固氮蓝藻在松嫩平原盐碱土生态修复中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于不合理的农田灌溉、过度使用化肥及植被破坏,土地盐碱化越来越严重,盐碱地的改良和修复工作也一直深受重视。本论文从生态工程学和盐碱地生态修复的角度出发,选择松嫩平原典型的盐碱化草地作为研究对象,考察了盐碱化草地土壤的理化特征及土壤微生物的分布规律;对盐碱土中土著蓝藻的形态、种属、生态分布规律以及酶活性进行了研究;考察了固氮蓝藻Nostoc commune和Anabaena azotica Ley在不同浓度Na2CO3培养液环境下的适应能力;研究了含水率、接种量以及土壤深度在Nostoc commune和Anabaena azotica Ley对盐碱土改性作用中的的影响。在此基础上,考察了Anabaena azotica Ley对羊草的促生效果,探讨了作用机理,并初步研究了Anabaena azotica Ley对3种类型盐碱土土质的改善效果。
     按照土壤生态学研究方法,在黑龙江省安达市典型盐碱化草地中,分别从重度、中度和轻度盐碱土壤中选择3块100×100m2大方作为研究对象,采用梅花布点法采样,分析了土壤样品的Na+、K+、Ca2+、Mg2+等无机离子含量,SO42-、Cl-、NO3-等阴离子浓度以及EC、pH等。2006年按季节分12个月,采集土壤样品,采用MPN法分析了土壤中细菌、放线菌、真菌、藻类含量。研究结果表明:3种类型土壤的理化特征和微生物构成各有其特点,轻度盐碱土为非碱性钠质土,中度和重度盐碱土属于碱性钠质土,重度盐碱化区土壤氮含量严重缺乏;微生物数量呈现明显的季节变化,随着土壤盐碱化程度的增加,细菌、真菌、放线菌数量逐渐降低,而重度盐碱土中放线菌处于优势地位,微生物数量差异达到显著或极显著的水平。
     利用BG110培养基从黑龙江省安达市典型盐碱化草地中分离筛选出了20株具有一定耐盐能力的固氮蓝藻,它们分别属于10个属,轻度盐碱土和重度盐碱土上各有3种蓝藻,而中度盐碱土上有4种蓝藻。其中Nostoc和Anabaena丰度最高,且可耐受15%的NaCl。
     采用BG110培养基进行纯培养,分别测定了Nostoc commune和Anabaena azotica Ley在不同生长阶段的叶绿素a含量、胞外多糖含量、氨基酸含量和固氮酶活性。结果表明:两种固氮蓝藻都能在Na2CO3盐胁迫条件下生长,且随着Na2CO3盐胁迫性增加,两种蓝藻的叶绿素a含量、胞外多糖含量、氨基酸含量和固氮酶活性都呈现先增加后减少的趋势;而随着培养天数的增加,两种藻类叶绿素a的变化曲线与微生物的生长曲线很相似,胞外多糖和氨基酸的增长和叶绿素a的增长是同步的,其中Anabaena azotica Ley的固氮酶活性在培养到21天时达到最大值,Nostoc commune的固氮酶活性在培养到28天时达到最大值;比较而言Anabaena azotica Ley的耐盐性好于Nostoc commune的耐盐性,固氮能力也高于Nostoc commune。
     考察了含水率对固氮蓝藻Anabaena azotica Ley和Nostoc commune改性盐碱土的作用效果。结果表明:含水率在30%,蓝藻已经可以形成藻结皮,而含水率在50%,蓝藻生长得更好。盆栽试验考察了接种量对固氮蓝藻Anabaena azotica Ley和Nostoc commune改性盐碱土的作用效果。结果表明:接种量为0.03mg干藻/cm2时,更适合固氮蓝藻Anabaena azotica Ley在轻度盐碱土上生长,而接种量为0.18 mg干藻/cm2时,更适合固氮蓝藻Nostoc commune在中度盐碱土上着生;分别测定2种固氮蓝藻在盆栽试验不同培养阶段(每10天为一个阶段)的阴阳离子、pH值、电导率、水溶性总盐、交换性钠、TOC、BAB和固氮酶活性的变化。结果表明:固氮蓝藻提高了土壤有机质530.01%,降低土壤pH 8.0以下,提高了土壤氮含量269.12%,降低了土壤交换性Na+ 86.28%。但当土壤深度达到9cm时,蓝藻对盐碱土的改性效果减弱。
     以盐碱土典型植物—羊草作为考查对象,在实验室盆栽条件下分析了菌种的促生效果。接种一定时间后,测定羊草植株高度,发现接种Anabaena azotica Ley后,植株高度比对照增加30%左右,而且这种促进作用具有持续性。分析了接种菌种后羊草根际土壤固氮酶活的变化,接种固氮蓝藻能促进根际菌构成发生变化,进而影响植物的生长。结果表明:Anabaena azotica Ley不仅能适应盐碱土环境,而且能提高盐碱土的氮含量,改变根际微生物构成,促进植物生长。
     现场实验表明,Anabaena azotica Ley在三种类型盐碱土上对温度、光照和碱度都有很好的生态适应性,而且可以积累土壤的有机质、转化无机盐、降低土壤的pH,使土壤氮含量提高106.99%。
     本论文研究表明,固氮蓝藻可以改善土质,促进植物生长,这对于生态修复盐碱化土壤具有一定的作用。
Soil saline-alkalifying is becoming more and more severe because of the unsuitable irrigation, excess using of fertilizers and vegetation destroying. People have paid more attention on the soil improvement and remediation, including engineering, chemical and biological techniques. The engineering and chemical strategies are effective, but they are usually unefficient with high cost. Nowadays, the bio-remediation is mainly focused on the culture of alkaline-resistant plants and it appeared that the improvement has been work slowly for either the traditional or the genic method.
