nitrile hydratase activity towards ADBN were screened from 418 isolates. 2 of them named ZA0707 and P4 were isolated from soil samples and the other one, R. boritolerans CCTCC M 208108 was selected from culture collections in our laboratory. Versatility of this method enabled it the first direct and inexpensive high-throughput screening system for both NHase and amidase.
     Strain ZA0707 screened from soil samples was identified as Rhodococcus qingshengii on the basis of its morphological and physiological features along with API identification system and 16S rDNA sequencing method. This is the first report on strains in this species with NHase activity. In addition, the cyanide-resistance, product tolerance, thermostability and NHase activity towards ADBN of strain ZA0707 and R. boritolerans CCTCC M 208108 were investigated. Consequently, R. boritolerans CCTCC M 208108 with the better results in all these aspects were selected as the optimum catalyst for the following investigation.
     The medium composition for NHase formation in R. boritolerans CCTCC M 208108 was optimized by single factors and response surface methodology. The optimum medium composition was as follows (g/l): sucrose 7.00, sodium citrate 3.04, beef extract 5.13, yeast extract 5.00, caprolactam 1.50, KH2PO4 1.0, K2HPO4 1.0, NaCl 1.0, FeCl3 0.005, CoCl2 0.005, MnSO4 0.005. Furthermore, the satisfactory culture conditions for cell growth and NHase production were obtain as bellow: initial pH6.5, temperature 30°C, medium volumetric ratio 16% (v/v), inoculum size 3.75% (v/v). Under these conditions, 6.21 g/l biomass and 5393 U/g CDW specific NHase activity were achieved after 60 h cultivation.
     The influences of reaction conditions and media on NHase activity were also investigated. It was indicated that the NHase exhibited maximal activity in Tris-HCl buffer (pH 8.9) at 30°C. The addition of 30 % (v/v) n-hexane and 1 mM Ni2+ in the reaction mixture resulted in approximately 30 and 23 %, respectively, enhancement in NHase activity. Kinetic studies on the NHase catalyzed reactions were performed and the kinetic constants were as follows: Vmax = 15.73μmol·min?1·mg?1, Km = 44.30 mM. Moreover, ADBN was found to be more stable in water at lower temperature. Especially, cyanide accumulated very slowly in the initial 10 h at 10 oC, giving concentrations of 2.01 mM, which was less than a quarter of that at 30 oC. Based on these findings, a preparative scale (800 ml) process for continuous production of ADBA in both aqueous and biphasic systems was developed and some key parameters of the biocatalytic process were optimized. Inhibition of NHase by cyanide dissociated from ADBN was successfully overcome by temperature control (at 10 oC). The product concentration, yield and catalyst productivity were further improved to 50 g·l~(-1), 91% and 6.3 g product/g catalyst using a 30/100 (v/v) n-hexane/water biphasic system. Furthermore, cells of R. boritolerans CCTCC M 208108 could be reused for at lease twice by stopping the continuous reaction before cyanide concentration rose to 2 mM, with the catalyst productivity increasing to 12.3 g product/g catalyst.
     Next, in order to improve the cyanide-resistance and reusability of the biocatalyst, expanded perlite was employed to immobilize R. boritolerans CCTCC M 208108. After optimization in terms of NHase activity, the optimum preparation conditions were set as follows: initial pH7.0, temperature 30 oC, perlite loading 40 ml (medium volume 40 ml in 250 ml flask), 54 h of immobilization time. As a result, the cyanide-resistance and reusability were greatly improved, which were 16% and 3 batches higher than those of free cells. It was the first report on immobilization of NHase-producing strain using perlite. The kinetic constants of immobilized cells including maximum reaction velocity (Vmax-固) and Michaelis constant (Km-固) were calculated to be 13.59μmol·min~(-1)·mg~(-1) and 47.98 mM, respectively. Free cells showed lower Km value of 44.30 mM compared to 47.98 mM for immobilized cells. It indicated that the substrate ADBN was more accessible to free cells than immobilized cells. This also suggested that external mass transfer (ADBN from bulk to cell in immobilized matrix) resistance affected hydration of ADBN by immobilized cells and could be the limiting step in comparison to the reaction rate. It was further confirmed by calculating the values of Damk-hler number at different ADBN concentrations, which were very much higher than 1.
     Finally, a new method for separation and purification of ADBA was developed. Purified ADBA (98.5%) was obtained by centrifugation, impurity removal using activated carbon, reduced pressure distillation and recrystallization from ethyl acetate/n-hexane. The structure of ADBA was further confirmed by FT-IR, 1H NMR and 13C NMR spectra.
引文
[1]孙志浩.生物催化工艺学[M].北京:化学工业出版社, 2004.
    [2] O'Grady D, Pembroke JT. Isolation of a novel Agrobacterium spp capable of degrading a range of nitrile compounds[J]. Biotechnol Lett, 1994, 16: 47-50.
    [3] De Raadt A, Klempier N, Faber K, et al. Chemoselective enzymatic hydrolysis of aliphatic and alicyclic nitriles[J]. J Chem Soc Perkin Trans 1, 1992: 137-140.
    [4] Faber K. Biotransformation in organic synthesis (3rd ed.)[M]. Beilin Heidelberg: Springer-Verlag, 1997.
    [5] Kobayashi M, Shimizu S. Nitrile hydrolases[J]. Curr Opin Chem Biol, 2000, 4: 95-102.
    [6] Prasad S, Bhalla TC. Nitrile hydratases (NHases): At the interface of academia and industry[J]. Biotechnol Adv, 2010, 28: 725-741.
