锂离子电池用尖晶石锰酸锂正极材料的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文详细评述了高性能锂离子电池及其正极材料的研究前沿和发展动态。主
    要研究了尖晶石型锰酸锂正极材料的制备与应用。锂离子二次电池的发展必然要
    求廉价、低污染的新型材料替代现有的昂贵的钴酸锂材料。尖晶石锰酸锂由于其
    更高的性能价格比成为最有希望替代钴酸锂的正极材料。本文在已有的实验基础
    上做锰酸锂材料的扩大化生产条件实验,并在实验的最佳条件下烧制多元复合掺
    杂锰酸锂材料;同时将该材料应用于工业生产中做成成品锰酸锂离子电池并测试
    其性能;针对锰酸锂材料的容量衰减问题尤其是高温下容衰减严重,首次用硅烷
    偶联剂对掺杂锰酸锂材料进行表面处理来改善其高温性能,并用交流阻抗法测试
    锂离子固相扩散系数。主要内容如下:
    1、 针对扩大化生产中经常出现的二次电池的容量偏低现象,采用溶盐-
    浸渍法制备尖晶石锰酸锂材料,研究不同的锂、锰原料、Li/Mn2配比、煅烧方式
    与温度、空气循环、洗涤等因素对材料的电化学性能的影响。结果表明采用
    LiOH·H2O和Mn3O4为主要锂、锰原料在750~780℃下烧36h获得的锰酸锂材料
    具有最好的电化学性能,比容量可达127mAH·g-1。烧制过程中产生的还原性气
    氛易导致低价锂锰氧化物的杂质生成,通过通入适量空气增加氧化性气氛有利于
    煅烧出高性能的LiMn2O4材料。由原料不同使材料呈碱性或酸性从而对产物的电
    化学性能有一定的影响。水洗是解决这个问题的一个办法。在以上研究的基础上
    制备了金属离子和F的共掺杂尖晶石锰酸锂LiMn2-(A+B)CoACrBO4-CF。(MCCF),比
    容量为120 mAH·g-1,虽然较纯尖晶石锰酸锂的比容量有所降低,但具有优良的
    循环性能。
    2、 选用综合性能较好的复合掺杂尖晶石锰酸锂(MCCF)材料做成成品锰酸
    锂离子电池,并测试其电化学性能。做成063740型电池正极附料量为4. 95克,
    设计容量为500mAh,第一次循环的放电容量为461. 2 mAh,放电比容量为
    94. 34mAH.g-1。前几次放电过程中由于具有保护作用的钝化膜(Solid
    Electrolyte Interface,简称SEI膜)的形成产生了一定的不可逆容量损失。
    对电池进行充放电测试,0. 5C循环50次后容量保持率为90. 45%,充放电效率一
    直在99. 5%以上。以MCCF为正极材料的锰酸锂离子电池的循环性能和倍率放电
    特性、自放电率等与同种型号的钴酸锂离子电池相比几乎没有差别。对锂离子电
    池的容量损失原因进行了分析,认为电极过充、电解液的氧化分解、自放电、界
    面膜的形成、正极溶解和正极材料的相变都是产生锂离子电池容量损失的原因。
    3、 对尖晶石LiCrxMn2-xO4材料表面进行硅烷偶联剂处理,以形成一热稳定性
    
    
    昆明理工大学硕士研究生毕业论文
    摘要
    好的硅化物表面层来提高材料的电化学性能。用EPX、SEM和XRD等方法对处理
    前后的尖晶石LICrxMnZ一xo;正极材料进行了表征,结果表明经硅烷偶联剂处理后
    的LICrxMnZ一,04正极材料,在其表面形成了富硅层。电化学测试表明硅烷偶联剂
    表面处理的LICr、MnZ一xo。正极材料在高温下(55℃)100次循环后的容量保持率为
    89.4%,而未处理的LICrxMnZ一x0;材料的容量保持率为71.5%。因此,硅烷偶联剂
    表面处理是改善铿离子电池正极材料LICr:MnZ一,0。高温性能的有效途径。
     4、将Li/MCCF半电池进行交流阻抗实验,由库仑滴定法做Li/MCCF的开路
    电压随组成变化曲线,求}dE/dx},从而计算扩散系数。本实验求出的Li’扩散系
    数大小在10一sc,。2/S数量级。
The recent development in high energy density lithium ion batteries and their cathode materials were reviewed in this paper. Based on the brief demonstration of the important applying field and the industry of spinel manganese oxide, the main research works were focused on the synthetic technology and surface grafting of the cathode materials and the applying in lithium ion rechargeable batteries. The LiMn204 is the most perspective material to substitute LiCo02 as the lithium ion battery positive materials. The influencing factors on the LiMn204 scale-up production were discussed and the MCCF was synthesized under these conditions; Surface grafting as an effective way to improve the elevated performance of positive materials was reported ; the paper has systematically discussed the lithium ion diffusion coefficients in solid materials. They are mainly given as follows.