     Songnen alkaline-saline plain was selected as research objective at present paper based on the view of ecological engineering and for the purpose of eco-remediation of alkaline-saline land. The physi-chemical properties and the microbe communities were investigated. Appraise the original cyanobacterias was conducted. Two species of nitrogen-fixing cyanobacteria belonging to two genera Nostoc commune and Anabaena azotica Ley tolerate of different concentrations of Na2CO3 in BG110 medium. Some experiments were carried on to investigate the effects of the sum of inoculation and the ratio of water in the soil towards the remediation of saline-alkaline soil which based on nitrogen-fixing cyanobacteria Nostoc commune and Anabaena azotica Ley. The effects of the Anabaena azotica Ley on the growth of Leymus chinensis were investigated by inoculation of the strains to laboratorial basin experiments. Ecological adaptability and repairing effect of Anabaena azotica Ley were studied in field experiments.
     Three blocks of 100×100m2, which represents different saline-alkalifying extent of heavy, medium and common alkaline-saline land were choosed for the present study. The results showed that different physic-chemical characteristics and microbe structure in three types of soil. Light saline soil belongs to non-alkalinity sodium soils, middling saline soil and heavy saline soil belong to alkalinity sodium soil. Soil salinization related to soil physicochemical properties and microbial communities. The soil saline alkaline degree became larger amount of bacterium, fungi, actinomycetes and algae gradually decreased. The difference of microbial quantity reaches extremely significant level or significant level.
     Twenty out of 200 isolates of cyanobacteria mainly from saline soils of Songnen Plain of China were successfully grown on BG11 N-free medium. However, at 5 % NaCl only 6 of the isolates exhibited a high rate of nitrogenase activity. The experiment of appraising the original cyanobacterias shows that there are ten kinds of cyanobacterias in the three typical areas. There are four kinds in medium alkaline-saline and three kinds in the other two kinds. We can conclude that medium alkaline-saline is more proper for the growth of cyanobacterias.
     Two species of nitrogen-fixing cyanobacteria belonging to two genera Nostoc commune and Anabaena azotica Ley tolerate of different concentrations of Na2CO3 (from 0.2×10-4g/ml to 1.8×10-4g/ml) in BG110 medium. The variation in the chlorophyll (Chl) a content, extracellular saccharide , amino acid and nitrogenase activity are measured respectively. It is found that both of nitrogen-fixing cyanobacteria can thrive under Na2CO3 salt stress. When the concentration of Na2CO3 increase, the chlorophyll (Chl) a content,extracellular saccharide,amino acid and nitrogenase activity increase first and then decrease. With the increase of time of incubation, the change curve of chlorophyll (Chl) a content of Nostoc commune and Anabaena azotica Ley is similar to the growth curve of microorganism, extracellular saccharide and amino acid increase in a synchronism with chlorophyll (Chl) a, the maximum of nitrogenase activity appears at 21 days for Anabaena azotica Ley and appears at 28 days for Nostoc commune. Compare Anabaena azotica Ley with Nostoc commune, the former possesses better resistance to salt and higher nitrogen-fixing ability.
     In the experiments which carried on in flowerpots we find that when the ratio of water in the soil is 30%, the cyanobacteria can grow normally, when the ratio is 50%, they can grow much better; when the sum of inoculation is 0.03mg dry cyanobacterias/cm2, it is more proper for Anabaena azotica Ley to be planted in common alkaline-saline land, when the sum is 0.18 mg dry cyanobacterias/cm2,it is better to plant Nostoc commune in the medium alkaline-saline land. We measure cation and antion, pH value, the ratio of conducter、the total sum of dissolved salt, the exchange-able Na+, TOC at every periods (ten days is a period) and measure BAB and nitrogenase activity at the last period. The results showed that the inoculation of nitrogen-fixing cyanobacteria can increase the organic matter by 530.01% in the soil effectively, decreasing soil pH, increasing soil nitrogen content by 269.12% and decreasing soil exchangeable sodium by 86.28%. But when the depth was up to 9cm, the function is becoming weaker. Taking the typical plant of Leymus chinensis as target research objective, the effects of inoculation of Anabaena azotica Ley into laboratorial potted plant were investigated by measuring the heights of Leymus chinensis at different periods. After inoculation, the heights of Leymus chinensis were 30% higher than that of controlled and the function were lasted in the whole experimental periods. The nitrogenase of rhizomes was also determined and results implied the changes of nitrogenase might be owing to inoculation of Anabaena azotica Ley. This might be one reason resulting in the growth of Leymus chinensis. Strains of alkaline-saline resistant cyanobacteria can not only adapt to alkaline-saline soil environment, but also can improve the content of nitrogen.
     The experiment results onsite have shown that the Anabaena azotica Ley have a good ecological adaptability with temperature, light and alkalinity, but also accumulate soil organic matter, transform inorganic salts, fixation of atmospheric nitrogen, decrease soil pH and increase soil nitrogen content 106.99%.
     The results showed that nitrogen fixing cyanobacteria can improve the soil quality, simultaneouly promote plant growth. Thus, the cyanobacteria were important and effective in ecological restoration of saline soils.