    [7] Fernandes BCM, Mateo C, Kiziak C, et al. Nitrile hydratase activity of a recombinant nitrilase[J]. Adv Synth Catal, 2006, 348: 2597-2603.
    [8] MartinkováL, K?en V. Biotransformations with nitrilases[J]. Curr Opin Chem Biol, 2010, 14: 130-137.
    [9] MartinkováL, Vejvoda V, K?en V. Selection and screening for enzymes of nitrile metabolism[J]. J Biotechnol, 2008, 133: 318-326.
    [10] Zheng YG, Chen J, Liu ZQ, et al. Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium[J]. Appl Microbiol Biotechnol, 2008, 77: 985-993.
    [11] Jin SJ, Zheng RC, Zheng YG, et al. R-enantioselective hydrolysis of 2,2-dimethylcyclo -propanecarboxamide by amidase from a newly isolated strain Brevibacterium epidermidis ZJB-07021[J]. J Appl Microbiol, 2008, 105: 1150-1157.
    [12]林志坚,郑仁朝,楼亿圆,等.草甘膦化学合成工艺及其中间体的生物法合成技术展望[J].农药, 2009, 48: 547-551.
    [13] Arnaud A, Galzy P, Jallageas JC. Remarques sur l'activiténitrilasique de quelques bactéries[J]. CR Acad Sci Paris, 1976, 287: 571-573.
    [14] Asano Y, Tani Y, Yamada H. A new enzyme‘nitrile hydratase’which degrades acetonitrile in combination with amidase[J]. Agric Biol Chem 1980, 44: 2251-2252.
    [15] Kato Y, Nakamura K, Sakiyama H, et al. Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp, strain OxB-1: Purification, characterization, and molecular cloning of the gene[J]. Biochemistry, 2000, 39: 800-809.
    [16] Gavagan JE, DiCosimo R, Eisenberg A, et al. A Gram-negative bacterium producing a heat-stable nitrilase highly active on aliphatic dinitriles[J]. Appl Microbiol Biotechnol, 1999, 52: 654-659.
    [17] Watanabe I, Satoh Y, Enomoto K. Screening, isolation and taxonomical properties of microorganisms having acrylonitrile-hydrating activity[J]. Agric Biol Chem, 1987, 51: 3193-3199.
    [18] Shimizu A, Kobayashi T. Conversion of cyanoglycosides into amide compounds, preventing cyanogenesis in plants for foods and feed[P]. JP: 2000245494, 2000.09.12.
    [19] Pereira RA, Graham D, Rainey FA, et al. A novel thermostable nitrile hydratase[J]. Extremophiles, 1998, 2: 347-357.
    [20] Eyal J, Charles M. Hydration of 3-cyanopyridine to nicotinamide by whole cell nitrile hydratase[J]. J Ind Microbiol, 1990, 5: 71-77.
    [21] Vega-Hernandez MC, Leon-Barrios M, Perez-Galdona R. Indole-3-acetic acid production from indole-3-acetonitrile in Bradyrhizobium[J]. Soil Biol Biochem, 2002, 34: 665-668..
    [22] Shoemaker HE, Nossin PMM, van Geem PC. Production of linear unsaturated amides[P]. NL: 1011867, 2000.10.24.
    [23] Miyanaga A, Fushinobu S, Ito K, et al. Crystal structure of cobalt-containing nitrile hydratase[J]. Biochem Bioph Res Co, 2001, 288: 1169-1174.
    [24] Stevens JM, Belghazi M, Jaouen M, et al. Posttranslational modification of Rhodococcus R312 and Comomonas NI1 nitrile hydratases[J]. J Mass Spectrom, 2003, 38: 955-961.
    [25] Nawaz MS, Franklin W, Campbell WL, et al. Metabolism of acrylonitrile by Klebsiella pneumoniae[J]. Arch Microbiol, 1991, 156: 231-238.
    [26] Jallageas JC, Arnaud A, Galzy P. Bioconversion of nitriles and their applications[J]. Adv Biochem Engg, 1980, 14: 1-32.
    [27] Feng YS, Chen PC, Wen FS, et al. Nitrile hydratase from Mesorhizobium sp. F28 and its potential for nitrile biotransformation[J]. Process Biochem, 2008, 43: 1391-1397.
    [28] Maiergreiner UH, Obermaierskrobranek BMM, Estermaier LM, et al. Isolation andproperties of a nitrile hydratase from the soil fungus Myrothecium verrucaria that is highly specific for the fertilizer cyanamide and cloning of its gene[J]. P Natl Acad Sci USA, 1991, 88: 4260-4264.
    [29] Anton DL, Fallon RD, Stieglitz B, et al. Preparation of enantiomeric 2-alkanoic acid amides and acids from racemic nitriles[P]. US: 5593871 (A), 1997.01.14.
    [30] Rezende RP, Dias JCT, Rosa CA, et al. Utilization of nitriles by yeasts isolated from a Brazilian gold mine[J]. J Gen Appl Microbiol, 1999, 45: 185-192.
    [31] Hensel M, Lutz-Wahl S, Fischer L. Stereoselective hydration of (RS)-phenylglycine nitrile by new whole cell biocatalysts[J]. Tetrahedron: Asymmetr, 2002, 13: 2629-2633.
    [32] Van der Walt JP, Brewis EA, Prior BA. A Note on the Utilization of Aliphatic Nitriles by Yeasts[J]. Syst Appl Microbiol, 1993, 16: 330-332.
    [33] Yamada H, Asano Y, Tani Y. Microbial utilization of glutaronitrile[J]. J Ferment Technol, 1980, 58: 495-500.
