新型锂离子电池负极材料钛酸锂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Li_4Ti_5O_(12)具有尖晶石结构,是“零应变”材料。它是一种理想的嵌入型电极材料,具有充电次数多、充电过程快、安全等特点,这使其成为研究新型锂离子电池负极材料的热点。本文基于提升Li_4Ti_5O_(12)高倍率充放电性能的目的,采用水热法分别合成了纳米颗粒和纳米片形貌的锂离子电池负极材料Li_4Ti_5O_(12),并采用XRD、SEM、TG等方法对材料进行了表征,同时采用了室温恒流充放电、交流阻抗、循环伏安等测试方法进行了电化学性能分析。
     采用水热法合成了纳米颗粒形貌的Li_4Ti_5O_(12)材料,颗粒粒径在20nm左右,考察了水热法制备Li_4Ti_5O_(12)材料的工艺条件的影响。实验结果表明:热处理温度为500℃时得到的材料性能最佳,制备得到的Li_4Ti_5O_(12)纳米颗粒具有极佳的倍率性能和循环性能,在8C倍率下的放电容量可保持134.9mAh/g的较高容量,而在1C倍率下充放电100次后仍能保持160.3mAh/g的放电容量,与材料的理论容量非常接近。
     采用水热法合成了纳米片形貌的Li_4Ti_5O_(12)材料,宽度为200~400nm,厚度小于5nm,比表面积为104.3m2/g。制得的Li_4Ti_5O_(12)纳米片具有良好的高倍率充放电性能,在10C、20C、30C、40C、50C下分别充放电50次,连续循环250次后,在50C倍率下的充放电比容量仍保持在95mAh/g左右。
Li_4Ti_5O_(12) has spinel structure and exhibits no structural change (so called“zero strain”material). It has advantages in reversibility, kinetic of charge-discharge process and safety performance, and becomes the hotspot of research in anode material. In this article, in order to improve the high-rate performance, Li_4Ti_5O_(12) nanoparticles and nanosheets were synthesized through hydrothermal method. The structure and morphology characteristics of the composite were investigated by XRD, SEM, TG et al. Meanwhile, electrochemical properties were analyzed through CV, EIS and charge-discharge test.
     Li_4Ti_5O_(12) nanoparticles with particle size around 20nm were synthesized through hydrothermal method. The infection of the synthesis condition of Li_4Ti_5O_(12) prepared with hydrothermal method was investigated. The results demonstrated that materials achieved best electrochemical property when calcined at 500℃. The prepared Li_4Ti_5O_(12) nanoparticles had good rate performance and cycling performance. It exhibited a discharging capacity of 134.9mAh/g at a high rate of 8C. The capacity at 1C after 100 cycles could also attained 160.3mAh/g, close to the theory capacity of Li_4Ti_5O_(12) material.
     Spinel Li_4Ti_5O_(12) nanosheets were synthesized by hydrothermal process. The size was around 200-400nm and thickness was less than 5nm. The Brunauer-Emmett-Teller specific surface area of the sample was 104.3m2/g. The prepared Li_4Ti_5O_(12) nanosheets had fine rate charge-discharge performance. When being cycled at 10C, 20C, 30C, 40C, 50C for 50 cycles separately, it maintained a specific capacity of 95mAh/g at 50C after 250 cycles.
引文
[1] Nagaura T., Tozawak K. Lithium ion rechargeable battery[J], Prog. Batts. Sol. Cells, 1990, 9: 209-210.
    [2]冯熙康,王伯良,陈爱松等.电动汽车锂离子动力电池系统的研制[J].电源技术, 2002, 26(2): 63~65.
    [3] Wahihara M. Recent developments in lithium ion batteries[J]. Mater. Sci. Eng., 2001, 33: 109-134.
    [4]汪继强.锂离子蓄电池技术进展及市场前景[J].电源技术, 1996, 20(4): 147~151.
    [5]米常焕,曹高劭,赵新兵.锂离子蓄电池负极材料最新研究进展[J].电源技术, 2004, 28(3): 180~183.
    [6]吴国良,杨新河,阚素荣等.锂离子电池及其电极材料的研制[J].电池, 1998, 28(6): 258~262.
    [7] Shi H., Barker J, Saidi M.Y, et al. Structure and lithium intercalation properties of synthetic and natural graphite[J]. J. Electrochem. Soc., 1996, 143(11): 3466-3472.
    [8] Pasquier A.D., Plitz I., Menocal S., et al. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications[J]. J. Power Sources, 2003, 115: 171-178.