引文
1李学垣.土壤化学.北京:高等教育出版社, 2003
    2李彬,王志春,孙志高等.中国盐碱地资源与可持续利用研究.干旱地区农业研究, 2005, 23(2): 154–158
    3 D. L. Sparks. Environmental soil chemistry. San Digeo: Academic Press, 1995
    4钦佩,周春霖,安树青等.海滨盐土农业生态工程.北京:化学工业出版社, 2002
    5宇振荣,王建武.中国土地盐碱化及其防治对策研究.农村生态环境,1997, 13(3): 1–5
    6李默延,颜春起.认识人类与土地的互养共生规律推进农业的可持续发展.国土与自然资源研究, 1997, 2: 20–23
    7吴泠,何念鹏,周道玮.玉米秸秆改良松嫩盐碱地的初步研究.中国草地, 2001, 23(6): 34–38
    8牛东玲,王启基.盐碱地治理研究进展.土壤通报, 2002, 33(6): 399–455
    9杨瑞珍,毕于运.我国盐碱化耕地的防治.旱区资源与环境, 1996, 1(3): 101-104
    10毛建华,陆文龙.天津滨海盐土的脱盐碱化及其防治.华北农学报, 1996, 11(1): 87-92
    11王遵亲,祝寿泉,俞仁培.中国盐渍土.北京:科学出版社, 1993
    12杨思谦.关于全省盐碱地改良工作的意见.甘肃水利水电技术, 1994, 1: 52-54
    13李秀军.松嫩平原西部土地盐碱化与农业可持续发展.地理科学, 2000, 20(1): 51-55
    14 A. C. Hayward. Characteristics of Pseudomonas solanacearum. J Appl Bact, 1964, 27: 256-277
    15 L. Bernstein, J.Anderson, M. C. Pike. Estimation of the proportional hazard in two treatment group clinical trials. Biometrics, 1981, 37:513-519
    16 E. V. Maas, G. J. Hoffman. Crop salt tolerance current assessment. J. Irrig. Drain. Div., 1977, 10(3): 115-134
    17 E. V. Mass. Salt tolerance of plants. App Agri Res, 1986, (1):12-26
    18 H.Greenway, R. Munns. Mechanisms of salt tolerance in non-halophytes. Ann Rev Plant Physiol, 1980, 31:149-190
    19 L. Bernstein. Crop growth and salinity. In. J van Schili'gaarde (ed.) Drainage for Agriculture. Agronomy, 1974, 17: 39-54
    20李建东,杨允菲.松嫩平原贝加尔针茅草甸草原植物组成的结构分析.草地学报, 2003, 11(1):15-22
    21李建东,郑慧莹.松嫩平原盐碱化草地治理及其生物生态机理.北京:科学出版社, 1997
    22郑慧莹,李建东.松嫩平原羊草(Aneurolepidium chinense)群落的逆行演替.植被生态学研究-纪念著名生态学家侯学煜教授.北京:科学出版社, 1994: 252-261
    23阎秀峰,孙国荣.星星草生理生态学研究.北京:科学出版社, 2000
    24李景信.盐碱胁迫对苜蓿萌发种子呼吸代谢的影响.草业科学, 1993, 10(1): 24-26
    25张春和,李建东.星星草群落地上生产结构、现存量季节动态和净初级生产力的研究.草业学报, 1995, 4(1): 36-43
    26刘庚长.试论羊草草原的生态积累.东北师大学报(自然科学版), 1982, 4(2): 87-93
    27孙国荣,阎秀峰,李景信等. Na2CO3对几种牧草苗期乙醇酸氧化酶和硝酸还原酶活性的影响.植物研究, 1992, 12: 19-23
    28石德成. Na2CO3胁迫下羊草苗的胁变反应及数学分析.植物学报, 1992, 34(5): 386-393
    29 M. Qadir, A. Ghafoor, G. Murtaza. Amelioration strategies for saline soils: a review. Land Degradation & Development, 2000,11(6): 501-521
    30 M. L. Luna-Guido. Dendooven Chemical and biological characteristics of alkaline saline soils from the former Lake Texcoco as affected by artificial drainage. Biol Fertil Soils, 2000, 32: 102-108
    31殷立娟,祝玲.羊草苗对盐碱的生理反应及适应能力.东北师范大学学报, 1989, (3): 31-36
    32 C. Dagar, H. B. Sharma, Y. K. Shukla. Raised and sunken bed technique for agroforestry on alkali soils of northwest India. Land Degradation & Development, 2001, 12(2): 107-118
    33 J. A. Sánchez Navarro, P. Coloma López, A. Pérez García. Saline wetlandsrelated to groundwater flows from low permeability Tertiary formations in the Somontano area of Huesca, Spain. Hydrological Processes, 2001, 15(4): 633-642
    34张秀勇.盐碱耕地水稻控制灌溉技术研究.河海大学硕士学位论文, 2002
    35李鸿儒,张文阁,李天华等.盐碱地永久性绿化方法.中国发明专利, 1994
    36石元春,李韵珠,陆锦文等.盐渍土的水盐运动.北京农业大学出版社, 1986
    37龙明杰,曾繁森.高聚物土壤改良剂的研究进展.土壤通报, 2000, 31(5): 68-73
    38刘英仙,刘广飞.一种盐碱土壤改良剂.中国发明专利, 2001
    39闵九康,邹建平,朱耀华等.生物纳米肥与土壤修复剂的复合应用技术.中国发明专利, 2003
    40孙毅,高玉山,闫孝贡等.石膏改良苏打盐碱土研究.土壤通报, 2001, 32(S1): 97-101
    41陆文龙.磷石膏农业应用.天津农业科学, 1996, 2(4): 30-32
    42车顺升,罗三强.磷石膏改良盐碱地土壤化学性质的效果.陕西农业科学, 2000(9): 85-88
    43李焕珍,张中原,梁成华等.磷石膏改良盐碱土效果的研究.土壤通报, 1994, 25(6): 248-251
    44吕凤山,吴云霞.粉煤灰改良盐碱地的试验研究.内蒙古农业科技, 1998, 3: 56-59
    45王艳玲,韩秀英,刘元生等.粉煤灰改良盐碱土植树法.防护林科技,1999, 3: 48-62
    46盛连喜,马逊风,王志平等.松嫩平原盐碱化土地的修复与调控研究.东北师大学报自然科学版, 2002, 34(1): 30-35
    47 M. Qadir, D. Steffens, F. Yan, et al. Sodium removal from a calcareous saline-sodic soil through leaching and plant uptake during phytoremediation.Land Degradation & Development, 2003, 14(3): 301-307
    48 A. Mishra, S. D. Sharma. Leguminous trees for the restoration of degraded sodic wasteland in eastern Uttar Pradesh, India. Land Degradation & Development, 2003, 14(2): 245-261
    49 M. Qadir, A. Ghafoor, G. Murtaza. Use of saline-sodic waters throughphytoremediation of calcareous saline-sodic soils. Agricultural Water Management, 2001, 50(3): 197-210
    50 M. Qadir, J. D. Oster. Vegetative bioremediation of calcareous sodic soils: history, mechanisms, and evaluation. Irrig. Sci., 2002, 21: 91–101