    [34] Kobayashi M, Fujita T, Shimizu S. Hyper induction of nitrile hydratase acting on indole-3-acetonitrile in Agrobacterium tumefaciens[J]. Appl Microbiol Biotechnol, 1996, 45: 176-181.
    [35] Black GW, Gregson T, McPake CB, et al. Biotransformation of nitriles using the solvent-tolerant nitrile hydratase from Rhodopseudomonas palustris CGA009[J]. Tetrahedron Lett, 2010, 51: 1639-1641.
    [36] Jin LQ, Liu ZQ, Zheng YG, et al. Identification and characterization of Serratia marcescens ZJB-09104, a nitrile-converting bacterium[J]. World J Microb Biot, 2010, 26: 817-823.
    [37] Robins KT, Nagasawa T. Process for preparing amides[P]. WO: 9905306 (A1), 1999.02.04.
    [38] Prasad S, Sharma D, Bhalla T. Nitrile- and amide-hydrolysing activity in Kluyveromyces thermotolerans MGBY 37[J]. World J Microb Biot, 2005, 21: 1447-1450.
    [39] Yamada H, Asano Y, Hino T. Microbial utilization of acrylonitrile[J]. J Ferment Technol, 1979, 57: 8-14.
    [40] Bui K, Fradet H, Arnaud A, et al. A nitrile hydratase with a wide substrate specificity produced by a Brevibacterium sp.[J]. J Gen Microbiol, 1984, 130: 89-93.
    [41] Nagasawa T, Nakamura T, Yamada H. Epsilon-caprolactam, a new powerful inducer for the formation of Rhodococcus Rhodochrous J1 nitrilase[J]. Arch Microbiol, 1990, 155: 13-17.
    [42] Prasad S, Raj J, Bhalla TC. Optimization of culture conditions for hyper production of nitrile hydratase of Rhodococcus rhodochrous PA-34[J]. Indian J Microbiol, 2004, 44: 251-256.
    [43] Okamoto S, Eltis LD. Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1[J]. Mol Microbiol, 2007, 65: 828-838.
    [44] Cramp RA, Cowan DA. Molecular characterisation of a novel thermophilic nitrile hydratase[J]. Biochim Biophys Acta-Protein Struct Molec Enzym, 1999, 1431: 249-260.
    [45] Nagasawa T, Ryuno K, Yamada H. Nitrile hydratase of Brevibacterium R312--purification and characterization[J]. Biochem Biophys Res Commun, 1986, 139: 1305-1312.
    [46] Nagasawa T, Takeuchi K, Yamada H. Characterization of a new cobalt-containing nitrile hydratase purified from urea-induced cells of Rhodococcus rhodochrous J1[J]. Eur J Biochem, 1991, 196: 581-589.
    [47] Wieser M, Takeuchi K, Wada Y, et al. Low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1: purification, substrate specificity and comparison with the analogous high-molecular-mass enzyme[J]. FEMS Microbiol Lett, 1998, 169: 17-22.
    [48] Mizunashi W, Nishiyama M, Horinouchi S, et al. Overexpression of high-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1 in recombinant Rhodococcus cells[J]. Appl Microbiol Biotechnol, 1998, 49: 568-572.
    [49] Bonnet D, Artaud I, Moali C, et al. Highly efficient control of iron-containing nitrile hydratases by stoichiometric amounts of nitric oxide and light[J]. FEBS Letters, 1997, 409: 216-220.
    [50] Nojiri M, Nakayama H, Odaka M, et al. Cobalt-substituted Fe-type nitrile hydratase of Rhodococcus sp. N-771[J]. FEBS Lett, 2000, 465: 173-177.
    [51] Kato Y, Yoshida S, Xie SX, et al. Aldoxime dehydratase co-existing with nitrile hydratase and amidase in the iron-type nitrile hydratase-producer Rhodococcus sp. N-771[J]. J Biosci Bioeng, 2004, 97: 250-259.
    [52] Meth-Cohn O, Wang MX. Regioselective biotransformations of dinitriles using Rhodococcus sp. AJ270[J]. J Chem Soc, Perkin Trans 1, 1997: 3197-3204.
    [53] Bauer R, Knackmuss HJ, Stolz A. Enantioselective hydration of 2-arylpropionitriles by a nitrile hydratase from Agrobacterium tumefaciens strain d3[J]. Appl Microbiol Biotechnol, 1261998, 49: 89-95.
    [54] Vekova J, Pavlu L, Vosahlo J, et al. Biodegradation of herbicides bromoxynil, ioxynil and dichlobenil by Agrobacterium radiobacter 8/4 cells immobilized in polysaccharide matrix[J]. Int Biodeterior Biodegrad, 1996, 37: 248-249.
    [55] Bianchi D, Bosetti A, Cesti P, et al. Stereoselective microbial hydrolysis of 2-aryloxypropionitriles[J]. Biotechnol Lett, 1991, 13: 241-244.
    [56] MartinkováL, K?en V. Nitrile- and amide-converting microbial enzymes: Stereo-, regio- and chemoselectivity[J]. Biocatal Biotransfor, 2002, 20: 73-93.
    [57] Fallon RD, Stieglitz B, Turner I. A Pseudomonas putida capable of stereoselective hydrolysis of nitriles[J]. Appl Microbiol Biotechnol, 1997, 47: 156-161.
    [58] Wu S, Fallon RD, Payne MS. Over-production of stereoselective nitrile hydratase from Pseudomonas putida 5B in Escherichia coli: activity requires a novel downstream protein[J]. Appl Microbiol Biotechnol, 1997, 48: 704-708.
    [59] Payne MS, Wu SJ, Fallon RD, et al. A stereoselective cobalt-containing nitrile hydratase[J]. Biochemistry, 1997, 36: 5447-5454.
