锂离子电池负极材料Li_4Ti_5O_(12)的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别采用高温固相法和溶胶-凝胶法合成了尖晶石型Li4Ti5O12,并对其进行了阳离子一元掺杂,考察了不同掺杂比例和不同掺杂元素对锂离子电池负极材料的影响。根据离子半径与Ti4+相近原则,选取以下掺杂方案:对高温固相法合成的尖晶石型Li4Ti5O12进行Sn4+、Zr4+的一元掺杂和溶胶-凝胶法合成的尖晶石型Li4Ti5O12进行Sn4+一元掺杂。采用XRD和SEM测试了材料的晶体结构和表面形貌,采用恒流充放电测试、电化学阻抗测试、循环伏安测试分析了材料作为锂离子电池负极材料的综合电化学性能。
     XRD和SEM测试分析表明,采用传统的高温固相法和溶胶-凝胶法都成功合成了尖晶石型Li4Ti5O12材料晶体结构的特征峰与尖晶石钛酸锂的标准图谱(26-1198)相吻合,只是峰强度和峰宽与标准图谱有所不同。阳离子掺杂并未改变材料的尖晶石结构,只是当掺杂量较大时,材料中有微量杂质相出现,但主体材料仍为尖晶石型锂钛氧化物。
     高温固相法合成的尖晶石型Li4Ti5O12进行Sn4+、Zr4+掺杂后,样品的放电平台平坦,集中在2.4 V左右,且放电平台范围较宽,首次放电容量较大。样品Sn:Ti=1:9(原子比)的综合性能最好,50次循环后,比容量仍保持在111 mAh.g-1以上,容量保持率为81%。Zr4+掺杂对提高材料的比容量效果不明显,且当掺杂量较大时,样品的容量保持率降低。其中以样品Zr:Ti=1:24(原子比)循环性能最为理想,其50次循环后容量仍保持在119 mAh·g-1以上,容量保持率为87.35%。
     采用溶胶-凝胶法制备的尖晶石型Li4Ti5O12进行Sn4+掺杂后,样品的放电平台更加平坦,首次放电容量更大。其中以样品Sn:Ti=1:4(原子比)所得的材料性能最好。其首次放电容量达到144.21 mAh.g-1以上,经过50次充放电循环后,容量保持在137.58mAh.g-1,容量保持率为95.34%。
The lithium titanate composites were synthesized respectively by high temperature solid-state method and sol-gel method and doped with cations, and then the influences to the samples as the anode materials for lithium ion battery were studied with different doping ratio and doping elements. According to the ion diameter, the following doping plans were chose:Sn4+、Zr4+cations doping in the lithium titanate composites were synthesized respectively by high temperature solid-state method and Sn4+cations doping in the lithium titanate composites were synthesized respectively by high temperature sol-gel method dibasic doping. The crystalline structure of the samples was analyzed by X-ray diffraction analysis, and SEM exterior analysis and the electrochemical proprieties of the samples were tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic cycling tests. The results were listed as follows:
     The XRD and SEM test indicated that, the spinel lithium titanate composite Li4Ti5O12 was successfully synthesized by the traditional solid-state method and sol-gel method.The peaks of the sample were identical with that of the standard chart (26-1198) with some differences of the intensity and width of the peaks. Cation doping did not change the spinel structure of the sample, but when with larger doping amount, the spinel lithium titanate samples were not very pure.
     Sn4+、Zr4+cations doping in the lithium titanate composites were synthesized respectively by high temperature solid-state method:The doped samples had a wide and flat discharge platform around 2.4 V, and the initial discharge capacity of the doped samples was large. The performance of sample Sn:Ti=1:9(molar ratio) is the best, which obtained a capacity of 111 mAh-g-1 with a capacity retention of 81% after 50 cycles. The Zr4+doping increased the capacity of the material, but when with a larger doping amount, the capacity retention of the sample decreased; The cycle performance of sample Zr:Ti=1:24 (molar ratio) is the best, which obtained a capacity of 119 mAh·g-1 with a capacity retention of 87.35% after 50 cycles.
     Sn4+cations doping in the lithium titanate composites were synthesized respectively by high temperature sol-gel method:The doped samples had a wider flat discharge platform and the initial discharge capacity of the doped samples was large. The performance of sample Sn:Ti=1:4(molar ratio) is the best, and the sample as the anode material for lithium ion battery had an initial capacity of 144.2 mAh-g-1,obtained a capacity of 137.58 mAh-g-1 with a capacity retention of 95.34%after 50 cycles.