    [9] Zheng T., Zhong Q., Dahn J.R. High capacity carbon prepared from phenolic resin for anodes of lithium-ion batteries[J]. J. Electrochem. Soc., 1995, 142: 211-214.
    [10]吴宇平,戴晓兵,马军旗等.锂离子电池——应用与实践.北京:化学工业出版社. 2004, 14: 29-30.
    [11] Vincent C.A. Lithium batteries: a 50-year perspective, 1959-2009[J]. Solid State Ionics, 2000, 134: 159-167.
    [12]谢维. Al与Al基金属间化合物作为锂离子二次电池负极材料的研究[硕士论文].长沙:中南工业大学, 2005.
    [13] Hatchard T.D., Dahn J.R. Study of the electrochemical performance of sputtered Si1-xSnx films[J]. J. Electrochem. soc., 2004, 151(10): A1628-A1635.
    [14] Kim B.C., Uono H., Sato T., et al. Cyclic properties of Si-Cu/carbon nano-composite anodes for Li-ion secondary batteries[J]. J. Electrochem. Soc., 2005, 152(3): A523-A526.
    [15] Beaulieu L.Y., Hewitt K.C., Turner R.L., et al. The electrochemical reaction of Li with amorphous Si-Sn alloys[J]. J. Electrochem. Soc., 2003, 150(2): A149-A156.
    [16] Idota Y., Kubota T., Matsufuji A., et al. Tin-based Amorphous Oxide: A High-capacity Lithium Ion Storage Material[J]. Science, 1997, 276: 1395-1397.
    [17] Poizot P., Laruelle S., Grugeon S., et al. Nano-sized transition metal oxides as negative-electrode materials for lithiun-ion batteries[J]. Nature, 2000, 407: 496-499.
    [18] Subramanian V., Burke W.W., Zhu H.W., et al. Novel microwave synthesis of nanocrystalline SnO2 and its electrochemical properties[J]. J. Phys. Chem. C., 2008, 112: 4550-4556.
    [19] Park M.S., Wang G.X., Kang Y.M., et al. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries[J]. Angew. Chem. Intern. Edit., 2007, 46(5): 750-753.
    [20] Zheng J. P., The limitations of energy density of battery/double-layer capacitor asymmetric cells[J]. J. Electrochem. Soc., 2003, 150(4): A484-A492.
    [21] Yang L.C., Gao Q.S., Zhang Y.H., et al. Tremella-like molybdenum dioxide consisting of nanosheets as an anode material for lithium ion battery[J]. Electrochem. Commun., 2008, 10: 118–122.
    [22] Ding N., Feng X., Liu S., et al. High capacity and excellent cyclability of vanadium (IV) oxide in lithium battery applications[J]. Electrochem. Commun., 2009, 11: 538-541.
    [23] Inaba M., Oba Y., Niina F., et al. TiO2(B) as a promising high potential negative electrode for large-size lithium-ion batteries[J]. J. Power Sources, 2009, 189: 580-584.
    [24] Erjavec B., Dominko R., Umek P., et al. Tailoring nanostructured TiO2 for high power Li-ion batteries[J]. J. Power Sources, 2009, 189: 869-874.
    [25] Uzunov I., Uzunova S., Kovacheva D., et al. Iron-based composite oxides as alternative negative electrodes for lithium-ion batteries[J]. J. Mater. Sci., 2007, 42:3353-3357.
    [26] Li Z.M., Qiu W.H., Hu H.Y., et al. Optimized synthesis of LiMn2O2 cathode materials for Li-ion batteries[J]. Wuji Cailiao Xuebao/J. Inorg. Mater., 2004, 19: 342-348.
    [27] Yang Z., Choi D., Kerisit S., et al. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review[J]. J. Power Sources, 2009, 192(2): 588-598.
    [28] Wu M.S., Chiang P.C.J. Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries[J]. Electrochem. Commun., 2006, 8(3): 383-388.
    [29] Fu W.Z., Huang F., Zhang Y., et al. The electrochemical reaction of zinc oxide thin films with lithium[J]. J. Electrochem. Soc., 2003, 150(6): A714-A720.
    [30] Souza E.A., Santos A.O., Cardoso L.P., et al. Copper–vanadium mixed oxide thin film electrodes[J]. J. Power Sources, 2006, 162: 679-684.
    [31] Limthongkul P., Wang H.F., Jud E., et al. Metal Oxide Composites for Lithium-ion battery anodes synthesized by the partial reduction process[J]. J. Electrochem. Soc., 2002, 149(9): A1237-A1245.