    [60] Wang MX. Enantioselective biotransformation of nitriles in organic synthesis[J]. Topics Catal, 2005, 35: 117-130.
    [61] Guo XL, Deng G, Xu J, et al. Immobilization of Rhodococcus sp. AJ270 in alginate capsules and its application in enantio selective biotransformation of trans-2-methyl-3-phenyl-oxiranecarbo -nitrile and amide[J]. Enzyme Microb Technol, 2006, 39: 1-5.
    [62] P?epachalováI, MartinkováL, Stolz A, et al. Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus equi A4[J]. Appl Microbiol Biotechnol, 2001, 55: 150-156.
    [63] Vejvoda V, Sveda O, Kaplan O, et al. Biotransformation of heterocyclic dinitriles by Rhodococcus erythropolis and fungal nitrilases[J]. Biotechnol Lett, 2007, 29: 1119-1124.
    [64] Gilligan T, Yamada H, Nagasawa T. Production of S-(+)-2-phenylpropionic acid from (R,S)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi Tg328[J]. Appl Microbiol Biotechnol, 1993, 39: 720-725.
    [65] Otsubo K, Yamamoto K. Optically active amide preparation[P]. JP: 7303491, 1995.11.21.
    [66] Tamura K. Method of producing optically active alpha-hydroxy acid or alpha-hydroxyamide[P]. EP: 0711836 (A1), 1996.05.15.
    [67] Kinfe HH, Chhiba V, Frederick J, et al. Enantioselective hydrolysis of beta-hydroxy nitriles using the whole cell biocatalyst Rhodococcus rhodochrous ATCC BAA-870[J]. J Mol Catal B-Enzym, 2009, 59: 231-236.
    [68] Hashimoto Y, Sasaki S, Herai S, et al. Site-directed mutagenesis for cysteine residues of cobalt-containing nitrile hydratase[J]. J Inorg Biochem, 2002, 91: 70-77.
    [69] Katayama Y, Matsushita Y, Kaneko M, et al. Cloning of genes coding for the three subunits of thiocyanate hydrolase of Thiobacillus thioparus THI 115 and their evolutionary relationships to nitrile hydratase[J]. J Bacteriol, 1998, 180: 2583-2589.
    [70] Huang WJ, Jia J, Cummings J, et al. Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold[J]. Structure, 1997, 5: 691-699.
    [71] Kubiak K, Nowak W. Molecular dynamics simulations of the photoactive protein nitrile hydratase[J]. Biophys J, 2008, 94: 3824-3838.
    [72] Endo I, Odaka M. What evidences were elucidated about photoreactive nitrile hydratase?[J]. J Mol Catal B-Enzym, 2000, 10: 81-86.
    [73] Kobayashi M, Komeda H, Shimizu S, et al. Characterization and distribution of IS1164 that exists in the high molecular mass nitrile hydratase gene cluster of the industrial microbe Rhodococcus rhodochrous J1[J]. P JPN Acad B-Phys, 1997, 73: 104-108.
    [74] Tsujimura M, Odaka M, Nakayama H, et al. A novel inhibitor for Fe-type nitrile hydratase: 2-cyano-2-propyl hydroperoxide[J]. J Am Chem Soc, 2003, 125: 11532-11538.
    [75] Kovacs JA. Synthetic analogues of cysteinate-ligated non-heme iron and non-corrinoid cobalt enzymes[J]. Chem Rev, 2004, 104: 825-848.
    [76] Crisostomo C, Crestani MG, Garcia JJ. Catalytic hydration of cyanopyridines using nickel(0)[J]. Inorganica Chimica Acta, 2010, 363: 1092-1096.
    [77] Cadierno V, Francos J, Gimeno J. Selective ruthenium-catalyzed hydration of nitriles to amides in pure aqueous medium under neutral conditions[J]. Chem-Eur J, 2008, 14: 6601-6605.
    [78]张云桦,方仁萍,沈寅初.一株产丙烯腈水合酶菌株的研究[J].工业微生物, 1998, 28: 1-5.
    [79]沈寅初,张国凡,韩建生.微生物法生产丙烯酰胺[J].工业微生物, 1994, 24: 24-32.
    [80] Nagasawa T, Shimizu H, Yamada H. The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide[J]. Appl Microbiol Biotechnol, 1993, 40: 189-195.
    [81] Mauger J, Nagasawa T, Yamada H. Synthesis of various aromatic amide derivatives using nitrile hydratase of Rhodococcus Rhodochrous J1[J]. Tetrahedron, 1989, 45: 1347-1354.
    [82] Raj J, Seth A, Prasad S, et al. Bioconversion of butyronitrile to butyramide using whole cells of Rhodococcus rhodochrous PA-34[J]. Appl Microbiol Biotechnol, 2007, 74: 535-539.
    [83] Mauger J, Nagasawa T, Yamada H. Nitrile hydratase-catalyzed production of isonicotinamide, picolinamide and pyrazinamide from 4-cyanopyridine, 2-cyanopyridine and cyanopyrazine in Rhodococcus rhodochrous J1 [J]. J Biotechnol, 1988, 8: 87-95.
    [84] Hann EC, Eisenberg A, Fager SK, et al. 5-cyanovaleramide production using immobilized Pseudomonas chlororaphis B23[J]. Bioorg Med Chem, 1999, 7: 2239-2245.
    [85] Cull SG, Woodley JM, Lye GJ. Process selection and characterisation for the biocatalytic hydration of poorly water soluble aromatic dinitriles[J]. Biocatal Biotransfor, 2001, 19: 131-154.
