高温长寿命锰酸锂正极材料的合成及其改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:能源危机、环境污染、全球变暖等一系列问题严重威胁到人类的生存和发展。为解决以上问题,各国政府纷纷投入大量人力物力开发利用电动汽车。锂离子电池具有体积小、电压高、容量大、寿命长、自放电小、无记忆效应和绿色环保等优点而成为车载动力的首选。磷酸铁锂和锰酸锂作为最可能应用于动力电池的正极材料。然而在我国磷酸铁锂热火朝天的几年里,世界各大主流汽车厂商电动汽车电池正极材料逐步向以日韩为代表的锰系正极材料转移。但是日本以及韩国对动力LiMn2O4正极材料进行封锁,在技术上进行保密,因此,研究开发出性能优越的尖晶石LiMn2O4具有非常重要的现实意义。本文从前驱体入手,提出采用控制结晶一步氧化法制备球形四氧化三锰前驱体,然后联合高温固相法制备球形锰酸锂,并从资源综合利用角度出发,采用液相法进行掺杂改性研究。
     论述了控制结晶法合成前驱体的理论基础。根据同时平衡原理和质量守恒定律推导,绘制出Mn-NH3-SO42--H2O的φ-pH图,并对晶粒形成和长大机理进行理论分析,为制备形貌单一、粒径分布均匀的球形四氧化三锰前驱体提供理论基础。
     系统研究了控制结晶一步氧化法制备球形四氧化三锰工艺。研究了反应温度、反应时间、搅拌速度、MnS04摩尔浓度、氨水浓度、氨锰摩尔比、硫酸锰加料速度对前驱体物理化学指标的影响,研究结果表明,在反应温度为70℃、搅拌速度为500r·min-1、反应时间为12h、硫酸锰浓度为1.25mol·L-1、氨水浓度为2mol·L-1、NH3/Mn摩尔比为2.4、硫酸锰加料速度为600mL·h-1。制备的Mn304纯度高达99.74%,粒度分布较好,平均粒径为11.201μm,振实密度达到2.28g·cm-3。拉曼光谱分析表明所有Raman峰与尖晶石Mn304的特征峰完全吻合。
     系统研究了高温固相法制备球形锰酸锂。研究结果表明最佳烧结工艺为500℃、650℃预烧6h后升温至800℃烧结10h,此条件下合成的LiMn204材料颗粒球形度较好、结晶完善、电化学性能较好,常温0.1C首次放电比容量高达125.5mAh·g-1,1C首次放电比容量为119.9mAh·g-1,循环300次后容量保持率为87.66%,高温(55℃)1C首次放电比容量为114.9mAh·g-1,循环200次后容量保持率为86.24%。LiMn2O4电极循环伏安结果发现两对氧化还原峰,与LiMn204电极的充放电曲线的特征平台表现一致。
     研究了联合控制结晶一步氧化高温固相法制备球形掺镁锰酸锂。研究发现控制NH3/Mn摩尔比,可以得到Mg含量可控、振实密度较大的球形掺Mg的Mn304前驱体。XRD结果显示经过高温固相反应,Mg取代部分Mn成功进入尖晶石LiMn204晶格。镁掺杂改善了锰酸锂的循环性能,当前驱体中镁含量约为1.5%时,得到的LiMn2-xMgxO4电化学性能最好,常温1C首次放电比容量为113.1mAh·g-1,循环300次后容量保持106.4mAh·g-1;高温1C首次放电比容量为121.4mAh·g-1,循环300次后容量保持99.3mAh·g-1。循环性能基本能满足动力电池要求。
     为进一步改善锰酸锂的循环性能、降低原料成本、提高资源综合回收利用,采用液相法分别对锰酸锂进行了Ni、Co单一和Ni、Co复合掺杂。XRD结果表明,Ni、Co成功取代部分Mn进入尖晶石LiMn204晶格,减小了材料的晶格常数。钻掺杂锰酸锂具有较高的放电比容量和较好的循环性能,当前驱体中钴含量为8%时,材料1C首次放电比容量为117.3mAh-g-1,循环200周后容量保持率为95.82%;镍掺杂有效改善了LiMn204的循环性能,但是材料的比容量较低;Ni、Co复合掺杂LiMn204具有较高的比容量和较好的循环性能,当前驱体中Ni、Co的百分含量分别为1%左右时,制备的LiMn204常温和高温1C首次放电比容量分别为112.8和118.2mAh-g-1,常温500次循环后容量保持率为97.52%,高温300次循环后容量保持率为90.52%,所有物理化学指标都达到动力电池要求。XPS分析结果表明,Ni、Co复合掺杂提高了锰的平均价态,Ni、Co复合掺杂样品中Mn、Ni、Co的价态分别为+4、+2、+3价。
     最后对球形锰酸锂及Ni、Co复合掺杂锰酸锂进行中试。中试结果表明锰酸锂具有较好的常温电化学性能,1C首次放电比容量为115.8mAh·g1,循环500次后容量保持率为89.29%;Ni、Co复合掺杂锰酸锂具有优越的电化学性能,常温和高温1C首次放电比容量分别为112.8和111.2mAh-g-1,500次循环后容量保持率分别为91.22%和83.81%。成本分析认为该工艺具有非常好的经济效益。
Abstract:The serious problems such as energy crisis,environmental pollution,global warming have already threatened the human living and its development. To solve the problems above, governments have invested a lot of manpower and material resources in the development and utilization of electric cars. As the Li-ion battery has many advantages, such as high working-voltage, large capacity, long circle-life and non memory effect, it becomes the first choice of novel power battery. Both of LiFePO4and LiMn2O4were most likely to be used on power battery. When we studied on LiFePO4, manganese lithium ion battery cathode material was mostly produced in Korea and Japan. So it is significant to study LiMn2O4in that Korea and Japan block material and technology secrecy. This paper reports on the synthesis of spherical Mn3O4particles by a controlled crystallization oxidization method and the preparation spherical LiMn2O4material by a solid-state reaction. At the same time, in order to realize comprehensive utilization of resources, LiMn2O4was modified by liquid-phase doping method.
