沟槽形表面织构对摩擦噪声的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦噪声是指因摩擦而发出的一种频率和声压级都不规则变化的声音,摩擦噪声与摩擦振动一起构成了阻碍许多摩擦系统在工业上正常应用的严重问题,并大大降低这些系统的使用寿命、工作效率等,如人工关节、制动系统、轮轨系统、车床切削系统等等。摩擦界面特性是影响摩擦噪声的关键因素,因此,通过研究摩擦界面特性的改变如何影响摩擦噪声,探索新的途径来进一步研究摩擦噪声的产生机理,这将对找到合适的方法来抑制摩擦噪声具有重要的指导意义。
     本研究主要是通过在制动盘铸铁样品表面加工沟槽形表面织构,并对其进行摩擦噪声试验,研究摩擦界面特性的改变如何影响界面摩擦学行为以及摩擦噪声特性。用电加工方法在制动盘蠕墨铸铁材料表面加工出沟槽形表面织构(沟槽深度30μm、宽度150μm、间距为500μm)。摩擦学试验在CETR-3多功能摩擦磨损试验机上进行,采用直径10mm的Si3N4陶瓷球为对磨球,采用球面-平面接触方式,变化法向载荷(3N、5N、10N、20N、40N)和往复滑动频率(0.2Hz、0.3Hz、0.5Hz),对沟槽形织构表面和光滑表面进行往复摩擦磨损试验,并采集摩擦过程中的振动加速度和摩擦噪声声压。采用等效声压级、相干函数及自功率谱等不同的信号处理方法,对摩擦噪声及振动信号进行分析,研究沟槽形表面织构对摩擦系统的振动及噪声的影响。同时,通过采用光学显微镜和轮廓仪对样品的磨损特性进行分析,研究沟槽形表面织构如何影响界面的摩擦学特性。最后把两者结合起来,从摩擦学角度对沟槽形表面织构如何影响摩擦噪声进行了解释。针对本研究所选取尺寸的沟槽形织构,主要获得一些结论:
     1.沟槽形织构表面产生的摩擦噪声的时间历程曲线不同于光滑表面。织构表面产生的摩擦噪声常常发生于往复滑动的2个行程中,而光滑表面只在往复滑动的某一行程中产生摩擦噪声。
     2.沟槽形织构表面较光滑表面更易产生摩擦噪声,且产生的摩擦噪声强度较高。
     3.沟槽形织构表面产生摩擦噪声的时间明显较光滑表面的早,且其主频率成分较多,这初步可归因于织构表面的沟槽会导致往复滑动过程中摩擦力频率成分增多,增大了摩擦力频率与系统固有频率耦合的概率,并引起系统的多阶振动。
     4.沟槽形织构表面比光滑表面具有较高的摩擦系数和耐磨性,沟槽形织构的存在明显地改变了接触界面摩擦磨损行为(排屑行为)和摩擦噪声特性,但摩擦系数和摩擦噪声之间目前还未能建立起良好的对应性。
Friction noise with irregularly mutative frequency and sound pressure level is caused by the friction. In the industry, friction noise and vibration are considered to be greatly against the normal application of many friction systems and significantly reduce their service life and working efficiency, such as artificial joints, brake systems, wheel-rail system, machining systems, etc. Friction interface properties is one of the key factors for the friction noise. Therefore, the generation mechanism of friction noise is studied by investigating the influence of changing friction interface properties in this study. This will have a guiding meaning to find a good way to reduce and suppress friction noise.
     The influence of the change of friction interfereproperties on friction noise was investigated by machining grooved surface texture on braking disc materials (sample). Grooved surface texture (30μm in depth,150μm in width and500μm in pitch) was manufactured on the surface of vermicular graphite cast iron flat (brake disc material) by electromachining. Tribological tests of the grooved surface and smooth surface samples were carried out by using CETR-3multifunctional tribometer, different normal loads of3N、5N、 ION、20N、40N and reciprocating sliding frequencies of2Hz、0.3Hz、0.5Hz were used. Si3N4ceramic ball with10mm diameter was used as counterface ball and a ball-on-flat configuration was adopted. Both the vibration acceleration signal and frictional noise signal were collected during the tribological tests. Different signal processing methods including equivalent sound pressure level, coherence function and auto power spectrums were used to evaluated the vibration and noise signals. The effects of grooved surface texture on the vibration and noise properties of the friction system were studied. Moreover, the wear properties of the samples are evaluated by optical microscope and profilometer to reveal the influence of the grooved surface texture on friction interface properties. Finally, the influence of the grooved surface texture on friction noise was discussed from the viewpoint of tribology. Accordingly, the main conclusions can be drawn as following which are applicable only to the grooved surface texture adopted in this work:
     1. Time process curves of the friction noise of the groove-textured surface was different from those of the smooth surface. The friction noise of the groove-textured surface usually appeared in both strokes of reciprocating sliding. However, the friction noise of smooth surface normally appeared in just one stroke of reciprocating sliding.
     2. It is easier for the groove-textured surface to generate the friction noise compared to the smooth surface and with higher noise intensity.