    [86] Kohyama E, Yoshimura A, Aoshima D, et al. Convenient treatment of acetonitrile-containing wastes using the tandem combination of nitrile hydratase and amidase-producing microorganisms[J]. Appl Microbiol Biotechnol, 2006, 72: 600-606.
    [87] Li T, Liu J, Bai R, et al. Biodegradation of organonitriles by adapted activated sludge consortium with acetonitrile-degrading microorganisms[J]. Water Res, 2007, 41: 3465-3473.
    [88] Wang CC, Lee CM, Chen LJ. Removal of nitriles from synthetic wastewater by acrylonitrile utilizing bacteria[J]. J Environ Sci Health Part A Tox Hazard Subst Environ Eng, 2004, 39: 1767-1779.
    [89] Brand?o PFB, Verseck S, Syldatk C. Bioconversion of D,L-tert-leucine nitrile to D-tert-leucine by recombinant cells expressing nitrile hydratase and D-selective amidase[J]. Eng Life Sci, 2004, 4: 547-556.
    [90] Brady D, Beeton A, Zeevaart J, et al. Characterisation of nitrilase and nitrile hydratasebiocatalytic systems[J]. Appl Microbiol Biotechnol, 2004, 64: 76-85.
    [91]翟慕衡,魏先文,查先庆.配位化学[M].合肥:安徽人民出版社, 2007.
    [92] van Pelt S, van Rantwijk F, Sheldon RA. Synthesis of aliphatic (S)-alpha-hydroxycarboxylic amides using a one-pot bienzymatic cascade of immobilised oxynitrilase and nitrile hydratase[J]. Adv Synth Catal, 2009, 351: 397-404.
    [93]郑裕国,金晓峰,郑仁朝,等.一类生物催化剂——氰基耐受型腈水合酶[J].生物加工过程, 2010, 8: 73-78.
    [94] Gerasimova T, Novikov A, Osswald S, et al. Screening, characterization and application of cyanide-resistant nitrile hydratases[J]. Eng Life Sci, 2004, 4: 543-546.
    [95] Nagasawa T, Nanba H, Ryuno K, et al. Nitrile hydratase of Pseudomonas chlororaphis B23. Purification and characterization[J]. Eur J Biochem, 1987, 162: 691-698.
    [96] Osswald S, Verseck S, Deiting U, et al. Rhodococcus nitrile hydratase[P]. US: 7288402 (B2), 2007.10.30.
    [97]吴范宏,赵敏,郭飞,等.一种α-取代-2-氨基乙酰胺的拆分方法[P]. CN: 101955439 (A), 2011.01.26.
    [98] Balzarini JMR, Vahlne A, Hogberg M, et al. Identification of compounds that inhibit replication of human immunodeficiency virus[P]. US: 20050096319 (A1), 2004.08.18.
    [99] Sutton AE, Clardy J. Synthesis and biological evaluation of analogues of the antibiotic pantocin B[J]. J Am Chem Soc, 2001, 123: 9935-9946.
    [100] Bunchasak C. Role of dietary methionine in poultry production[J]. J Poult Sci, 2009, 46: 169-179.
    [101] Wepplo P. Imidazolinone herbicides-synthesis and novel chemistry[J]. Pestic Sci, 1990, 29: 293-315.
    [102] Stepek WJ, Nigro MM. Novel process for the preparation of aminonitriles useful for the preparation of herbicides[P]. EP: 0123830 (A2), 1984.11.07.
    [103]唐洪元,石鑫,冯文煦.除草剂[M].北京:化学工业出版社, 1993.
    [104]苏少泉.生物技术与抗除草剂作物[M].北京:化学工业出版社, 2002.
    [105] Zhang W, Webster EP, Pellerin KJ, et al. Weed control programs in drill-seeded imidazolinone-resistant rice (Oryza sativa)[J]. Weed Technol, 2006, 20: 956-960.
    [106] Alister C, Kogan M. Efficacy of imidazolinone herbicides applied toimidazolinone-resistant maize and their carryover effect on rotational crops[J]. Crop Prot, 2005, 24: 375-379.
    [107] Kleemann SGL, Gill GS. The role of imidazolinone herbicides for the control of Bromus rigidus (rigid brome) in wheat in southern Australia[J]. Crop Prot, 2009, 28: 913-916.
    [108] Zhou QY, Xu C, Zhang YS, et al. Enantioselectivity in the phytotoxicity of herbicide imazethapyr[J]. J Agric Food Chem, 2009, 57: 1624-1631.
    [109] Ramezani MK, Oliver DP, Kookana RS, et al. Faster degradation of herbicidally-active enantiomer of imidazolinones in soils[J]. Chemosphere, 2010, 79: 1040-1045.
    [110]程志明.咪唑啉酮类除草剂的工业化合成方法[J].上海化工, 2009, 34: 37-39.
    [111]苏少泉.抗咪唑啉酮类除草剂作物的发展与未来[J].现代农药, 2006, 5: 1-4.
    [112]赵爽,叶非.咪唑啉酮类除草剂的应用及降解[J].植物保护, 2009, 35: 15-19.
    [113] Ladner DW. Structure-activity-relationships among the imidazolinone herbicides[J]. Pestic Sci, 1990, 29: 317-333.
    [114] Boesten WHJ, Kamphuis J. Process for the preparation of alpha-amino-alpha -methylcarboxylic acid amides and alpha-amino-alpha-cycloalkylcarboxylic acid amides[P]. EP: 0231546, 1987.08.12.
    [115] Gastrock WH, Wepplo PJ. Process for the resolution of certain racemic amino nitriles[P]. US: 4683324, 1987.07.28.