    1) The LiMn204 samples synthesized by melt-impregnation method, using LiOH ?H20 and Mn304 as the lithium and manganese sources, calcining under 750~780癈 about 36 hours is confirmed to be best in view of storage and cycling performance. The results obtained from many control experiments show that the fresh air is needed in calcining because the deoxidized gas would be produce in the progress of calcining. Because of using different doping sources, the productions of LiMxMn2-xO4 M=(Cr,Co) show different PH value, which affect the capacity of the materials. Washing the production is a way to solve it. The experiments also show that controlling the molar ratio of Li to Mn2 is important and the suitable value is 1.03~ 1.04. The performance of the LiCrxCoyMn(2-x-y)04-zFz (MCCF) cathode materials obtained according to these results have discharge capacity above 120mAh.g-1.
    2) The lithium ion rechargeable batteries were constructed by the best MCCF as cathode materials and the Yt7-11 graphite as anode materials. The weight of MCCF in 063740 size lithium ion batteries was 4.95g. The design capacity was 500mAh. The discharge experiments were carried out at various current densities. The results show that when in 0. 5C discharge the initial discharge capacity was over 461.2mAh, the specific capacity was 94.34 mAh.g-1, cycling under 50 times the discharge capacity is 90.45%
    
    
    
    of the initial capacity. Because of the SEM (Solid Electrolyte Interface) , there are irreversible capacity in the first cycle. The results show that there are almost no different in the rate discharge feature and the rate of local action between the same type of lithium ion manganese rechargeable and lithium cobalt rechargeable. Factors that may cause capacity decrease of lithium ion battery during cycling are discussed in this paper.
    3) Surface grafting with silance coupling agent on the spinel LiCrxMn2-x04 was reported. The structure of the grafting and ungrafting LiCr,Mn2.x04 was characterized by EPX, SEM and XRD. The result show that after grafting, the silica enrichment on the surface of LiCrxMn2-x04 was found and the positive materials had increased stabilized cycling performance and reduce self-discharge. After 100 cycles, the grafting and ungrafting LiCrxMn2-x04/Li batteries discharge capacity is 89. 4 and 71. bof the initial capacity. That is to say surface grafting with silane coupling agent is an effective way to improve the elevated performance of positive materials.