     Theoretical basis for controlled crystallization oxidization method synthesis of Mn3O4precursor was discussed。According to the principle of simultaneity balance and mass conservation, the cp-pH diagram of Mn-NH3-SO42--H2O was drawn. The crystal formation and growth mechanism was also discussed, which provided the theoretical foundation for synthesis of Mn3O4precursor with homo-morphology and uniform particle size distribution.
     The progress of controlled crystallization oxidization method for preparing Mn3O4precursor was studied systematically. The effect of reaction temperature,reaction time,stirring rate,molarity of MnSO4,molarity of NH3·H2O,molar ratio of NH3/Mn、feeding velocity of MnSO4on the physical chemical properties of Mn3O4were studied. The results show that under the condition of1.25mol·L-1MnSO4,2mol·L NH3·H2O,molar ratio of NH3/Mn2.4,feed MnSO4at600mL·h-1、stirring at500r·min-1,react for12h at70℃, the purity,tap density and mean grain size of Mn3O4precursor are99.74%,2.28g-cm-j and11.20μm, respectively. According to the Raman result, all of the characteristic peaks match exactly with spinel Mn3O4.
     The progress of solid-state reaction at high temperature for prepare spherical LiMn2O4was studied systematically. The results show the optimum technical parameters as follows:the presintering temperature are500℃and650℃, the sintering temperature is800℃and the sintering is10h. The results of electrochemical performance tests show that the first discharge specific capacity of LiMn2O4obtained under optimum conditions can reach125.5mAh·g-1at0.1C and119.9mAh·g-1at1C, the capacity retention ratio after300cycles is87.66%at room temperature, the first discharge specific capacity is114.9mAh·g-1at1C, the capacity retention ratio after200cycles is86.24%at55℃. The CV spectrums indicated LiMn2O4cathode have two obvious redox peaks, which coincides with the charge and discharge curves of LiMn2O4.
     The progress of preparing Mg-doping lithium manganese oxide by uniting controlled crystallization oxidization and solid-state reaction has been studied. The results show that the content of Mg in Mg-doping spherical Mn3O4precursor that with large tap density can been controlled by adjusting molar ratio of NH3/Mn. XRD indicate that magnesium ionsentered into the lattice of LiMn2O4substituting some Mn. Mg doping improves the cycle performance of LiMn2O4. The electrochemical properties of LiMn2-xMgxO4which prepared from Mg-doping spherical Mn3O4in which the content of Mg in Mn3O4is about1.5%is the best. When it charges and discharges at148mA·g-1, the first discharge specific capacity of LiMn2-xMgxO4is113.1mAh·g-1at room temperature and121.4mAh·g-1at high temperature, after300cycles, the discharge, cycle performance can meet the standards of power battery.