    [116]吕晓东,杨剑波.酸催化法合成2-氨基-2,3-二甲基丁酰胺[J].辽宁化工, 2001, 30: 455-456.
    [117]农博网.部分销售额超1亿美元的农药品种. http://stuff.aweb.com.cn/news/2008/5/7/ 15521561.shtml, 2011.03.24.
    [118]程志明,顾保权.咪唑啉酮类除草剂——咪草烟的合成[J].农药, 2001, 40: 9-12.
    [119] Doehner RF. Process for the preparation of o-carboxypyridyl- and o-carboxyquinolylimidazolinones. US: 4925944 (A).
    [120] Zhu Q, Fan A, Wang YS, et al. Novel sensitive high-throughput screening strategy for nitrilase-producing strains[J]. Appl Environ Microb, 2007, 73: 6053-6057.
    [121] Henke E, Bornscheuer UT. Fluorophoric assay for the high-throughput determination of amidase activity[J]. Anal Chem, 2003, 75: 255-260.
    [122] Banerjee A, Kaul P, Sharma R, et al. A high-throughput amenable colorimetric assay forenantioselective screening of nitrilase-producing microorganisms using pH sensitive indicators[J]. J Biomol Screen, 2003, 8: 559-565.
    [123] Baumann M, Stürmer R, Bornscheuer UT. A high-throughput-screening method for the identification of active and enantioselective hydrolases[J]. Angew Chem Int Edit, 2001, 40: 4201-4204.
    [124] Banerjee A, Sharma R, Banerjee UC. A rapid and sensitive fluorometric assay method for the determination of nitrilase activity[J]. Biotechnol Appl Bioc, 2003, 37: 289-293.
    [125] Yazbeck DR, Durao PJ, Xie ZY, et al. A metal ion-based method for the screening of nitrilases[J]. J Mol Catal B-Enzym, 2006, 39: 156-159.
    [126] Duchateau ALL, Hillemans-Crombach MG, van Duijnhoven A, et al. A colorimetric method for determination of amino amidase activity[J]. Anal Biochem, 2004, 330: 362-364.
    [127] Zheng RC, Zheng YG, Shen YC. A screening system for active and enantioselective amidase based on its acyl transfer activity[J]. Appl Microbiol Biotechnol, 2007, 74: 256-262.
    [128] He YC, Ma CL, Xu JH, et al. A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry[J]. Appl Microbiol Biotechnol, 2011, 89: 817-823.
    [129] Reisinger C, Van Assema F, Schurmann M, et al. A versatile colony assay based on NADH fluorescence[J]. J Mol Catal B-Enzym, 2006, 39: 149-155.
    [130] Dadd MR, Sharp DCA, Pettman AJ, et al. Real-time monitoring of nitrile biotransformations by mid-infrared spectroscopy[J]. J Microbiol Meth, 2000, 41: 69-75.
    [131] Nojiri M, Yohda M, Odaka M, et al. Functional expression of nitrile hydratase in Escherichia coli: Requirement of a nitrile hydratase activator and post-translational modification of a ligand cysteine[J]. J Biochem, 1999, 125: 696-704.
    [132]任引哲,王玉湘.物质的颜色与结构[M].北京:北京师范学院出版社, 2005.
    [133] Schulz A, Taggeselle P, Tripier D, et al. Stereospecific production of the herbicide phosphinothricin (glufosinate) by transamination-cloning, characterization, and overexpression of the gene encoding a phosphinothricin-specific transaminase from Escherichia Coli[J]. Appl Environ Microb, 1990, 56: 7-12.
    [134] Zheng RC, Wang YS, Liu ZQ, et al. Isolation and characterization of Delftia tsuruhatensisZJB-05174, capable of R-enantioselective degradation of 2,2-dimethylcyclopropane- carboxamide[J]. Res Microbiol, 2007, 158: 258-264.
    [135] Shen M, Zheng YG, Shen YC. Isolation and characterization of a novel Arthrobacter nitroguajacolicus ZJUTB06-99, capable of converting acrylonitrile to acrylic acid[J]. Process Biochem, 2009, 44: 781-785.
    [136] Dong HP, Liu ZQ, Zheng YG, et al. Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis[J]. Appl Microbiol Biotechnol, 2010, 87: 1335-1345.
    [137] Jallageas JC, Fradet H, Bui K, et al. Development of an assay method for cyanide,α-aminonitriles andα-hydroxynitriles for the study of the biological hydrolysis of these compounds[J]. Analyst, 1984, 109: 1439-1442.
    [138] Lee JD. Concise inorganic chemistry[M]. London: Chapman and Hall, 1991.
    [139] Housecroft CE, Sharpe AG. Inorganic chemistry[M]. New York: Prentice Hall, 2007.
    [140] Manku GS. Inorganic chemistry[M]. New Delhi: McGraw-Hill Education, 1984.
    [141]高鸿宾.有机化学[M].北京:高等教育出版社, 2004.
    [142] Solomons TWG, Fryhle CB. Organic chemistry. New York: John Wiley & Sons; 2007.
    [143] Kiyama M. Conditions for the formation of Fe3O4 by the air oxidation of Fe(OH)2 suspensions[J]. Bull Chem Soc JPN, 1974, 47: 1646-1650.
    [144] Dang F, Enomoto N, Hojo J, et al. Synthesis of monodispersed cubic magnetite particles through the addition of small amount of Fe3+ into Fe(OH)2 suspension[J]. J Cryst Growth, 2010, 312: 1736-1740.
    [145] MartinkováL, MylerováV. Synthetic applications of nitrile-converting enzymes[J]. Curr Org Chem, 2003, 7: 1-7.