     3. Friction noise was prone to occur earlier for the groove-textured surface compared to the smooth surface, and more complex frequency components were found for the the groove-textured surface. This can be attributed to that the existence of grooved surface texture caused more components of the friction frequency during the reciprocating sliding. The increase of the friction frequency components would increase the probability of the coupling of the friction frequency and natural frequency of the system, and finally caused the vibration of multi-frequency of the system.
     4. The groove-textured surface adopted in this work exhibited higher coefficient of friction and wear resistance as compared to the smooth surface. The existence of grooved surface texture changed the fiction and wear behaviors as well as friction-induced vibration and noise properties of the frictional surfaces, but their corresponding relationship is not good.
引文
[1]陈光雄博士论文.金属往复滑动摩擦噪声的研究.西南交通大学,2002
    [2]周燕硕士论文.摩擦噪声与降噪技术研究.机械科学研究院,2006
    [3]R.A. Ibrahim. Friction-induced vibration, chatter, squeal, and chaos, part 2:Dynamics and modeling. Applied Mechanics Review,1994,47:227-253
    [4]F. Bergman, E. Mikael, M. Eriksson, S. Jacobson. Influence of disc topography on generation of brake squeal. Wear,1999,255/259:621-628
    [5]M. Eriksson, F. Bergman, S. Jacobson. Surface characteristic of brake pads after running under silent and squealing conditions. Wear,1999,232:163-167
    [6]D.A. Crolla, A.M. Lang. Brakes noise and vibrations-the state of the art. The proceedings of the Leeds-Lyon Symposium on Tribology,1990,165-174
    [7]H. Ben Abdelounis, A. Le Bot, J. Perret-Liaudet, et al. An experimental study on roughness noise of dry rough flat surfaces. Wear,2010,268:335-345
    [8]R.A. Ibrahim. Friction-induced vibration, chatter, squeal, and chaos, part 2:Dynamics and modeling. Applied Mechanics Review,1994,47:227-253
    [9]F. Bergman, E. Mikael, M. Eriksson, et al. Influence of disc topography on generation of brake squeal. Wear,1999,255/259:621-628
    [10]M. Eriksson. F. Bergman, S. Jacobson. Surface characteristic of brake pads after running under silent and squealing conditions. Wear,1999,232:163-167
    [11]A. Kay, O. Giannini, F.Massi, et al. Disc brake squeal characterization through simplified test rigs. Mechanical systems and Signal Processing,2009,23:2590-2607
    [12]A. Akay, J. Wickert, Z. Xu, Investigation of mode lock-in and friction interface, Final Report, Department of Mechanical Engineering, Carnegie Mellon University,2000
    [13]O. Giannini, A. Akay, A laboratory brake for the study of automotive brake, in: Proceedings of IMAC XX,2002
    [14]F. Massi, O. Giannini, L. Baillet. Brake squeal as dynamic instability:an experimental investigation, Journal of the Acoustical Society of America,2006,120 (3):1388-1399
    [15]T. Jibiki, M. Shima, H. Akita, et al. A basic study of friction noise caused by fretting. Wear,2001,251:1492-1503
    [16]G. Lou, T. W. Wu, Z. Bai. Disc brake squeal prediction using the ABLE algorithm. Journal of Sound and Vibration,2004,272:731-748
    [17]陈光雄,周仲荣.摩擦噪声有限元预测.机械工程学报,43(6)2007:144-148
    [18]J.S. Chen, D.B. Bogy. Effects of load parameters on the natural frequencies and stability of a flexible spinning disk with a stationary load system. Trans. ASME, Applied Mechanics,59,230-235
    [19]J.E. Mottershead, S.N. Chan. Flutter instability of circular discs with frictional follower loads. Vibration and Acoustics,1995,117:161-163
    [20]J. E. Mottershead. Vibration-and friction-induced instability in disks. Shock and Vibration Digest,1998,30(1):14-31
    [21]Y.-G. JOE, B.-G. CHA, H.-J. SIM, et al. Analysis of disc brake instability due to friction-induced vibration using a distributed parameter model. International Journal of Automotive Technology,2008,9(8):161-171
    [22]H. Ouyang, J.E. Mottershead, W. Li. Moving-Load Model for Disc-Brake Stability Analysis. Journal of Vibration and Acoustics,2003,125:53-58