    [32] Kang Y.M., Kim K.T., Kim J.H., et al. Electrochemical properties of Co3O4, Ni-Co3O4 mixture and Ni-Co3O4 composite as anode materials for Li ion secondary batteries[J]. J. Power Sources, 2004, 133: 252-259.
    [33] Hosono E., Fujihara S., Honma I., et al. The high power and high energy densities Li rechargeable battery by nanocrystalline and mesoporous Ni/NiO covered structure. Meeting Abstracts MA, 2005, 02, 2332.
    [34]苏岳锋,吴锋,陈朝峰.纳米微晶TiO2合成Li4Ti5O12及嵌锂行为[J].物理化学学报, 2004, 20(7): 707~711.
    [35]陈敬波,胡国容,彭忠东等.锂离子电池氧化物负极材料研究进展[J].电池, 2003, 33(3): 183~186.
    [36] Zaghib K., Simoneau M., Armand M., et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. J. Power Sources, 1999, 81-82: 300-305.
    [37]陈方,梁海潮,李仁贵等.负极活性材料Li4Ti5O12的研究进展[J].无机材料学报, 2005, 20(3): 537~544.
    [38]彭久云,曾照强,苗赫濯等.锂离子蓄电池负极材料Li4Ti5O12的研究进展[J].电源技术, 2002, 26(6): 452~456.
    [39]高剑,姜长印,应皆容等.锂离子电池负极材料钛酸锂的研究进展[J].电池, 2005, 35(5): 390~392.
    [40]官云龙,仇卫华,赵海雷等.液相法合成Li4Ti5O12负极材料电化学性能的研究.第十三次全国电化学会议,广州, 24th~28th, 2005: 432~433.
    [41] Nakayama M., Ishida Y., Ikuta H. ,et al. Mixed conduction for the spinet type (1-x)Li4/3Ti5/3O4-xLiCrTiO4 system[J]. Solid State Ionics, 1999, 117: 265-271.
    [42] Scrosati B., panero S., Reale P., et al. Investigation of new types of lithium-ion battery materials[J]. J. Power Sources, 2002, 105: 161-168.
    [43]杨建文,钟晖,钟海云等.无定形TiO2合成尖晶石Li4Ti5O12的性能[J].中南大学学报, 2005, 5(2): 170~174.
    [44] Nakahara K., Nakajima R., Matsushima T., et al. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells[J]. J. Power Sources, 2003, 117: 131-136.
    [45] Kanamura K., Chiba T., Dokko K. Preparation of Li4Ti5O12 spherical particles for rechargeable lithium batteries[J]. J. Euro. Cera. Soc., 2006, 26(4-5): 577-581.
    [46] Venkateswarlu M., Chen C.H., Do J.S., et al. Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol–gel process and characterized by X-ray absorption spectroscopy[J]. J. Power Sources, 2005, 146(1-2): 204-208.
    [47] Liang C., Liu H.J., Zhang J.J., et al. Nanosized Li4Ti5O12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors[J]. J. Electrochem. Soc. 2006, 153: A1472-A1477.
    [48]王国庆,吕菲,白莹,吴锋,复合熔盐法合成Li4Ti5O12及其电化学性能研究[J],功能材料, 2008, 39, 1158-1165.
    [49] Li J.R., Tang Z.L., Zhang Z.T. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12 [J]. Electrochem. Commun., 2005,7(9): 894–899.
    [50] Prosini P.P., Mancini R., Petrucci L., et al. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications[J]. Solid State Ionics, 2001, 144: 185-192.
    [51] Huang S.H., Wen Z.Y., Zhu X.J., et al. Preparation and electrochemical performance of Ag doped Li4Ti5O12[J]. Electrochem. Commun. 2004, 6: 1093-1097.
    [52] Fu L.J., Liu H., Li C., et al. Surface modifications of electrode materials for lithium ion batteries[J]. Solid State Sci., 2006, 8: 113-128.
    [53] Pereira N., Dupont L., Tarascon J.M., et al. Electrochemistry of Cu3N with Lithium: A Complex System with Parallel Processes[J]. J. Electrochem. Soc., 2003, 150: A1273-A1280.
    [54] Alcántara R., Ortiz G., Rodríguez I., et al. Effects of heteroatoms and nanosize on tin-based electrodes[J]. J. Power Sources, 2009, 189: 309-314.
    [55] Chen J., Xu L., Li W., et al.α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications[J]. Adv. Mater., 2005, 17: 582-586.
    [56] Maier J. Nanoionics: Ion transport and electrochemical storage in confined systems[J]. Nat. Mater., 2005, 4: 805-815.
    [57] Jamnik J., Maier J. Nanocrystallinity effects in lithium battery materials: Aspects of nano-ionics. Part IV[J]. Phys. Chem. Chem. Phys., 2003, 5: 5215-5220.