    4) The charge/discharge rate has the same importance with the charge /discharge capacity, and the paper has systematically discussed the parameter, lithium ion diffusion coefficients in solid materials. The open circuit voltage for MCCF with the change of intercalation composition has beer, measured. The lithium ion diffusion coefficient has been obtained by EIS (A. C impedance) method and the results indicate that its values are change with the change of lithium ioa intercalation compositions. The lithium ion diffusion coefficient has the extremities at the point of solid phase structure changes happened during charge and discharge progress, which may be identified clearly from the maximum values in the dE/dx
引文
[1] 郭炳焜,徐徽、王先友,肖立新.锂离子电池.湖南:中南大学出版社,2002
    [2] http://www.cpcp.com.cn/kjcg/wen/aa0509-3. htm.翘首以待新一代锂聚合物电池
    [3] 王占良,雷荣.锂离子电池研究进展.河北化工,2000(1) :4-6
    [4] 徐茶清,田彦文,翟玉春.锂离子电池正极材料LiMn2O4. 的研究现状.材料与冶金 学报.2002,1(4) :243-253
    [5] Madhavis, Rao G V, Chowdarib, et al. Synthesis and cathode properties of LiCo1-yRhyO2(0≤y≤ 0. 2) and LiRhO2 [J].J Electrochemical Soc.,2001,148(ll):A1279-A1286
    [6] Akihisa K, Kazonori T, Taro I, et al . Layered Li-Co-Mn Oxides as a high-voltage positive electrode material for lithium batteries [J].J Electrochemical Soc.,2001,148(9) :A981-A983
    [7] Chebiam R V, Pradof, Manthir A M. Structural instability f delithate Li1-xNi1-yCoyO2 cathodes. [J].J Electrochemical Soc., 2001,148(1) :A49-A53
    [8] 赵铭姝,张国范,翟玉春,田彦文.锂离子电池蓄电池正极材料尖晶石型锰酸锂的 制备[J].电源技术,2001,25(3) :243-249
    [9] Chung S Y., Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrode. Materials advance onling publication, (doi:10. 1038/nmat732 )(2002)
    [10] Andeesson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4 [J].J.Power Soures,2001,97-98:498-502
    [11] Takahashi M, Tohishima S, Takei K,et al. Characterization of LiFePO4 as the cathode materials [J].J.Power Sources,2001,97-98:508-511
    [12] Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J]. J. Electrochemical and solid-state letters,2001,
    (10) : A170-A172.
    [13] 刘兴泉、刘培松、陈召勇等.锂离子电池正极材料LiMn2O4的合成及其电化学性 能研究.[J].J.功能材料,2001,32(2) ,178-180
    [14] Kosova N V, Uvarov N F, Devyatkina E T,et al. Mechanochemical synthesis of LiMn2O4 cathode material for lithium batteries [J].Solid State Inoics,2000,135:107-114
    [15] Xia Y J, Hideshima Y , Nagamo M,et al . Studies on Li-Mn-O spinel system
    
     (obtained from melt-impregnation method)as a cathode for 4V lithium batteries [J].J Power Sources ,1998,74(1) :24-28
    [16] 杨书廷、张焰峰、吕庆章,等.纳米级LiMn2O4尖晶石合成及电化学性能研究.[J].J. 无机材料学报.2000,15(2) :309-314
    [17] 卢政集,赖琼钰.锂脱嵌化合物LiMn2O4r的微波烧结研究.[J].J.化学研究与应 用,1998,10(6) :620-631
    [18] 刘光明,李美铨,高虹等.锂离子蓄电池正极材料LiMn2O4的合成.[J].研究与设计, 2002,26(1) :9-10