    51 G. N. Al-Karaki. Growth of mycorrhizal tomato and mineral acquisition under salt stress.Mycorrhiza, 2000, 10: 51-54
    52 Yoshiaki Kitaya, Vipak Jintana, Somsak Piriyayotha, et al. Early growth of seven mangrove species planted at different elevations in a Thai estuary. Trees, 2002, 16: 150-154
    53 J. C. Dagar, O. S. Tomar, Y. Kumar, et al. Growing three aromatic grasses in different alkali soils in semi-arid regions of northern India. Land Degradation & Development, 2004, 15(2):143-151
    54 Manzoor Qadir, Diedrich Steffens, Feng Yan, et al. Proton release by N2-fixing plant roots: A possible contribution to phytoremediation of calcareous sodic soils. Journal of Plant Nutrition and Soil Science, 2003, 166(1):14-22
    55李艳波,李凤芹.松嫩盐碱草地羊草群落的产量动态.黑龙江大学自然科学学报, 1998, 15(2): 48-53
    56范亚文.种植耐盐植物改良盐碱土的研究.东北林业大学博士学位论文, 2001
    57王萍,殷立娟,李建东.松嫩平原盐碱化草地羊草的生长适应性及耐盐生理特性的研究.生态学报, 1994, 14(3): 306-311
    58王萍,李建东,欧勇玲.松嫩平原盐碱化草地星星草的适应性及耐盐生理特性的研究.草地学报, 1997, 5(2): 80-84
    59王志春.松嫩平原盐碱地区发展水稻问题.国土与自然资源研究, 1999, 2: 51-52
    60 Fa-Yuan Wang, Run-Jin Liu, Xian-Gui Lin, et al. Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza, 2001,6: 190-197
    61 D. Lippi, M.R. De Paolis, E. Di Mattia, et al. Effect of salinity on growth and starvation-survival of a tropical Rhizobium strain. Biol Fertil Soils, 2000, 30:276–283
    62 Lus M. Carvalho, Patrcia M. Correia, Isabel Caador, et al. Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi inAster tripolium L. Biol Fertil Soils, 2003, 38: 137-143
    63 Marisa F. Nicolás, Carlos A. Arrabal Arias, Mariangela Hungria. Genetics of nodulation and nitrogen fixation in Brazilian soybean cultivars. Biol Fertil Soils, 2002, 36: 109–117
    64 Jayne Belnap. Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils, 2002, 35: 128–135
    65 A. T. M. A. Choudhury, I. R. Kennedy. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils, 2004, 39: 219–227
    66 T.Kobayashi A1,Y.Hakamada A1,S.Adachi A1, et al.Purification and properties of an alkaline protease from alkalophilic Bacillussp.Applied Microbiology and Biotechnology, 1995, 43(3): 473-481
    67 All Ozturk, Ozcan Caglar, Filcrettin Sahin.Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization. J. Plant Nutr. Soil Sci., 2003,166: 262-266
    68 N. P. K. Kanungo, D. Panda, T. K. Adhya, et al. Nitrogenase activity and nitrogen-fixing bacteria associated with rhizosphere of rice cultivars with varying absorption efficiency. J Sci Food Agric, 1997, 73: 485-488
    69 R. DEAKER, I. R. KENNEDY. Improved Potential for nitrogen fixation in azospirillum brasilense Sp7-S associated with wheat nifH expression as a function of oxygen pressure.Acta Biotechnol., 2001, 21(1): 3–17
    70 Dimitry Y. Sorokin,Gerard Muyzer, Thorsten Brinkhoff, et al. Isolation and characterization of a novel facultatively alkaliphilic nitrobacter species, N. alkalicus sp. Archives of microbiology, 1998, 170(5): 345-352
    71 Raul Osvaldo Pedraza, Alberto Ramez-Mata, Ma. Luisa Xiqui, et al. Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria.FEMS Microbiology Letters, 2004, 233: 15-21
    72 N. F. Y. Tam. Effects of wastewater discharge on microbial populations and enzyme activities in mangrove soils.Environmental Pollution,1998, 102: 233-242
    73 Qaher A. Mandeel. Microfungal community associated with rhizosphere soil of Zygophyllum qatarense in arid habitats of Bahrain.Journal of AridEnvironments, 2002, 50: 665–681
    74 P. N. Nelson, G.J. Ham. Exploring the response of sugar cane to sodic and saline conditions through natural variation in the field.Field Crops Research, 2000, 66: 245-255
    75 N. Ghazi, R. Al-Karaki, M. Hammad. Rusan.Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 2001, 11: 43–47
    76 Bhoopander Giri, K. G. Mukerji. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 2004, 14: 307-312
    77 H. H. Zahran. Diversity, adaptation and activity of the bacterial flora in saline environments. Biol Fertil Soils, 1997, 25: 211–223