     In order to further improve the cycle performance of LiMn2O4,cutting the raw material cost and comprehensive recovery of resource, LiMn2-xNixO4,LiMn2-xCoxO4and LiMn2-x-yNixCoyO4have been prepared by liquid-phase method. XRD indicate that Ni,Co ions substitute some Mn entered into the lattice of LiMn2O4that caused reduction of lattice constants. Co-doping lithium manganese oxide shows high discharge specific capacity and good performance. The first discharge specific capacity of LiMn2-xCoxO4which was prepared from Co-doping spherical Mn3O4in which the content of Co in Mn3O4is about8%is117.3mAh·g-1at1C, after200cycles, capacity retention ratio is95.82%; Ni-doping improve the cycle performance of lithium manganese oxide but its discharge specific capacity is too low; Ni,Co co-doping lithium manganese oxide shows high discharge specific capacity and good performance, LiMn2-xCox04prepared from the precursor in which both of Ni and Co content are1%shows the best electrochemical properties. When it charges and discharges at148mA·g-1, its initial discharge specific capacity is112.8mAh·g-1and its capacity retention ratio after500cycles is97.52%at room temperature; its initial discharge specific capacity is118.2mAh·g-1and its capacity retention ratio after300cycles is90.52%at high temperature. All of its physical and chemical indexes can meet the standards of power battery. The results of XPS show that valence state of Mn,Ni,Co in LiMn2-xCoxO4is+4,+2,+3, respectively.
     Finally, A pilot plant scale test of preparing spherical LiMn2O4and LiMn2-xCoxO4was carried out in a3mj reactor. The LiMn2O4prepared in pilot plant scale test shows good electrochemistry properties at room temperature. Its initial discharge specific capacity is115.8mAh·g-1and its capacity retention ratio after500cycles is89.29%; LiMn2-xCoxO4shows superior electrochemistry properties, its initial discharge specific capacity of is112.8mAh·g-1at room temperature and11.2mAh·g-1at high temperature, after500cycles, its capacity retention ratio is91.22%at room temperature and83.81%at high temperature. Cost analyses indicate that this progress shows good economic prospects.
引文
[1]Hariprakash B, Gaffoor S A, Shukla A K. Lead-acid batteries for partial-state-of-charge applications [J]. Journal of Power Sources,2009,191: 149-153.
    [2]王然,许检红.电动公交车用化学电源的比较研究[J].电源技术,2008,32(7):478-480.
    [3]Taniguchi A, Fujioka N, Kanamaru K, et al. Development of nickel/metal-hydride batteries for EVs and HEVs [J]. Journal of Power Sources,2001,100:117-124.
    [4]Danil V. Toyota. Prius HEV neurocontrol and diagnostics [J]. Neural Networks, 2008,21:458-465.
    [5]Ovshinsky S R, Dhar S K, Fetcenko M A, et al. Advanced materials for next generation NiMH portable, HEV and EV batteries [J]. IEEE AES Systems Magazine,1999,14(5):17-23.
    [6]Paul G, John A, Dennis C, et al. Development of advanced nickel/metal hydride batteries for electric and hybrid vehicles [J]. Journal of Power Sources,1999,80: 157-163.
    [7]Mao L C, Tong J Y, Shan Z D. et al. Effect of Co additives on the cycle life of Ni-MH batteries [J]. Journal of Alloys and Compounds,1999,293-295:829-832.
    [8]Arai J, Yamaki T, Yamauchi S, et al. Development of a high power lithium secondary battery for hybrid electric vehicles [J]. Journal of Power Sources, 2005,146:788-792.
    [9]Kandler S, Wang C Y. Power and thermal characterization of a lithium-ion battery pack for hyrid-electric vehicles [J]. Journal of Power Sources,2006,160: 662-673.
    [10]Andrew C, Paul B. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization [J]. Journal of Power Sources,2002,112:236-246.
    [11]Andrew B, Marshall M. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles. EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium. Stavanger, Norway, May 2009,13-16.
    [12]Anderman M. Performance of Large Lithium-ion batteries and gap analysis against requirements-Tutorial C, Advanced Conference, Baltimore, Maryland, May 2006 in key applications Automotive Battery.
    [13]Burke A, Van G E. Plug-in Hybrid-Electric Vehicle Powertrain Design and Control Strategy Options and Simulation Results using Lithium-ion Batteries, paper presented at EET 2008 European Ele-Drive Conference, Geneva, Switzerland, March 2008,12.
    [14]郑敏信,齐铂金,吴红杰.锂离子动力电池组充放电动态特性建模[J].电池,2008,38(3):149-151.
    [15]Horiba T, Maeshima T, Matsumura T, et al. Applications of high power density lithium ion batteries [J]. Journal of Power Sources,2005,146:107-110.
    [16]余国华,肖斌.大容量动力型锂离子电池的研制与生产[J].电池工业,2007,12(2):78-84.