    [58] Wang Q., Li H., Chen L.Q., et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon, 2001, 39: 2211-2214.
    [59] Wang D., Ding N., Song X.H., et al. A simple gel route to synthesize nano- Li4Ti5O12 as a high-performance anode material for Li-ion batteries[J]. J. Mater. Sci., 2009, 44: 198-203.
    [60] Kalbac M., Zukalova M. Kavan L. Phase-pure nanocrystalline Li4Ti5O12 for a lithium-ion battery[J]. J. Solid State Eletrochem., 2003, 8: 2-6.
    [61] Kim D.H., Yoon J.H., Lee K.S., et al. Structural characterization of titanate nanotubes for lithium storage[J]. J. Nanosci. Nanotech., 2008, 8: 5022-5025.
    [62] Yoo E.J., Kim J., Hosono E., et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Lett., 2008, 8: 2277-2282.
    [63] Tang Y.F., Yang L., Qiu Z., et al. Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets[J]. Electrochem. Commun., 2008, 10: 1513-1516.
    [64] Tang Y.F., Yang L., Qiu Z., et al. Template-free synthesis of mesoporous spinel lithium titanate microspheres and their application in high-rate lithium ion batteries[J]. J. Mater. Chem., 2009, 19: 5980-5984.
    [1] Liu P., Sherman E., Verbrugge M. Electrochemical and structural characterization of lithium titanate electrodes[J]. J. Solid State Electrochem., 2009: 1-7.
    [2] Matsui E., Abe Y., Senna M., et al. Solid-State Synthesis of 70 nm Li4Ti5O12 Particles by Mechanically Activating Intermediates with Amino Acids[J]. J. Am. Ceram. Soc., 2008, 91: 1522-1527.
    [3] Yan G.F., Fang H.S., Zhao H.J., et al. Ball milling-assisted sol–gel route to Li4Ti5O12 and its electrochemical properties[J]. J. Alloys Compd., 2009, 470: 544-547.
    [4] Huang S.H., Wen Z.Y., Zhu X.J., et al. Preparation and electrochemical performance of Ag doped Li4Ti5O12[J]. Electrochem. Commun., 2004, 6: 1093-1097.
    [5] Wolfenstine J., Allen J.L. Electrical conductivity and charge compensation in Ta doped Li4Ti5O12[J]. J. Power Sources, 2008, 180: 582-585.
    [6] Rho Y.H., Kanamura K. Preparation of Li4/3Ti5/3O4 Thin Film Electrodes by a PVP Sol–Gel Coating Method and their Electrochemical Properties[J]. J. Electrochem. Soc., 2004, 151: A106-A110.
    [7]Venkateswarlu M., Chen C.H., Do J.S., et al. Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol–gel process and characterized by X-ray absorption spectroscopy[J]. J. Power Sources, 2005, 146: 204-208.
    [8]Kanamura K., Akutagawa N., Dokko K. Three Dimensionally Ordered Composite Solid Materials for All Solid-State Rechargeable Lithium Batteries[J]. J. Power Sources, 2005, 146: 86-89.
    [9] Woo S.W., Dokko K., Kanamura K. Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for lithium batteries[J]. Electrochim. Acta, 2007, 53: 79-82.
    [10] Ohzuku T., Ueda A., Yamamoto N. Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells[J]. J. Electrochem. Soc., 1995, 142(5): 1431-1435.
    [11] Sugita M., Tsuji M., Abe M. Synthetic Inorganic Ion-Exchange Materials. LVIII. Hydrothermal Synthesis of a New Layered Lithium Titanate and Its Alkali Ion Exchange[J]. Bull. Chem. Soc. Jpn., 1990, 63(7): 1978-1984.
    [1] Yoo E.J., Kim J., Hosono E., et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Lett., 2008, 8: 2277-2282.
    [2] Eiden-Assmann S., Widoniak J., Maret G. Synthesis and Characterization of Porous and Nonporous Monodisperse Colloidal TiO2 Particles[J]. Chem. Mater., 2004, 16(1): 6-11.
    [3] Sugita M., Tsuji M., Abe M. Synthetic Inorganic Ion-Exchange Materials. LVIII. Hydrothermal Synthesis of a New Layered Lithium Titanate and Its Alkali Ion Exchange[J]. Bull. Chem. Soc. Jpn., 1990, 63(7): 1978-1984.
    [4] Ohzuku T., Ueda A., Yamamoto N. Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells[J]. J. Electrochem. Soc., 1995, 142(5): 1431-1435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700