    [23]G.X. Chen, Z.R. Zhou. A self-excited vibration model based on special elastic vibration modes of friction systems and time delays between the normal and friction forces:A new mechanism for squealing noise. Wear,2007,262:11230-1139
    [24]陈光雄,刘启跃,金学松等.时滞摩擦尖叫噪声模型的稳定性分析,振动与冲击,27(4)2008:58-62
    [25]M. Eriksson, S. Jacobson. Friction behavior and squeal generation of disc brakes at low speeds. Proc. IMechE Part D,2001,215:1245-1256
    [26]C. Cantonia, R. Cesarinia, G. Mastinub, et al. Brake comfort-a review. Vehicle System Dynamics,47(8):901-947
    [27]R.A. Ibrahim. Friction-induced vibration, chatter, squeal, and chaos, part 2:Dynamics and modeling. Applied Mechanics Review,1994,47:227-253
    [28]师汉民,谌刚,吴雅.机械振动系统(下册).武汉:华中理工大学出版社,1992:374-378
    [29]M. Rusli, M. Okuma. Effect of surface topography on mode-coupling model of dry contact sliding systems. Journal of Sound and Vibration,2007,308:721-734
    [30]S.K. Rhee, P.H.S. Tsang, Y.S.Wang, Friction-induced noise and vibration of disc brakes, Wear,1989,133:39-45
    [31]陈燕生.摩擦学基础.北京航天航空大学出版社,1988,5-6
    [32]M. Eriksson, F. Bergman, S. Jacobson. On the nature o tribological contact in automotive brakes.Wear.2002,252:26-36
    [33]戴雄杰.摩擦学基础.上海科学技术出版社,1984,20-21
    [34]M. Eriksson, S. Jacobson. Tribological surfaces of organic brake pads. Tribology International,2000,30:817-827
    [35]K. Takahashi. The friction noise under heavy load. Bull. Fac. Sci. Eng. (Chuo University), 1973,16:53-69
    [36]M. Nakai, M. Yokoi. A fundamental study on frictional noise (5th report, the influence of random surface roughness on frictional noise). Bull. JSME,1982,25:827-833
    [37]M.O. Othman, A.H. Elkholy. Surfaces roughness measuring using dry friction noise. Exp. Mech.,1990,47:309-312
    [38]B.L. Stoimenov, S. Maruyama, K. Adashi, K. Kato. The roughness effect on the frequency of frictional sound. Tribol. Int.,2007,40:659-664
    [39]L. Hammerstrom, S. Jacobson. Surface modification of brake discs to reduce squeal problems. Wear,2006,261:53-55
    [40]郑华.金属往复滑动条件下摩擦噪声与磨痕关系的探讨.西南交通大学,2004
    [41]G.X.Chen, Z.R. Zhou, P. Kapsa, et al. Effect of surface topography on formation of squeal under reciprocating sliding. Wear,2002,253:411-42
    [42]韩志武,任露泉,刘祖斌.激光织构仿生非光滑表面抗磨性能研究.摩擦学学报,2004,24(4):289-293
    [43]任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究.农业机械学报,2003,34(2):289-293
    [44]万轶,熊党生.激光表面织构化改善摩擦学性能的研究进展.摩擦学学报,2006,26(6):603-607
    [45]U. Pettersson, S. Jacobson. Influence of surface texture on boundary lubricated sliding contacts.Tri. Int.,2003,36:857-864
    [46]U. Pettersson, S. Jacobson. Textured surfaces for imp roved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors. Tri. Int.,2007,40:355-359
    [47]历建全,朱华.表面织构及其对摩擦学性能的影响.润滑与密封,2009,34(2):94-97/103
    [48]Bharat Bhushan.摩擦学导论.葛世荣,译.北京:机械工业出版社,2007
    [49]王晓雷,王静秋,韩文非.边界润滑条件下表面微细织构减摩特性的研.润滑与密封,2007,32(12):36-39
    [50]宋起飞,周宏,李跃等.仿生非光滑表面铸铁材料的常温摩擦磨损性能.摩擦学学报,2006,26(1):24-27
    [51]H.A. Sherif. Investigation on effect of surface topography of pad/disc assembly on squeal generation. Wear,2004,257:687-695
    [52]王再宙,韩志武,任露泉.激光处理非光滑凸包表面的耐磨性试验.吉林大学学报, 2002,32(2):45-48
    [53]G.Ryk,I.Etsion.Testing piston rings with partial laser surface texturing for friction reduction.Wear,2006,261:792-796
    [54]周新祥.噪声控制技术及其新进展.北京,冶金工业出版社,2007:25-37
    [55]马大猷.噪声与振动控制工程手册,北京:机械工程出版社,2002
    [56]熊诗波,黄长艺.机械工程测试技术基础.第三版.北京,机械工业出版社,2008:168-173
    [57]陈光雄,石心余.摩擦噪声发生过程中摩擦力的变化的研究.润滑与密封,2003,4:43-45
    [58]黄学文,董光能,周仲荣等.金属干摩擦副干滑动摩擦噪声机理研究.润滑与密封,2005,3:5-8
    [59]陈光雄,周仲荣.摩擦系数影响摩擦噪声发生的机理研究.中国机械工程.2003.14(9):766-769
    [60]俞云书.结构模态实验分析.宇航出版社,2000:122-190
    [61]声学材料阻尼性能的弯曲共振测试方法.中华人民共和国国家标准(GB/T16406-1996)
    [62]Standard Test Method for Measuring Vibration-Damping properties'of Materials美国材料与测试学会标准(ASTM-E756-05)
    [63]胡卫强,王敏庆,盛美萍等.阻尼材料动态性能参数的宽频带测试研究。机械科学与技术,2008,26(11):1425-1428
    [64]N.P:Suh,H.C.Sin.The genesis of friction.Wear,1981,69:91-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700