    78 Suneeta Kulkarni, Sanjay Surange, Chandra Shekhar Nautiyal. Crossing the Limits of Rhizobium Existence in Extreme Conditions.Current microbiology, 2000, 41: 402–409
    79 F. Barboza, N. S. Correa. Rosas.Metabolic and physiological characteristics of salt-tolerant strains of Bradyrhizobium spp. Biol Fertil Soils.,2000, 32: 368–373
    80 E. Ramírez-Fuentes, M. L. Luna-Guido, A. E. Ponce-Mendoza, et al. Incorporation of glucose-14C and NH4+ in microbial biomass of alkaline saline soil. Biol Fertil Soils, 2002, 36: 269–275
    81 M. L. Luna-Guido, R.I. Beltran-Hernandez, L. Dendooven. Dynamics of 14C-labelled glucose in alkaline saline soil. Soil Biology & Biochemistry, 2001, 33: 707-719
    82 L. M. V. Martins, G. R. Xavier, F. W. Rangel, et al. Contribution of biological nitrogen fixation to cowpea: a strategy for improving grain yield in the semi-arid region of Brazil. Biol Fertil Soils, 2003, 38: 333–339
    83 D. Egamberdiyeva, D. Qarshieva, K. Davranov. Growth and yield of soybean varieties inoculated with Bradyrhizobium spp in N-deficient calcareous soils. Biol Fertil Soils, 2004, 40: 144–146
    84 M. H. Abd-Alla, S. A. Omar. Wheat straw and cellulolytic fungi application increases nodulation, nodule efficiency and growth of fenugreek (Trigonellafoenum-graceum L.) grown in saline soil. Biol Fertil Soils, 1998, 26: 58–65
    85 M. Aslam, I. A. Mahmood, M. B. Peoples, et al. Contribution of chickpea nitrogen fixation to increased wheat production and soil organic fertility in rain-fed cropping. Biol Fertil Soils, 2003, 38: 59-64
    86 J. Sa′nchez-Torres P, R. I. Pe′rez Santamary. A cellulase gene from a new alkalophilic Bacillussp. (strain N186-1). Its cloning, nucleotide sequence and expression in Escherichia coli. Appl Microbiol Biotechnol, 1996, 46: 149–155
    87 R. Rai. Chemotaxis of salt tolerant and sensitive strains to root exudates of Lentil.Journal of Agricultural Science, 1987, 104: 199-206
    88 S. A. Dora, A. M. M. Hammad. Biological Nitrogen Fixation for the 21st Century. Kluwer Academic Publishers, 1998, 510
    89 K. A. Malik. Nitrogen fixation with nonlegumes, Kluwer Academic Publishey, 1989, 115
    90 R. Rai.Effects of soil acidity factors on interaction of chickpea.Plant and Soil, 1991, 92: 363–371
    91平淑珍,林敏,尤崇杓.固氮粪产碱菌的耐盐特性及在盐胁迫下与宿主水稻的相互作用.农业生物技术学报, 1991, 1: 87-92
    92关秀清,杜千有.内蒙古草原羊草根际联合固氮菌的分离鉴定及其生理生化特性研究.草地学报, 1997, 5(2): 127-132
    93 M. Qadir, S. Schubert, A. G. Ghafoor. Murtaza. Amelioration strategies for sodic soils: a review. Land Degradation & Development, 2001, 12(4)357-386
    94罗赞诺夫.环境学原理.中国出版社, 1939
    95 N. V. Hue, S. Campbell, Q. X. Li, et al. Reducing salinity and organic contaminants in the Pearl Harbor dredged material using soil amendments and plants. Federal Facilities Environmental Journal, 2003, 13(4): 37-56
    96 M. Qadir, J. D. Oster. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Science of the Total Environment, 2004, 323: 1-19
    97赵兰坡,王宇.吉林省西部苏打盐碱土改良研究.吉林农业大学学报,1999, 21(3): 64-67
    98萧冰,刘东臣,杨思治等.草畜系统下盐碱荒地土壤生物化学性状演变过程的研究.河北业大学学报, 1997, 20(1): 99-105
    99张文渊.综合治理开发盐碱荒地盐碱地利用. 2000,1: 169-175
    100 N. Teaumroong, S. Innok, S. Chunleuchanon, et al. Diversity of nitrogen-fixing cyanobacteria under various ecosystems of Thailand: I. Morphology, physiology and genetic diversity. World Journal of Microbiology & Biotechnology, 2002, 18 (7): 673-682
    101 S. Chunleuchanon, A. Sooksawang, N. Teaumroong, et al. Diversity of nitrogen-fixing cyanobacteria under various ecosystems of Thailand:population dynamics as affected by environmental factors. World Journal of Microbiology & Biotechnology, 2003, 19 (2): 167-173
    102 H. Flemming, Haselkorn. Differentiation in Nostoc muscorum: Nitrogenase is synthesized in heterocysts. Proc. Nat. Acad. Sci. U. S. A, 1973, 70: 2727-2731
    103张成武,吴洁.蓝藻细胞外多糖的研究概况.中国海洋药物, 1997, 3: 20-25
    104 G. E. Fogg, P. Fay, A. E. Walsby. The blue-green algae. London: Academic Press, 1973
    105 M. A. Aziz, M. A. Hashem. Role of cyanobacteria in improving fertility of saline soil. Pakistan Journal of Biological Science, 2003, 6(20): 1751-1752
