锂离子电池钛酸锂材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池是90年代后投放市场的新一代绿色环保电池,它因为电压高、自放电率低、体积小、重量轻、无记忆效应等独特性能被广泛应用于便携式电器以及电动自行车中。目前商品化的锂离子电池广泛采用的负极材料是石墨类碳材料,但由于碳/石墨第一次充放电时,会在碳表面形成钝化膜,造成容量损失;而且碳的电极电位与锂的电位很接近,当电池过充电时,金属锂可能在碳电极表面析出,形成枝晶而引发安全性问题。而Li4Ti5O12作为锂离子电池负极材料在充放电时结构几乎不发生变化被称为“零应变”材料,具有非常优越的循环性能。钛酸锂具有原料来源广泛、价格低廉、热稳定性好、比能量高、循环性能好、安全性能突出等特点。其理论容量为175mAh/g,工作电压为1.5 V左右,是很具潜力的负极材料之一。
     本文采用溶胶-凝胶法,以草酸和柠檬酸为调节剂,制备出了尖晶石Li4Ti5O12,研究了调节剂与钛酸丁酯的比例和烧结时间对产物电化学性能的影响。结果表明当调节剂草酸与钛酸丁酯的摩尔比为1.0时,在800℃烧结20h的产物粒度为400nm左右,在0.1C倍率下,首次放电比容量为145.9 mAh/g,30次循环后放电比容量为125.8mAh/g。当调节剂柠檬酸与钛酸丁酯的摩尔比为0.5时,在850℃烧结24h的产物粒度为450nm左右,在0.1C倍率下,首次放电比容量为144.5 mAh/g,30次循环后放电比容量为125.9mAh/g。
     本文采用了液相水热法制备出了Li4Ti5O12材料,并采用XRD、SEM等手段对材料进行表征,测试了材料的电化学性能。结果表明,以氢氧化锂为锂源在700℃下锻烧10 h制得的样品表现出较好的电化学性能,0.1C的倍率下首次放电比容量为115.4mAh/g,20次循环后放电比容量为101 mAh/g。
     本文对材料进行了掺杂金属钼的研究,实验结果表明,掺杂产物的主要成分为反应新生成的化合物NaLiTi3O7和Li2MoO4以及未反应完全的Na2MoO4,当钼酸钠和醋酸锂的摩尔比为1:3和0.6:3.4/3时制备出的材料良好的电化学性能,在0.1C倍率下,首次放电比容量分别为157.5 mAh/g和145.5mAh/g,20次循环后放电比容量分别为为137.5mAh/g和95mAh/g。
Lithium ion battery is a new generation green non-pollution battery when it was used in the 1990s. It is widely used in portable electron apparatus and cars due to its highlights, such as high voltage, low discharge rate by itself, little volume, light weight and nonmemeory effect, but the anode materials for lithium ion batteries are the key to constrain its whole performance. The negative-electrode materials are usually carbon in commercial lithium ion batteries. But when discharge for the first time, there are passivation membrane on the surface of carbon, which will cause capacity lose. Moreover, the potential of carbon is very close to that of lithium, when overcharge, the metal lithium will separate out on the surface of carbon, which is the intrinsic safety we must concern. While, for Li4Ti5O12, when used as negative material for Lion battery, there is no such concerns, and during the process of Li+ intercalation and de-intercalation, its crystal form does not change and the total volume change is less than 1%, so it is regarded as a“zero strain”material. It has many characteristics, such as a wide range of raw materials, low cost, good thermal stability, high specific energy, good recycling performance and outstanding features such as security. So Li4Ti5O12 is one of the most potential anode materials which has a high theoretical capacity (175mAh/g) and voltage (about 1.5V versus Li/Li).
     Li4Ti5O12 powders was successfully synthesized by a sol–gel method using oxalic acid and citric acid as a chelating agent. The effect of amount of chelating agent, calcination time on electrochemical performance of product was investigated. In our study, the sample synthesized at 800℃for 20h with oxalic acid to titanium molar ratio R=1.0 yielded the best capacity of 145.9 mAh/g and 140 mAh/g for the first cycle and the 30th cycle respectively at a current density of 0.1C. The sample synthesized at 850℃for 24h with citric acid to titanium molar ratio R=0.5 yielded the best capacity of 144.5 mAh/g and 125.9mAh g-1 for the first cycle and the 30th cycle respectively at a current density of 0.1C.
     Li4Ti5O12 was obtained by hydrothermal method. The Li4Ti5O12 was characterized by XRD, SEM analysis. We also studied the electrochemical properties of the product. The results indicated that the sample which use Lithium hydroxide as lithium sourcesintered at 700℃for 10 hours showed the best electrochemical properties. The discharge capacity was 141.8 mAh/g and 125.9 mAh/g for the first cycle and the 20th cycle respectively at a current density of 0.1C at a current density of 0.1C.