    [19] Sung L Y, Sun YK, Nahm K S. Synthesis of spinel LiMn2O4cathode material prepared by an adipic acid assisted sol-gel methode for lithium secondary batteries [J].Solid State Ionic, 1998,109(3-4) :285-294
    [20] A.R.Naghash, J.Y.Lee. Preparation of spinel lithium manganese oxide by aqueous co-precipitation. J,Power Sources, 2000,85:284-293
    [21] 吴宇平,李阳兴,万春荣等.锂离子二次电池正极材料氧化锰锂的研究进展.功能 材料,2000,31(1) :18-23
    [22] Yamada A,et al. J. Electrochem,Soc,. 1995,142(7) :2149
    [23] Tarascon J.M., et al. J. Electrochem,Soc,. 1994,141(6) :1421
    [24] Xia .Y.Y., et al. J.Power Sources,.1998,74(1) :24
    [25] Palacin M.R.,et al. Journal of Solid State Chemistry ,1442(2) :361
    [26] Amatucci G G, Blyr A, Sigala C, et al. Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance. [J].Solid State Ionics. 1997,104(1-2) :13-25
    [27] Park S C,Han Y S, Kang Y S, et al. Electrochemical propertyes of LiCoO2-coated LiMn2O4 prepared by solution-based chem.ical processs. [J].J.Electrochem. Soc., 2001,148:A680
    [28] 陈彦彬.锂离子电池正极材料LiMn2O4的高温性能研究.[博士论文],北京:北京 科技大学,2001
    [29] Ozawak.Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system[J], Solid state ionics, 1994, 69: 212-221
    [30] 杨汉西,艾新平.锂离子电池炭负极研究.电源技术,1992,16(5) :2-5
    [31] 西美绪.用作锂离子二次电池负极的活性物质炭.新型碳材料,1993,33(3) :46-51
    [32] 冯熙康.锂离子在石墨中的嵌入特性研究.电源技术,1997,21(40) :139-142
    [33] 吴国良.石墨/LiCoO2锂离子电池研制,电池,1996,26(2) :62-65
    
    
    [34] 仇卫华.锂离子电池负极材料-树脂包覆石墨的性能.电源技术,1999,23(1) :7-
    [35] Abraban K M, Pasguatiello D M, Willatadt E B. Preparation and characterization of some lithium batteries [J].J Electrochem Soc,1990,137(3) :743-749
    [36] Hua Shou-nan(华寿南),Zhong Gou-lun(钟同伦),Jiang Neng-Zuo(姜能 座).Electrochemical behaviour of vanadium brone Li6V5O15 cathode in a seconddaty lithium bakery[J].J Power Sources,1996,63(1-2碳:93-96. )
    [37] Yang Yu-chun(杨遇春),Zheng You-guo(郑有国).锂离子电池材料新进展[J].Battery Bimonbly(电池),1998,28(4) :181-183
    [38] 吴宇平.锂离子蓄电池锡基负极材料的研究.电源技术,1999,23(3) :191-193
    [39] Idota Y , Tin-based morphous oxides : a high capacity lithium-ion-storage materials.Science, 1997, 276(30) : 1395-1397
    [40] 唐致远.锂离子蓄电池负极材料的研究进展.电源技术,2000,24(2) :108-111
    [41] JEC,电池快讯,1997,(2) .
    [42] 薛建军.锂离子电池正极材料制备及相关电极机理研究:[博士论文],天津:天津 大学应用化学系,2001
    [43] 吕正中·尖晶石型锂锰氧化物的制备、组分分析及其电性能的表征:[硕士论文], 长沙:中南大学功能材料化学研究所,2002
    [44] 赵家昌·锂离子电池正极材料尖晶石型LiMn2O4高温失效机制及其改进:[硕士 论文],长沙:中南大学功能材料化学研究所,2003
    [45] M.M. Thakery, M.F. Mansuetto, J. B. Bates. Structure stability of LiMn2O4 electrodes for lithium batteries. J. Power Sources, 1997,68:153-158
    [46] 梁英教,车荫昌.无机热力学数据手册.沈阳:东北大学出版社,1993
    [47] 杨频,高孝恢.性能-结构-化学键.北京:高等教育出版社,1987:457
    [48] V.Manev, A.Momchilov, A.Nassalevsk, A.Kozawa. Rechargeable lithium battery with spinel-related A-MnO2 I. J.Power Sources, 1993,43/44:551-559.
    [49] V.Manev, A.Momchilov, A.Nassalevsk, A.Sato, Rechargeable lithium battery with spinel-related λ-MnO2 Ⅲ. J.Power Sources, 1995, 54:323-328.