    106 E. Fernández A. Valiente, Ucha, A. Quesada, et al. Contribution of N2 fixing cyanobacteria to rice production: availability of nitrogen from 15N-labelled cyanobacteria and ammonium sulphate to rice. Plant and Soil, 2000, 221: 107-112
    107 R. N. Singh. Reclamation of‘Usar’lands in India through blue-green algae. Nature, 1950, 165: 325-326
    108 D. Subhashini, B. D. Kaushik. Amelioration of sodic soils with blue-green algae. Austral J Soil Res.1981, 19: 361-366
    109 L. J. Borowitzka, S. Demmerle, M. A. Mackay, et al. Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga. Science, 1980, 210: 650-651
    110 B. D. Kaushik, Subhashini D. Amelioration of salt-affected soils with blue-green algae.Ⅱ. Improvement in soil properties. Proc. Indian Natn. Sci. Acad, 1985, 51(3): 386-389
    111 A. Incharoensakdi, A. Karnchanatat. Salt stress enhances choline uptake in the halotolerant cyanobacterium Aphanothece halophytica.Biochimica Biophysica Acta-General Subjects, 2003, 1621 (1): 102-109
    112 S. K. Apte, J. Thomas. Possible amelioration of coastal soil salinity using halotolerant nitrogen-fixing cyanobacteria. Plant and Soil, 1997, 189(2): 205-211
    113 D. M. Miller, J. H.Jones, J. H. Yopp, et al. Ion metabolism in a halophilic blue-green alga, Aphanothece halophytica. Archives of Microbiology, 1976, 111: 145-149
    114 S. K. Apte, J. Thomas. Sodium is required for nitrogenase activity in cyanobacteria. Curr. Microbiol, 1980, 3: 291–293
    115 S. K. Apte, J. Thomas. Impairment of photosynthesis by sodium deficiency and its relationship to nitrogen fixation in the cyanobacterium Anabaena torulosa. FEMS Microbiol Lett, 1983, 16: 153–157
    116 S. K. Apte, J. Thomas. Effect of sodium on nitrogen fixation in Anabaena torulosa and Plectonema boryanum. J.Gen.Microbiol.1984, 130: 1161–1168
    117 S. K. Apte, J. Thomas. Membrane electrogenesis and sodium transport in filamentous nitrogen-fixing cyanobacteria.Eur.J.Biochem,1986, 154: 395-401
    118 S. K. Apte, B. R. Reddy, J. Thomas. Relationship between Na+ influx and salt tolerance of nitrogen-fixing cyanobacteria. Appl.Environ.Microbiol, 1987, 53: 1934–1939
    119 R. H. Reed, D. L. Richardson, S. R. C.Warr, et al. Na+ uptake and extrusion in the cyanobacterium Synechocystis PCC 6714 in response to hypersaline treatment. Evidence for a transient changes in the plasmalemma Na+ permeability. Biochim. Biophys. Acta, 1985, 814: 347–355
    120 T. A. Krulwich, A A. Guffanti. Alkalophilic bacteria. Ann.Rev.Microbiol, 1989, 43: 435-463
    121 R. Waditee, G. S. Hossain, Y. Tanaka, et al. Isolation and functional characterization of Na+/H+ antiporters from cyanobacteria. Journal of Biological Chemistry, 2004, 279 (6): 4330-4338
    122 I. V. Elanskaya, I. V. Karandashova, A. V. Bogachev, et al. Functional analysis of the Na+/H+ antiporter encoding genes of the cyanobacteriumSynechocystis PCC 6803. Biochemistry-Moscow 2002, 67 (4): 432-440
    123 R. M. Figge, C. Cassier-Chauvat, F. Chauvat, et al. Characterization and analysis of an NAD(P)H dehydrogenase transcriptional regulator critical for the survival of cyanobacteria facing inorganic carbon starvation and osmotic stress. Molecular Microbiology, 2001, 39 (2): 455-468
    124 B. R. Reddy, S. K. Apte, J. Thomas. Enhancement of cyanobacterial salt tolerance by combined nitrogen. Plant Physiol, 1989, 89: 204-210
    125 Brown II, D. Mummey, K. E. Cooksey. A novel cyanobacterium exhibiting an elevated tolerance for iron. FEMS Microbiology Ecology, 2005, 52 (3): 307-314
    126 A. G. Miller, D. H. Turpin, D. T. Canvin. Na+ requirement for growth, photosynthesis, and pH regulation in the alkalotolerant cyanobacterium Synechococcus leopoliensis. Journal of bacteriology, 1984, 159(1): 100-106
    127 Watanabe I. Use of symbiotic and free-living blue-green algae in rice culture.Outlook Agri (Manila),1984, 13:166-172
    128 P. A. Roger, S. Santiago-Ardales, P. M. Reddy. The abundance of heterocystous blue-green algae in rice soils and inocula used for application in rice fields. Biol. Fetility Soils, 1987, 5: 98-105