     This paper carried out on materials doped molybdenum metal research, experimental results show that Major components of doping products generated was responsed new compounds NaLiTi3O7 and Li2MoO4 as well as unreacted Na2MoO4.When molar ratio of sodium molybdate and lithium acetate is 1:3 and 0.6:3.4 / 3, the material show a good electrochemical performance, The discharge capacity was 157.5 mAh/g and 145.5 mAh/g for the first cycle at a current density of 0.1C ,and after 20 cycle the discharge capacity was 137.5 mAh/g and 95 mAh/g.
引文
[1]汪继强.新型锂离子电池发展、应用现状及前景展望.电子元器件应用, 2000, 1: 2~6
    [2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J].Nature, 2001, 414: 359
    [3] Murphy D.W, Broodhead J, Steel B.C, Materials for advanced batteries [M]. New York: Plenum Press, 1980. 145
    [4] J.J.Auborn, YL.Barberio, J.Electrochem .Soc, 1987, 134(3):638-641
    [5] Bruno Scrosati, J.Electrochem. Soc., 1992, 139(10):2776-2781
    [6] D.Guyomard, J.M.Tarascon, Solid State Ionics, 1994, 69(3-4):222-237
    [7] J.R.Dahn, U.Von Sacken, M.W.Juzkow, et al. J.Electrochem.Soc, 1991, 138(8):2207-2211
    [8] J .M.tarascon, M.Armand, Nature, 2001, 414:359-367
    [9]任学佑,锂离子电池及其发展前景,电池,1996 ,26(1):38-40
    [10] Nagaura T, Tozawa K, Prog.Batts. So1.Cells ,1990,9: 209-217
    [11]汪继强.电子元器件应用,2000,1,2
    [12] Peter G. Bruce, A.Robert.New intercalation compounds for lithium batteries: layered LiMnO2 [J]. Mater.Chem, 1999, 9: 193
    [13]吴宇平,万春荣,姜长印等.锂离子二次电池[M].北京:化学工业出版社, 2002, 12
    [14]王海明,郑绳楦,刘兴顺.锂离子电池的特点及应用.电气时代,2004, 3: 132~134
    [15]李阳兴,等.锂离子电池的研究与开发,第四届中国国际电池技术交流会/展览会论文集[C].北京1999 200-202
    [16] Fujimoto M, et al. Electrochemical behavior of carbon electrodes in some electrolyte solutions [J]. Power Sources, 1996, 63: 127.
    [17]仇卫华,张刚,等.电源技术,1999,23(1):7.
    [18] Weibing.Xing, J.S.Xue, J.R.Dahn.OPtimizing Pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries [J].Electrochemical.Soc, 1996, 143(10): 3046-3052
    [19] Kenji Sato, Minoru Noguchi, Atsushi Demachi, et al. A mechanism of lithium storage in disordered carbons [J].Science, 1994, 264(5158):556-558
    [20] J. R. Dahn, W. Xing, Y. Gao. The“falling cards model”for the stucture of micro- porous carbons[J].Carbon,1997,35(6):825-830
    [21] Edward Bulel, J.R.Dahn. Reduction of the irreversible capacity in hard-carbonanode materials Prepared from sucrose for Li-ionbatteries.[J].Electrochemicai.Soc,1998, 145(6):1977-1981
    [22] Yinghu Liu, J.S.Xue, Tao Zheng, et al. Mechanism of lithiuxn insertion in hard carbons Prepared by Pyrolysis of epoxy resins[J].Carbon,1996,34(2):193-200
    [23] Tao Zheng, W. R.MeKinnon, J.R.Dahn. Hysteresis during lithitnn insertion in hydrogen-containing carbons [J].Electrochemical.Soc, 1996, 143(7):2137-2145
    [24] Akihiro Mabuchi, Katsuhisa tokumitsu, HiroyUki Fujimoto, et al. Charge-discharge characteristics of the mesocarbon miocrobeads heat-treated at different temperatures [J].Electrochemical.Soc, 1995, 142(4):1041-1046
    [25] M.Jean,A.Tranchant,R.Messina.Reactivity of lithiurn interealated into petroleum coke in carbonate electrolytes[J].Electfochemical.Soc,1996,143(2):391-394
    [26] Kuniaki Tatsumi,Karim Zaghib,Yoshihiro Sawada,Anode performance of vapor-grown carbon fibers in secondary lithium-ion batteries[J].Electrochemical. Soc, 1 995,142(4):1 090-1 096