引文
[1]陈景贵.跨入新世纪的中国新型绿色电池工业.电源技术[J].2000,24(1):2-7页
    [2]夏熙.迈向21世纪的电化学电源[J].电池.2000.30(3):95-97
    [3]E. Buiel, J.Dahn. Reduction of the irreversible capacity in hard-carbon anode materials prepared from sucrose for Li-ion batteries[J]. J. Electrochemical Soc.,1998, 145(6):1977-1981P
    [4]J.Dahn, W.Xing, Y. Gao. The "falling cards model" for the structure of micro-porous carbons[J].1997,35(6):825-830P
    [5]M Endo, C Kim, T Karalci, et al. Recent development of carbon materials for Li ion batteries[J].2000,38:183-187P
    [6]Y Jang, Y.M. Chiang. Stability of the monoclinic and orthorhombic phases of LiMnO2 with temperature, oxygen partial pressure, and Al doping. Solid State Ionics[J].2000,130:53-59P
    [7]V. S. Donepudi, J. Prakash. Preparation and characterization of partially substituted LiMyMn2-y04(M=Ni, Co, Fe) spinel cathodes for Li-ion batteries[J]. Electrochinica Acta,2002,48:443-451P
    [8]A.M.Kannan, A.Manthiram. Synthesis and electrochemical evaluation of high capacity nanostructured VO2 cathodes[J]. Solid State Ionics,2003,159(3-4):265-271P
    [9]M. S. Whittingham. Insertion electrodes as SMART materials:the first 25 years and future promises[J]. Solid State Ionics,2000,134:169-178P
    [10]顾登平,童汝亭.化学电源[M],北京:高等教育出版社,1993,1-3页
    [11]吴宇平,万春荣,姜长印等,锂离子二次电池[M].北京:化学工业出版社,2002,2-5页
    [12]郝艳静,赖琼钰.锂离子电池负极材料Li4Ti5O12的制备、改性及电化学性能研究[J].四川大学,2007:3-5、84-87.
    [13]M.Armand, D.W.Murphy, B.C.Steele, et al. Materials for Advanced Batteries[M]. Plenum Press, New York,1980,145-147P
    [14]J.J.Auborn, Y.L.Barberio. Lithium intercalation cells without metallic lithium MO2/LiCoO2andWO2/LiCoO2[J]. J. Electrochem Soc.,1987,134(3):638-641P
    [15]J.M.tarascon, M.Armand. Issues and challenges facing rechargeable lithium batteries[J], Nature,2001,414:359
    [16]任学佑.锂离子电池及其发展前景[J].电池,1996,26(1):38
    [17]郭炳煜,徐徽,王先友,等.锂离子电池[M].第一版.中南大学出版社,2002:1-4页
    [18]黄拥理,潘春跃,黄可龙.聚合物锂离子蓄电池技术与市场.电源技术.2001,25(5):371-374页
    [19]崔益秀.锂离子电池正极材料尖晶石LiMn2O4材料的改性研究.电子科技大学硕士学位论文.2003:2页
    [20]郭鸣凤.LixCoO2的合成及其蓄电池的研究[J].电源技术,1993,2:9-13页
    [21]A.Yamada, K.Miura. Synthesis and structural aspects of LiMnO4+δ as a cathode for rechargeable lithium batteries[J]. J. Electrochem Soc.,1995,142:2149-2152P
    [22]M.M.Thackeray. Structural consideration of layered and spinel lithiated oxides for lithium ion batteries[J]. J. Electrochem Soc.,1995,142:2558-2561P
    [23]钟俊辉.锂离子蓄电池阳极热解碳材料的研究进展[J].电源技术,1998.22(1):40页
    [24]马树华,国汉举,李季,等.离子电池负极碳材料的表面改性与修饰[J].电化学,1996.2(4):413-419页
    [25]K.Mizushima, P. C. Jones, P. J. Wisman, J. B. Goodenough. LixCoO2 (0< x< 1) A new cathode material for batteries of high energy density [J]. Material Research Bulletin, 1980,6(15):783-789 P
    [26]Y.Li, C.Wan, Y.Wu, et al. Synthesis and characteriza-tion of ultra fine LiCoO2 powders by a spray-drying method [J]. Journal of Power Sources,2000,85:294-298 P
    [27]M. Nasir Khan, J. Bashir. Synthesis and structural of LiAlxCo1-xO2 system [J]. Material Research Bulletin,2006,41:1589-1595 P
    [28]H. Kim, Y.U.Jeong. Crystal structures, electrochemical properties of LiCo1-xMgxO2 (0≤x≤1.0) [J]. Journal of Power Sources,2006,159:233-236 P
    [29]S.H.Choi, J.Won, Y.S.Yoon. Particle size effects on temperature-dependent performance of LiCoO2 in lithium batteries [J]. Journal of Power Sources,2006,158: 1419-1424 P