    129 M. A. Borowitzka.Closed algal photobioreactors:Design considerations for large-scale systems. J. Mar. Biotechnol, 1996, 4: 185-191
    130 S. Boussiba. Mmmonia assimilation and its biotechnological aspects in cyanobacteria. Cyanobacterial nitrogen metabolism and environmental biotechnology. Springer-Verlag, New York, Rai A K, 1997: 35-72
    131夏颖,吕正兵,张林普.一株耐盐细菌的鉴定及其耐盐性的初步研究.安徽师范大学学报(自然科学版), 2001, 24(1): 94-97
    132黄方.松嫩平原西部生态脆弱区土地利用时空变化研究.东北师大学报(自然科学版), 2002, 34(1): 105-110
    133李取生,裘善文.松嫩平原土地次生盐碱化研究.地理科学, 1998, 18(3): 268-272
    134李取生,李秀军,李晓军等.松嫩平原苏打盐碱地治理与利用.资源科学, 2003, 25(1): 16-20
    135孙菊,杨允菲.松嫩平原碱化草甸朝鲜碱茅(Puccinellia chinampoensis)种群生殖分蘖株的生长规律.生态学报, 2008, 28(2): 500-507
    136李建东,杨允菲.松嫩平原贝加尔针茅草甸草原植物组成的结构分析.草地学报, 2003, 11(1): 15-22
    137 K. M. Manoranjan, Sadiqul I. Bhuiyan, T. F. Danielito. Soil salinity reduction and prediction of salt dynamics in the coastal Riceland of Bandladesh. Agricultural Water Management. 2001, (47): 9-23
    138万忠娟,于少鹏,王海霞等.松嫩平原典型湿地脆弱性分析与评价.东北师大学报(自然科学版), 2003 , 35 (2): 93-982
    139郭晓云,周婵,杨允菲等.松嫩平原碱化草甸朝鲜碱茅光和生理生态特性的研究.东北师范大学学报, 2005, 37(3): 73-760
    140李学垣.土壤化学.北京:高等教育出版社,2003:245-278
    141丁雪梅,杨允菲.松嫩平原不同土壤基质条件下羊草种群的构件结构.草原与草坪, 2003, (3): 29-32
    142谷雪景,赵吉,王娟.内蒙古典型草原土壤微生物生物量研究.农业环境科学学报, 2007, 26(4): 1444-1448
    143 K. M. Manoranjan, I. B. Sadiqul, T. F. Danielito. Soil salinity reduction and prediction of salt dynamics in the coastal ricelands of Bangladesh. Agricultural Water Management, 2001, 47: 9-23
    144林义成,丁能飞,傅庆林等.土壤溶液电导率的测定及其相关因素的分析.浙江农业学报, 2005, 17(2): 83-86
    145盛建东,杨玉玲,陈冰等.土壤总盐、pH及总碱度空间变异特征研究.土壤, 2005, 37(1): 69-73
    146张树香.离子色谱测定新疆土壤中Cl-,NO3-和SO42-.现代科学仪器, 2004, 5: 60-61
    147徐立生,蔡裕丰.原子吸收法测定降水中的钾、钠、钙、镁的改进.污染防治技术, 2005, 18(4): 71-72
    148赵斌,何绍江.微生物学实验.北京:科学出版社, 2003: 64-72
    149王凤生,田兆成.吉林省松嫩平原土壤盐渍化过程中的地下水作用.吉林地质, 2002, 21(1-2): 79-88
    150王国荣,陈秀蓉,韩玉竹等.东祁连山高寒灌丛土壤微生物的分布特征.草原与草坪, 2006, (3): 27-30
    151尚占环,丁玲玲,龙瑞军等.江河源区高寒草地土壤微生物数量特征.草原与草坪, 2006 (5): 3-7
    152冯玉杰,张巍,陈桥等.松嫩平原盐碱化草原土壤理化特性及微生物结构分析.土壤, 2007, 39(2): 301-305
    153张春华,杨允菲.松嫩平原光稃茅香种群生殖分蘖株数量特征分析.草业学报, 2001, 10 (3) : 1-7
    154王辉,董元华,安琼等.高度集约化利用下蔬菜地土壤酸化及次生盐渍化研究--以南京市南郊为例.土壤, 2005, 37(5): 530-533
    155郭继勋,祝廷成,马文明等.东北羊草草原土壤微生物与生态环境的关系.草地学报, 1996, 4(4): 240-245
    156魏彦昌,欧阳志云,苗鸿等.尖峰岭自然保护区土壤性质空间异质性.生态学杂志, 2007, 26(2): 197-203
    157 Shi Z, Huang M X, Li Y. Physico-chemical properties and laboratory hyperspectral reflectance of coastal saline soil in Shangyu city of Zhejiang province. Pedosphere, 2003, 13(3): 193-198
    158尹建道,张洪岭,王淑英等.转抗盐基因中天杨新品种扦插育苗耐盐试验.生态学杂志, 2006, 25(2): 125-128
    159 S. K. Apte, J. Thomas. Possible amelioration of coastal soil salinity using halotolerant nitrogen-fixing cyanobacteria. Plant and Soil, 1997, 189: 205-211
    160平淑珍,林敏,安道昌.耐盐联合固氮菌在盐渍化土壤改良中的应用.高技术通讯, 1999, 9: 60-66
    161牛灵安,郝晋珉,覃莉等.盐渍土改造区土壤养分的时空变异性研究.土壤学报, 2005, 42(1): 84-90
    162 A. S. B. Armsrong, D.W. Rycroft, T. W. Tanton. Sensonal movement of salts in naturally structured saline-sodic clay soils. Agricultural Water Management, 1996, 32: 15-27
    163蔡晓布,钱成,张元等.西藏中部地区退化土壤秸杆还田的微生物变化特征及其影响.应用生态学报, 2004, 15(3): 463-468
    164 N. Teaumroong, S. Innok, S. Chunleuchanon, et al. Diversity of nitrogen-fixing cyanobacteria under various ecosystems of Thailand: I. Morphology, physiology and genetic diversity. World Journal of Microbiology & Biotechnology, 2002, 18 (7): 673-682
    165 S. Chunleuchanon, A. Sooksawang, N. Teaumroong, et al. Diversity of nitrogen-fixing cyanobacteria under various ecosystems of Thailand: population dynamics as affected by environmental factors. World Journal ofMicrobiology & Biotechnology, 2003, 19(2): 167-173
    166 D. Subhashini, B. D. Kaushik. Amelioration of sodic soils with blue-green algae. Austral. J Soil Res, 1981, 19: 361-366
    167 B. D. Kaushik, D. Subhashini. Amelioration of salt-affected soils with blue-green algae.Ⅱ.Improvement in soil properties. Proc.Indian Natn. Sci. Acad, 1985, 51(3): 386-389