    [146] Kamble A, Banerjee UC. Optimization of crucial reaction conditions for the production of nicotinamide by nitrile hydratase using response surface methodology[J]. Appl Biochem Biotechnol, 2008, 151: 143-150.
    [147]吴玉峰,郑裕国,沈寅初. 2,2-二甲基环丙腈水合酶产生菌的氮离子注入选育及突变株产酶条件研究[J].高校化学工程学报, 2007, 21: 971-976.
    [148] Song L, Wang MZ, Shi JJ, et al. High resolution X-ray molecular structure of the nitrile hydratase from Rhodococcus erythropolis AJ270 reveals posttranslational oxidation of twocysteines into sulfinic acids and a novel biocatalytic nitrile hydration mechanism[J]. Biochem Bioph Res Co, 2007, 362: 319-324.
    [149] Ma YC, Yu HM, Pan WY, et al. Identification of nitrile hydratase-producing Rhodococcus ruber TH and characterization of an amiE-negative mutant[J]. Bioresource Technol, 2010, 101: 285-291.
    [150] Precigou S, Wieser M, Pommares P, et al. Rhodococcus pyridinovorans MW3, a bacterium producing a nitrile hydratase[J]. Biotechnol Lett, 2004, 26: 1379-1384.
    [151] Xie SX, Kato Y, Komeda H, et al. A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4[J]. Biochemistry, 2003, 42: 12056-12066.
    [152] Osswald S, Verseck S, Deiting U, et al. Nitrile hydratase of Rhodococcus[P]. WO: 2005093080 (A2), 2005.10.06.
    [153] Aoki T, Kawakami K, Otsubo K. Process for producing glycine[P]. US: 06916638, 2005.07.12.
    [154]郑裕国,王亚军,沈寅初.生物催化法制备2,2-二甲基环丙甲酰胺及其菌株[P]. CN: 101481665, 2009.07.15.
    [155] Holt JG. Bergey's manual of determinative bacteriology. Baltimore, MD: Williams and Wilkins; 1984.
    [156] Thompson JD, Higgins DG, Gibson TJ. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Res, 1994, 22: 4673-4680.
    [157] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. J Mol Evol, 1980, 16: 111-120.
    [158] Xu JL, He J, Wang ZC, et al. Rhodococcus qingshengii sp nov., a carbendazim-degrading bacterium[J]. Int Syst Evol Micr, 2007, 57: 2754-2757.
    [159] Avendano-Herrera R, Balboa S, Doce A, et al. Pseudo-membranes on internal organs associated with Rhodococcus qingshengii infection in Atlantic salmon (Salmo salar)[J]. Vet Microbiol, 2011, 147: 200-204.
    [160] Kaul P, Banerjee A, Mayilraj S, et al. Screening for enantioselective nitrilases: kinetic resolution of racemic mandelonitrile to (R)-(-)-mandelic acid by new bacterial isolates[J].Tetrahedron: Asymmetr, 2004, 15: 207-211.
    [161] Cramp R, Gilmour M, Cowan DA. Novel thermophilic bacteria producing nitrile-degrading enzymes[J]. Microbiol-Uk, 1997, 143: 2313-2320.
    [162]王超,张根林,李春. Rhodococcus sp.SHZ-1腈水合酶的高酶活发酵工艺[J].食品与发酵工业, 2007, 33: 29-32.
    [163]周云霞,吴金海,李红梅.腈水合酶高产菌株的诱变选育及发酵条件的优化[J].化学与生物工程, 2008, 25: 46-49.
    [164]欧宏宇,贾士儒. SAS软件在微生物培养条件优化中的应用[J].天津轻工业学院学报, 2001: 14-17.
    [165]贾士儒.生物工程专业实验[M].天津:中国轻工业出版社, 2004.
    [166]汪仁官,陈荣昭(译). Design and analysis of experiment[M].北京:中国统计出版社, 1998.
    [167] Watanabe I, Satoh Y, Enomoto K, et al. Optimal conditions for cultivation of Rhodococcus sp. N-774 and for conversion of acrylonitrile to acrylamide by resting cells[J]. Agric Biol Chem, 1987, 51: 2101-3206.
    [168] Nagasawa T, Mathew CD, Mauger J, et al. Nitrile hydratase-catalyzed production of nicotinamide from 3-cyanopyridine in Rhodococcus rhodochrous J1[J]. Appl Environ Microbiol, 1988, 54: 1766-1769.
    [169] Nagasawa T, Takeuchi K, Nardidei V, et al. Optimum culture conditions for the production of cobalt-containing nitrile hydratase by Rhodococcus Rhodochrous J1[J]. Appl Microbiol Biotechnol, 1991, 34: 783-788.
    [170]刘铭,李春,黄星. Nocardia sp.腈水合酶的纯化过程研究[J].高校化学工程学报, 2004, 18: 324-328.
    [171] Yamagata Y, Maeda H, Nakajima T, et al. The molecular surface of proteolytic enzymes has an important role in stability of the enzymatic activity in extraordinary environments[J]. Eur J Biochem, 2002, 269: 4577-4585.
    [172] Mersinger LJ, Hann EC, Cooling FB, et al. Production of acrylamide using alginate-immobilized E. coli expressing Comamonas testosteroni 5-MGAM-4D nitrile hydratase[J]. Adv Synth Catal, 2005, 347: 1125-1131.
    [173] Carrea G, Ottolina G, Riva S. Role of solvents in the control of enzyme selectivity inorganic media[J]. Trends Biotechnol, 1995, 13: 63-70.