    [30]L.Y.Sung, Y.K.Sun. Synthesis and character-ization of LiNiO2 cathode material prepared by an adiphic acid-assisted sol-gel method for lithium secondary batteries [J]. Solid State Ionics,1999,118:159-168 P
    [31]高德淑,苏光耀,肖启振,等.锂离子电池正极材料LiNiO2的研究进展[J].电池工业,2004,6(9):300-304页
    [32]C.Wang, X.Ma, L. Zhou, et al. Study on the rapid synthesis of LiNi1-xCoxO2 cathode material for lithium secondary battery [J]. Electrochinica Acta,2007,52:3022-3027 P
    [33]Z. R. Zhang, H. S. Liu, Z. L. Gong, Y. Yang. Electrochemical performance and spectroscopic characterization of TiO2-coated LiNio.8Coo.2O2 cathode materials [J] Journal of Power Sources,2004,129:101-106 P
    [34]Y.Xia. Difference in electrochemical behaviour of LiMn2O4 and Li1-xMn2O4 as 4 V Li cell cathodes [J]. Journal of Solid State Chem,1995,119(1):216-218 P
    [35]J.T.Son, K.S.Park, H.G.Kim, et al. Surface-modification of LiMn2O4 with silver-metal coating [J]. Journal of Power Sources,2004,126:182-185 P
    [36]宋桂明,周玉,周文元.锂离子电池正极材料LiMn2O4制备新工艺[J].无机材料学报,2001,16(5):486-490页
    [37]刘建睿,王猛,尹大川,等.锂离子蓄电池正极材料锂钒氧化物研究进展[J].电源技术,2001,25(4):308-311页
    [38]M. Y. Saidi, J. Barker, H. Huang, et al. Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries [J]. Journal of Power Sources,2003,119-121:266-272 P
    [39]A.S.Andersson, J.O.Thomas. The source of first-cycle capacity loss in LiFePO4 [J]. Journal of Powers Sources,2001,97-98:498-502 P
    [40]仇卫华,赵海雷.Mn掺杂对LiFePO4材料电化学性能的影响[J].电池,2003,33(3):134-135页
    [41]H. Shin, W.Cho, H.Jang. Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries [J]. Journal of Power Sources. 2006,159:1383-1388 P
    [42]G. X. Wang, L. Yang, S. L. Bewlay, et al. Electrochemical properties of carbon coated LiFePO4 cathode materials [J]. Journal of Power Sources,2005,146:521-524 P
    [43]S. Ma, H. Noguchi. High temperature electrochemical behaviors of ramsdellite Li2Ti3O7 and its Fe-doped derivatives for lithium ion batteries [J]. Journal of Power Sources,2006,161:1297-1301 P
    [44]V. Subramanian, A. Karki, K. I. Gnanasekar, et al. Nanocrystalline TiO2 (anatase) for Li-ion batteries [J]. Journal of Power Sources,2006,1(159):186-192 P
    [45]高剑,姜长印,应皆荣,等.锂离子电池负极材料钛酸锂的研究进展[J].电池,2005,35(5):390-392页
    [46]L. Aldon, M. Van Thournout, P. Strobel, et al. Neutron diffraction and MOssbauer studies of iron substituted Li2Ti3O7 of ramsdellite-type as negative electrode for Li-ion accumclator [J]. Solid State Ionics,2006,13-14(177):1185-1191 P
    [47]彭久云,曾照强,苗赫濯.锂离子电池负极材料Li4Ti5O12的研究进展[J].电源技术,2002,26:452-456页
    [48]杨晓燕,华寿南,张树永.锂钛复合氧化物锂离子电池负极材料的研究[J].电化学,2000,6(3):350-355页
    [49]高玲,仇卫华,赵海雷.Li4Ti5O12作为锂离子电池负极材料电化学性能[J].北京科技大学学报.2005,1(27):82-85页
    [50]陈方,梁海潮,李仁贵,等.负极活性材料Li4Ti5O12的研究进展[J].无机材料学报,2005,20(3):537-544页
    [51]L.J.Fu, H.Liu, C.Li, et al. Surface modifi-cations of electrode materials for lithium ion batteries [J]. Solid State Sciences,2006,8(6):113-128 P
    [52]P.P.Prosini, M.Carewska, S.Scaccia, et al. Long-term cyclability of nanostructured LiFePO4. Electrochimica Acta,2003,48(28):4205-4211P
    [53]高剑,姜长印,应皆荣,等.Li4Ti5O12的合成及性能研究[J].电源技术,2006,5:362-365页