    168 E. Fernández Valiente, A. Ucha, A. Quesada, et al. Contribution of N2 fixing cyanobacteria to rice production: availability of nitrogen from 15N-labelled cyanobacteria and ammonium sulphate to rice. Plant and Soil, 2000, 221: 107-112
    169 M. A. Aziz, M. A. Hashem. Role of cyanobacteria in improving fertility of saline soil. Pakistan Journal of Biological Science, 2003, 6(20): 1751-1752
    170康金花,关桂兰,郭沛新等.陆生固氮蓝藻对土壤环境的影响.干旱区研究, 1998, 15(3): 30-33
    171福迪著,罗迪安译.藻类学.上海科学技术出版社, 1980. 400-475
    172胡春香,刘永定,孙立荣.土壤藻研究新进展.水生生物学报, 2002, 26(5): 521-528
    173 E. Blumwald, J. M. Wolosin, L. Packer.Na+/H+ exchange in the cyanobacterium Synechococcus 6311. Biochem. Biophys. Res. Comm, 1984, 122, 452-459
    174 Reed R H, Richardson D L,Warr S R C and Stewart W D P.Na+ uptake and extrusion in the cyanobacterium Synechocystis PCC 6714 in response to hypersaline treatment. Evidence for a transient changes in the plasmalemma Na+ permeability. Biochim. Biophys. Acta,1985,814, 347-355
    175 S. K. Apte, B. R. Reddy, J. Thomas. Relationship between Na+ influx and salt tolerance of nitrogen–fixing cyanobacteria. Appl. Environ. Microbiol, 1987, 53: 1934-1939
    176 P. Damian, G. D. Buck, Smith. Evidence for a Na+/H+ antiporter in an alkaliphilic cyanobacterium Synechocystis. FEMS Microbiology Letters, 1995, 128: 315-320
    177 E. Blumwald, R. J. Mehlhorn, L. Packer. Studies of osmoregulation in salt adaptation of cyanobacteria with ESR spin–probe techniques.Proc. Natl. Acad. Sci. USA, 1983, 80: 2599-2602
    178 R. H. Reed, D. L. Richardson, S. R. C. Warr, et al. Carbohydrate accumulation and osmotic stress in cyanobacteria. J. Gen. Microbiol,1984, 130: 1-4
    179 E. Blumwald, E. Telor. Osmoregulation and cell composition in salt–adaption of the cyanobacterium Synechococcus 6311. J Plant Physiol, 1983, 73: 377-380
    180 R. P. Sinha, D. Haeder. Response of a rice field cyanobacteria Anabaena sp. to physiological stressors. Envir and Exper Batany, 1996, 36: 147-155
    181 R. Jeanjean, H. C. P. Matthijs,Onana B, et al. Exposure of the Cyanobacterium Synechocystis PCC 6803 to salt stress induces concerted changes in respiration and photosynthesis.Plant cell Physical, 1993, 34: 1073-1079
    182 H. Padhi, B. Rath, S. P. Adhikary. Tolerance of nitrogen-fixing cyanobacteria to NaCl. Biologia Plantarum, 1998, 40(2): 261-268
    183 G. M. L. Patterson. Biotechnological applications of cyanobacteria. J. Sci&Ind. Res,1996, 55: 669-684
    184 M. A. Hashem. Problems and prospects of cyanobacterial biofertilizer for rice cultivation. Aust Plant Physiol, 2001, 28: 881-888
    185 C. Vega–Jarquin, M. Garcia–Mendoza, N. Jablonowski, et al. Rapid immobilization of applied nitrogen in saline-alkaline soils. Plant and soil, 2003, 256: 379-388
    186 A. T. M. A. Choudhury, I. R. Kennedy. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils, 2004, 39: 219-227
    187易平,郭厚良,周云珍.不同无机盐对柱胞鱼腥藻同工酶的影响.武汉植物学研究, 1999, 17(4): 379-381
    188陈因,方大惟.甘露醇对氯化钠胁迫下蓝藻Anabaena 7120固氮活性的增强效应.热带亚热带植物学报, 1996, 4(3): 65-69
    189陈兰周,刘永定,李敦海.盐胁迫对爪哇伪枝藻(Scytonema javanicum)生理生化特性的影响.中国沙漠, 2003, 23(3): 285-288
    190 G. Mackinney. Absorption of light by chlorophyll solutions.J. boil.Chem, 1941, 140: 315-322
    191张惟杰.糖复合物生化研究技术.浙江大学出版社, 1994: 124-125, 175-176
    192 GB 8314,游离氨基酸总量测定:茚三酮比色法.
    193 L. J. Borowitzka, S. Demmerle, M. A. Mackay, et al. Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga. Science, 1980, 210: 650-651
    194 B. R. Reddy, S. K. Apte, J. Thomas. Enhancement of cyanobacterial salt tolerance by combined nitrogen.Plant Physiol, 1989, 89: 204-210
    195李博,杨持,林鹏.生态学.北京:高等教育出版社, 2000
    196孙儒泳,李博,诸葛阳.普通生态学.北京:高等教育出版社, 1993
    197 R. H. Macarthur, J. W. Macarthur, J. Preer.On bird species diversityⅡ. American Naturalist, 1962, 96: 167-174
    198曲仲湘,吴玉树,王焕校.植物生态学.北京:高等教育出版社, 1983
    199李景文,王义弘,赵惠勋等.森林生态学.北京:中国林业出版社, 1994
    200王沙生.植物生理学.北京:中国林业出版社, 1991
    201 C. Zarrouk. Contribution a l’etude d’une cyanophycee. influence de divers facteurs physique et chimiques sur la croissance et photosynthese le Spirulina maxima Geitler, Ph.D. Thesis, University of Paris

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700