    [174] Deregnaucourt J, Archelas A, Barbirato F, et al. Enzymatic transformations 63. High-concentration two liquid-liquid phase Aspergillus niger epoxide hydrolase-catalysed resolution: Application to trifluoromethyl-substituted aromatic epoxides[J]. Adv Synth Catal, 2007, 349: 1405-1417.
    [175] H?llrigl V, Otto K, Schmid A. Electroenzymatic asymmetric reduction of rac-3-methylcyclo -hexanone to (1S,3S)-3-methylcyclohexanol in organic/aqueous media catalyzed by a thermophilic alcohol dehydrogenase[J]. Adv Synth Catal, 2007, 349: 1337-1340.
    [176] Goswami A, Totleben MJ, Singh AK, et al. Stereospecific enzymatic hydrolysis of racemic epoxide: a process for making chiral epoxide[J]. Tetrahedron-Asymmetry, 1999, 10: 3167-3175.
    [177] Choi JH, Jeong KJ, Kim SC, et al. Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Escherichia coli using the Bacillus sp. endoxylanase signal sequence[J]. Appl Microbiol Biotechnol, 2000, 53: 640-645.
    [178] Effenberger F, B?hme J. Enzyme-catalysed enantioselective hydrolysis of racemic naproxen nitrile[J]. Bioorg Med Chem, 1994, 2: 715-721.
    [179]岑沛霖,关怡新,林建平.生物反应工程[M].北京:高等教育出版社, 2005.
    [180]高毅.生物法生产丙稀酰胺过程中腈水合酶的抑制和失活[J].过程工程学报, 2005, 5: 193-196.
    [181] Duchateau ALL, Crombach MG. Determination ofα-aminonitriles,α-amino acid amides andα-amino acids by means of HPLC, post-column reaction and fluorescence detection[J]. Chromatographia, 1987, 24: 339-343.
    [182] Hann EC, Sigmund AE, Hennessey SM, et al. Optimization of an immobilized-cell biocata -lyst for production of 4-cyanopentanoic acid[J]. Org Process Res Dev, 2002, 6: 492-496.
    [183] Park SW, Park SJ, Han SJ, et al. Repeated batch production of epothilone B by immobilized Sorangium cellulosum[J]. J Microbiol Biotechn, 2007, 17: 1208-1212.
    [184] Shinde M, Kim CK, Karegoudar TB. Production of salicylic acid from naphthalene by immobilized Pseudomonas sp strain NGK1[J]. J Microbiol Biotechn, 1999, 9: 482-487.
    [185] Won K, Kim S, Kima KJ, et al. Optimization of lipase entrapment in Ca-alginate gel heads[J]. Process Biochem, 2005, 40: 2149-2154.
    [186]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社, 2001.
    [187]刘涉江.生物固定化双层PRB技术去除地下水中MTBE的研究[A].天津:天津大学, 2006.
    [188] Liu SJ, Jiang B, Huang GQ, et al. Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier[J]. Water Res, 2006, 40: 3401-3408.
    [189]尹春华,傅四周,徐家立,等.固定化少根根霉发酵产脂肪酶及催化合成单甘酯[J].过程工程学报, 2002, 2: 535-538.
    [190] Lyew D, Guiot SR, Monot F, et al. Comparison of different support materials for their capacity to immobilize Mycobacterium austroafricanum IFP 2012 and to adsorb MtBE[J]. Enzyme Microb Technol, 2007, 40: 1524-1530.
    [191] Ivankovic T, Hrenovic J, Sekovanic L. Influence of the degree of perlite expansion on immobilization of Acinetobacter junii[J]. Biochem Eng J, 2010, 51: 117-123.
    [192] Gummadi SN, Ganesh KB, Santhosh D. Enhanced degradation of caffeine by immobilized cells of Pseudomonas sp. in agar-agar matrix using statistical approach[J]. Biochem Eng J, 2009, 44: 136-141.
    [193]谭天恩,麦本熙,丁惠华.化工原理[M].北京:化学工业出版社, 2004.
    [194] McCabe WL, Smith JC, Harriott P. Unit operations of chemical engineering. Boston: McGraw-Hill Education; 2005.
    [195] Coulson JM, Richardson JF, Backhurst JR, et al. Chemical engineering volume 1 - fluid flow, heat transfer and mass transfer. Oxford: Elsevier; 1999.
    [196] Barshan-Tashnizi M, Ahmadian S, Niknam K, et al. Covalent immobilization of Drosophila acetylcholinesterase for biosensor applications[J]. Biotechnol Appl Biochem, 2009, 52: 257-264.
    [197] O'Reilly KT, Crawford RL. Degradation of pentachlorophenol by polyurethane -immobilized Flavobacterium cells[J]. Appl Environ Microb, 1989, 55: 2113-2118.
    [198] Manohar S, Kim CK, Karegoudar TB. Enhanced degradation of naphthalene by immobilization of Pseudomonas sp strain NGK1 in polyurethane foam[J]. Appl Microbiol Biotechnol, 2001, 55: 311-316.
    [199]刘幽燕,李青云,覃益民,等.聚氨酯泡沫固定化产碱杆菌细胞生物转化氰化物[J].环境科学, 2006, 27: 586-589.
    [200]刘献玲.固定化热带假丝酵母降解苯酚的实验与理论研究[M].天津:天津大学, 2007.
    [201]黄量,戴立信,杜灿屏.手性药物的化学与生物学[M].北京:化学工业出版社, 2002.
    [202]张玉彬.生物催化的手性合成[M].北京:化学工业出版社, 2001.
    [203]顾觉奋.分离纯化工艺原理[M].北京:中国医药科技出版社, 2002.
    [204]席国萍.黄连中小檗碱的提取、分离和纯化的研究[M].贵阳:贵州大学, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700