    [50] Dong H Jang, Young J Shin, Seung M Oh. Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 cell. J. Electrochem.Soc ., 1996,143(7) :2204-2211
    [51] Wang Xianyou(王先友),Zhang Yunshi(张允什),Yan Jie(阎杰),et al.锂离子电池碳负 极研究新方向.[J].Chinese Journal of Power Sources(电源技术),1999. 23(4) :233-237
    [52] Peled E, Golodnitsky D, Atdel G,et al .The semi model-application to lithium polymer
    
    electrolyte batteries [J].Electrochim Atca,1995,40(13) :2197-2204
    [53] 黄坤.影响锂离子蓄电池循环寿命的因素.电池工业.2001,6(1) :235-236
    [54] Cheng Shangbao(城上保),新电池读本[M].Beijing(北京):Press of chem.ical Industry (化学工业出版社),1987:21
    [55] Pistoia G, Antonini A, Rosati R,et al . Storage characteristics of cathode for Li-ion batteries [J].Electrochim Atca, 1996,41 (17) :2683-2689
    [56] 黄可龙,吕正中,刘素琴.锂离子电池容量损失原因分析.电池,2001,31(3) : 142-145
    [57] Wu Yuping(吴宇平),Fing Shibi(方世壁),Jiang Yingyan(江英彦).锂在炭材料中 的可逆高诸存在机理[J].Bulletin of Chemistry(化学通报),1998,4:15-19
    [58] Doyle M, Newan J, Gozdz A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J].J Electrochim Soc,1996,143(6) : 1890-1903
    [59] Dahn J R, Fuller E W, Obravae M. Overcharge reactions for high-voltage positive electrodes [J]. Solic Ionics, 1994,69:265-274
    [60] Liu W, Kowal K, Farrington G C.Mechnism of the electrochemicall insertion of lithium into LiMn2O4 spinels [J].J Electrochem Soc,1998,145(2) :459-465
    [61] Ein-Eli Yair, Markovsky B, Aurbach D,et al. The dependence of the performance of Li-C intercalation anode for Li-ion secondary batteries on the electrolyte solution composition [J]. J Electrochim Acta, 1994,39(17) :2559-2569
    [62] Tarascon J M, Guyomard D. Li metal-free rechargeable batteries based on Li1+xMn2O4 cathode (0 ≤x≤1) and carbon anodes [J].J Electrochem Soc,1991,138(10) :2864-2868
    [63] Fong R, Von Saken U, Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells [J]. J Electrochem Soc,1990,137(7) :2009-2013
    [64] Ein-Eli Y, Mchdevitl S F, Aurbach D,et al. A promiscuous single solvent for Li-ion battery electrolytes [J]. J Electrochim Acta,1997,144(7) :L180-L184
    [65] Kanamura K, Toriyama S, Shirashi S, et al. Studies on electrochemical oxidation of nonaqueous electrolytes using in still FTIR spectroscopy [J]. J Electrochem Soc,1995,142(5) :1383-1389
    [66] Schiling Oliver,Dahn J R. Thermodynamic stability of chem.ically deithiated Li(LixMn2-x)O4 [J]. J Electrochem Soc,1998,145(2) :568-575
    [67] Zhan Hui(詹晖),Zhou Yunhong(周运鸿).锂离子电池正极材料的发展[J].Chinese Journal of Power Sources(电源技术),1999. 23(增刊):102-105
    
    
    [68] Xia Yougyao, Yoshio M. An investication of lithium ion insertion into spinel structure Li-Mn-O compounds. [J]. J Electrochem Soc,1996,143(3) :825-833
    [69] Yamada A, Miura K, Hinokuma K, et al. Sythesis and structure aspects of LiMn2O4+y as a cathode for rechargeable lithium batteries [J]. J Electrochem Soc,1995,142(7) :2149-2156
    [70] Ohzuku T, Ueda A, Nagayma M. Electrochemistry and structural chem.istry of LiNiO2 (Rsm) for 4-vol secondary lithium cells [J]. J Electrochem Soc,1993,140(7) :1862-1870
    [71] Amatucci G.G,Blyr A, Sigala C., et al. Surface treatment of Li1+xMn2-xO4 spinels for improved elevated temperarure performance [J]. Solid Ionics, 1997,104:13-25
    [72] Dong Biao Jang ,Yoshibisa Kogo,Isao Tari .Influence of surface treatments of LiMn2O4 powder with Ag on charge-discharge characteristic I.Ag coating [J].J Electrochemistry .1999, 67(4) : 359-363.
    [73] Y. Xia, Y. Zhou, M. Yoshio. Capacity fading on the cycling of 4V Li/ LiMniO4 cells.[J] J. Electrochem Soc. 1997,8:2593-2597
    [74] A. Du Pasquier, A. Blyr, P. Courhal, et al. Mechanism for limited 55℃ storage performance of Li1. 05Mn1. 95O4 electrode. [J].J Electrochem Soc. 1999,146(2) :428-433
    [75] Y.Xia, N.Kumada, M.Yoshio. Enhancing the elevated temperature performance of Li/LiMn2O4 cells by reducing LiMn2O4 surface area. J.Power Sources, 90(2001) :135-128
    [76] 彭斌·锂离子电池正极材料尖晶石型氧化锰锂的制备、结构及电化学性能:[硕 士论文],长沙:中南工业大学,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700