    [27] O.Yamamoto, N.Imanishi, Y.Takeda, et al.Rechargeable carbon anode [J].Power Sources,1995,54(l):72-75
    [28] Michikazu Hara,Asako Satoh,Norio Takami,et al..Surface structures and charge-dischare characteristics of mesocarbon microbeads as the anodes for secondary lithium-ion batteries[J].TANSO,1 994,165:261-267
    [29] M.Jean, C.Desnoyer, A.Tranchant, et al. Electrochemical and structural studies of petroleum coke in carbonate-based electrolytes [J].Electrochemical.Soc, 1995 , 142(7):2122-2125
    [30] K.Tatsumi, T.Akai, T. Imamura, et al. Li-nuclear magnetic resonance observation of lithium insertion into mesocarbon microbeads [J].Electrochemical.Soc, 1996, 143(6):1923-1930
    [31] lijima S .Helica,microtubules graphite carbon[J].Nature,1 991,354:56-58
    [32] Le roux F, Metenier K, Gautier S, et al. Electrochemical insertion of lithium in catalytic multi- walled carbon nanotubes [J]. Electrochem Soc, 1999, 81/82: 317-322
    [33] Wu G T,Wang C S,Zhang X B, et al. Lithium inserting into CuO/carbon nanotubes [J].Journal of power sources,1 998,75:1 75-179
    [34] Courtney I. A, Dahn J R.Electrochemical et al. X- ray Diffraction studies of the Reaction of Lithium with Tin Oxide Composites [J] .Electrochemical Society, 1997, 144(6): 2045-2052
    [35]刘宁,解晶莹,杨军等,锂离子蓄电池中SnCu /CMS复合材料的制备[J].电化学,2003(11):87-92
    [36] LEE H Y, LEE S M. , Journal of Power Sources,2002,112:649-654
    [37] HUANG H,KELDER E M,SCHOON MAN , et al. Electrochemicalcharacteristics of Sn1-xSixO2 as anode for lithium-ion batteries [J]. Journal of Power Sources,1999,81-82:362-367
    [38] Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1∕3Ti5∕3]O4 forrechargeable lithium cells[J]. Electrochem. Soc,1995, 142: 1431-1435
    [39] E.Ferg, R.J.Gummow, A.deKock. Characteristics of aqueous polycarbazole batteries [J].Electrochem.Soc,1994, (141):147
    [40] Wang GX, Bradhurst D.H., Dou S.X, Liu H.K [J]. Power Sources, 1999, 83, 156
    [41] Tsutomu Ohzuku, Atsushi Ueda. Factor affecting the capacity retention of lithium-ion cells [J].Solid State Ionics,1994, 69, 201
    [42] K.KANAMURA, T. UMEGAK, H. NAITO, et al. Structural and electrochemical characteristics of Li4/3Ti5/3O4 as an anode material for rechargeable lithium batteries [J].Journal of Applied Electrochemistry, 2001, 31:73-78
    [43] Mark F. Pittenger, Alastair M. Mackay, Stephen C. Beck. Multilineage Potential of Adult Human Mesenchymal Stem Cells [J]. Electrochem. Soc,1999,143-147
    [44] ZAGHIB K,SIMONEAU M, ARMAND M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J].Power Sources, 81-82 (1999) 300-305
    [45] TSUTOMU O, ATASUSHI U, NORIHIRO Y, et al. [J]. Power Sources, 1995, 54:99
    [46]杨晓燕,华寿南,张树永.锂钛复合氧化物铿离了电池负极材料的研究[J].电化学,2000, 6(3):350-356
    [47] A.J. Kahaian, K.D. Kepler, P.A. Nelson. Development of a high-power lithium-ion battery [J].Journal of Power Sources 81–82(1999)902–905
    [48] Peramunage D., Abraham K.M. Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells [J]. Electrochem.Soc, 1998, 145(8), 2615
    [49] Nakahara K, Nakajima R, Matsushima T, et al. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells[J]. Power Sources, 2003, 117:131-136
    [50] Izquierdo G, west AR, Materials Reseach Bulletin, 1980, 15(11):1655-1660.