    [54]K. Ariyoshi, R.Yamato, T.Ohzuku. Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion (shuttlecock) batteries [J]. Electrochimica Acta,2005,1: 1125-1129 P
    [55]P. P. Prosini, R. Mancini, L. Petrucci, et al. Li4Ti5O12 as anode in all-solid-state, plastic, lithium ion batteries for low-power applications [J]. Solid State Ionics,2001, 144:185-192 P
    [56]G X.Wang, D. H.Bradhurst, S. X Dou, H. K Liu. Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries [J]. Journal of Power Sources,1999,83:156-161 P
    [57]查全性.化学电源选论[M].第一版.武汉大学出版社,2005:124-127页
    [58]X. L. Yao, S. Xie, C. H. Chen, et al. Comparisons of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries [J]. Electrochimica Acta, 2005,50:4076-4081 P
    [59]A. D. Robertson, L. Trevino, H. Tukamoto, et al. New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries [J]. Journal of Power Sources,1999,81-82:352-357 P
    [60]A. Guerfi, S. Sevingny, M. Lagace, et al. Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators [J]. Journal of Power Sources,2003,119-121:88-94 P
    [61]高德淑,苏光耀,肖启振等.锂离子电池正极材料LiNiO2的研究进展[J].2004,9(6):300-304页
    [62]S.Bach, J. P.Pereira-Ramos, N.Baffier, et al. Electrochemical properties of sol-gel Li4/3Ti5/3O4 [J]. Journal of Power Sources,1999,81-82:273-276 P
    [63]C.Shen, X.Zhang, Y.Zhou, et al. Preparation and characterization of nanocrystalline Li4Ti5O12 by sol-gel method [J]. Materials Chemistry and Physics,2003,78:437-441 P
    [64]K.Jung, S.Pyun, S.Kim, et al. Thermodynamic and kinetic approaches to lithium intercalation into Li[Tis/3Li1/3]O4 film electrode [J]. Journal of Power Sources,2003, 119-121:637-643 P
    [65]M.Lim, W.Cho, K.Kim. Preparation and characterization of gold-code posited LiMn2O4 electrodes [J]. Journal of Power Sources,2001,92:168-176 P
    [66]X.Wu, Z.Xiao, Z.He, et al. Preparation and characterization of Li4/3Ti5/3O4 thin films by solution deposition [J]. Materials Letters,2005,60:422-424 P
    [67]Y. Yu, J. L. Shui, C. H. Chen. Electrostatic spray deposition of spinel Li4Ti5O12 thin films for rechargeable lithium batteries [J]. Solid State Communications,2005,135: 485-489 P
    [68]华兰,杨晓燕,康石林,等.掺杂Li4Ti5O12作为锂离子电池负极材料[J].电池,2001,5(31):218-221页
    [69]赵海雷,林久,仇卫华,等.钒掺杂对Li4Ti5O12性能的影响[J].电池,2006,36:124-126页
    [70]S.Huang, Z.Wen, X.Zhu, et al. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries [J]. Journal of Power Sources,2007,165:408-412 P
    [71]K. Mukai, K.Ariyoshi, T. Ohzukub. Comparative study of Li[CrTi]O4, Li[Li1/3Ti5/3]O4 and Li1/2Fe1/2[Li1/2Fe1/2Ti]O4 in non-aqueous lithium cells [J]. Journal of Power Sources,2005,146:213-216 P
    [72]S.Huang, Z.Wen. J.Zhang, et al. Li4Ti5O12/Ag compo-site as electrode materials for lithium-ion battery [J]. Solid State Ionics,2006,177:851-855 P
    [73]C.Jiang, Y.Zhou, I.Honma, et al. Preparation and rate capab-ility of-Li4Ti5O12 hollow-sphere anode material [J]. Journal of Power Sources,2007,166:514-518 P
    [74]J. Gao, J. Ying, C. Jiang, et al. High-density spherical Li4Ti5O12/C anode material with good rate capacity for lithium ion batteries [J]. Journal of Power Sources,2007,166: 255-259 P
    [75]徐宇虹,巩桂英,马萍,张宝宏.Li4Ti5O12的合成及其在锂离子电池中的应用[J].金属材料与冶金工程,2007,1:14-18.
    [76]徐宇虹,巩桂英,马萍,张宝宏.C改性Li4Ti5O12的性能研究[J].电源技术,2007:389-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700