    [51] BACH S, PEREIRA-RAMOS J.P,BAFFIER N, et al. Electrochemical properties of sol-gel Li4Ti5O12 [J]. Power Sources, 1999, 81-82:273
    [52] Shen Cheng-min, Zhang Xiao-gang, Zhou Ying-ke, et al. Preparation and characterization of nanocrystalline Li4Ti5O12 by sol–gel method Materials Chemistry and Physics[J].78 (2003)2: 437-441
    [53] Jung Kyu-Nam, Pyun Su-Il, Kim Sung-Woo, et al. Thermodynamic and kinetic approaches to lithium intercalation into Li[Ti5/3Li1/3]O4 film electrode[J].Journal of Power Sources, 119-121 (2003):637-643
    [54] AricòAS, Bruce P, Scrosati B, Tarascon JM, et al. Nanostructured materials for advanced energy conversion and storage devices[J].Nat Mater,2005 May,4(5):366-377
    [55] Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries [J].Nature, 2001 Nov 15; 414(6861):359-367
    [56] Maier J. Nanoionics: ion transport and electrochemical storage in confined systems [J]. Nat Mater, 2005 Nov; 4(11):805-815
    [57] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J].Nature, 2000 Sep 28;407(6803):496-499
    [58] Cheng-min Shen, Xiao-gang Zhang, Ying-ke Zhou. Preparation and characterization of nanocrystalline Li4Ti5O12 by sol–gel method [J].Materials Chemistry and Physics ,78 (2002) 437–441
    [59] S.Bach,J. P. Pereira-Ramos and N.Baffier, Electrochemical behavior of a lithium titanium spinel compound synthesized via a sol–gel process[J].Mater. Chem., 1998, 8(1), 251–253
    [60] Young Ho Rho, Kiyoshi Kanamura, Minori Fujisaki, et al. Preparation of Li4Ti5O12 and LiCoO2 thin film electrodes from precursors obtained by sol–gel method, Solid State Ionics 151 (2002) 151– 157
    [61] Liang Cheng, Hai-Jing Liu, Jing-Jun Zhang. Nanosized Li4Ti5O12 Prepared by Molten Salt Method as an Electrode Material for Hybrid Electrochemical Supercapacitors[J]. Journal of The Electrochemical Society, 153 (8 )A1472-A1477 (2006)
    [62] Dina Fattakhova, Valery Petrykin, Tereza Kostla′nova, et al. Solvothermal synthesis and electrochemical behavior of nanocrystalline cubic Li–Ti–O oxides with cationic disorder[J].Solid State Ionics 176 (2005) 1877– 1885
    [63] Chunhai Jiang, Eiji Hosono, Masaki Ichihara, et al. Synthesis of Nanocrystalline Li4Ti5O12 by Chemical Lithiation of Anatase Nanocrystals and Postannealing, Journal of The Electrochemical Society, 155 (8)A553-A556 (2008)
    [64] Robertson A D, Trevino L, Tukamoto H, et al. New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries[J]. Power Sources, 1998, 81-82: 352-357
    [65] Kubiak P, Garcia A, Womes M, et al., J. Power Sources, 2003, 119-121: 626-630.
    [66] CHEN Fang(陈方) , L IANG Hai-chao (梁海潮) , L I Ren-gui (李仁贵) , et al.负极活性材料Li4Ti5O12的研究进展[J]. Journal of Inorganic Materials(无机材料学报) , 2005 , 20 (3) : 537 - 544
    [67] Kubiak P , Garcia A , J uma J C , et al. Phase transition in the spinel Li4Ti5O12 induced by lithium insertion : influence of the substitutions Ti/ V , Ti/ Mn , Ti/Fe[J ].Power Sources , 2003 , 119 - 121 : 626- 630
    [68] Sun Y K, J ung D J , Lee Y S , et al. Synthesis and electrochemical characterization of spinel Li [ Li (1 - x) / 3 Cr xTi (5 - 2 x) / 3 ] O4 anode materials[J]. J Power Sources , 2004 , 125 (2) : 242 - 245
    [69] Ohzuku T , Tatsumi K, Matoba N , et al. Electrochemistry and structural chemistry of Li[CrTi ]O4 ( Fd3m) in nonaqueous lithium cells [J]. J Electrochem Soc , 2000 , 147 (10) : 3592 - 3597
    [70] Martín P , López M L , Veiga M L , et al. Electronic and magnetic behaviour of Li (1 + x) / 2 Ti x Cr (5 - 3 x) / 2 O4 spinels [J] . Solid State Sciences , 2004 , 6 (4) : 325 - 331
    [71] WU Yu-ping(吴宇平) , DAI Xiao-bing (戴晓兵) , MA J un-qi (马军旗) , et al.锂离子电池———应用与实践[ M] .Beijing (北京) :Chemical Industry Press (化学工业出版社) , 2004. 120 - 124
    [72] Huang S H , Wen Z Y, Zhu X J , et al. Preparation and electrochemical performance of spinel2type compounds Li4Al yTi5 - yO12 ( y =0 , 0.10 , 0.15 , 0.25) [J ]. J Electrochem Soc , 2005 , 152 (1) : 186- 1901
    [73] Huang S H , Wen Z Y, Zhu X J , et al. Preparation and electrochemical performance of Ag doped Li4Ti5O12 [J] .Electrochemistry Communications, 2004 , 6 (11) : 1093 - 1 097
    [74] Zaghib K, Gauthier M , Brochu F , et al. Li4Ti5O12 , Li (4 -α)ZαTi5O12 or Li4ZβTi (5 -β)O12 particles , processes for obtaining same and use as electrochemical generators [ P]. US : 20040202934 , 2004-10-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700