    [17]Divya K C,φ stergaard J. Battery energy storage technology for power systems-An overview [J]. Electric Power Systems Research,2009,79:511-520.
    [18]Mark W V, Liu P. Electrochemical characterization of high-power lithium ion batteries using triangular voltage and current excitation sources [J]. Journal of Power Sources,2007,174:2-8.
    [19]Yuriy M, Igor K, Riley S, et al. High Energy Rechargeable Li-S Cells for EV Application Status, Challenges and Solutions [J]. ECS Transactions,2009, 25:23-34.
    [20]Kolosnitsyn V S, Karaseva E V. Lithium-sulfur batteries:Problems and solutions [J]. Russian Journal of Electrochemistry,2008,44 (5):506-509.
    [21]Abraham K M, Jiang Z A. Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery [J]. Journal of The Electrochemical Society,1996, 143(1):1-5.
    [22]陈立泉.锂离子正极材料的研究发展[J].电池.2002,32:6-8.
    [23]Ohzuku T, Brodd R. An overview of positive-electrode materials for advanced lithium-ion batteries [J]. Journal of Power Sources,2007,174(2):449-456.
    [24]Reimers, Jan N, Dahn, J R. Electrochemical and in situ x-ray diffraction studies of lithium intercalation in LixCoO2 [J]. Journal of the Electrochemical Society, 1992,139(8):2091-2097.
    [25]T. Ohzuku, Ueda A. Solid-State Redox Reactions of LiCoO2 (R3m) for 4 Volt Secondary Lithium Cells [J]. Journal of The Electrochemical Society,1994, 141(11):2972-2977.
    [26]Molenda J, Andrzej S, Tadeusz B. Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties [J]. Solid State Ionics,1989,36(1-2):53-58.
    [27]Amatucci G G, Tarascon J M, Klein L C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries [J]. Solid State Ionics,1996,83:167-173.
    [28]Chebiam R V, Kannan A M, Prado F. Comparision of the chemical stability of the high energy density cathodes of lithium-ion batteries [J]. Electrochemistry Communications,2001,3:624-627.
    [29]Chebiam R V, Prado F, Manthiram A. Soft Chemistry Synthesis and Characterization of Layered Li1-xNi1-yCoyO2-δ (0≤x≤1 and 0≤y≤1) [J]. Chemistry Materials,2001,13(9):2951-2957.
    [30]Cho J, Kim Y J, Kim T J. Zero-Strain Intercalation Cathode for Rechargeable Li-ion Cell [J]. Angewandte Chemie International Edition,2001,40(18): 3367-3369.
    [31]Chen Z H, Dahnz J R. Effect of a ZrO2 Coating on the Structure and Electrochemistry of LixCoO2 When Cycled to 4.5V [J]. Electrochemical and Solid-State Letts,2002,5(10):A213-A216.
    [32]Dyer L D, Borie B S, Jr, et al. Alkali Metal-Nickel Oxides of the Type MnO2 [J]. Journal of the American Chemical Society,1954,76:1499-1503.
    [33]Dahn J R, Sacken U V, Juzkow M W, et al. Rechargeable LiNiO2/Carbon Cells [J]. Journal of The Electrochemical Society,1991,138(8):2207-2211.
    [34]Arai H, Tsuda M, Saito K, et al. Nickel dioxide Polymorphs as lithium insertion electrodes [J]. Electrochimca Acta,2002,47(17):2697-2705.
    [35]Ohzuku T, Veda A, Nagayama M. Electrochemistry and structure chemistry of LiNiO2(R3m) [J]. Journal of Power Sources,1997,68(2):316-319.
    [36]Ohzuku T, Ueda A, Nagayama M. Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells [J]. Journal of The Electrochemical Society,1993,140:1862-1870.
    [37]Dahn J R, Vonsacken U, Michal C A. Structure and electrochemistry of Li1±yNiO2 and a new Li2Ni02 phase with the Ni(OH)2 structure [J]. Solid State Ionics,1990,44:87-97.
    [38]Biensan P, Simon B, Biensan G, et al. On safety of lithium-ion cells [J]. Journal of Power Sources,1999,81-82:906-912.
    [39]Rougier A, Delmas C, Chouteau G. Magnetism of Li1-zNi1+zO2:A powerful tool for structure determination [J]. Journal of Physics and Chemistry of Solids,1996, 57(6-8):1101-1103.
    [40]Zhang, Z, Fouchard D, Rea J R. Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells [J]. Journal of Power Sources, 1998,70(1):16-20.
    [41]Ohzuku T, Knakura K, Aoki T. Comparative study of solid-state redox reactions of LiCo1/4Ni3/4O2 and LiAl1/4Ni3/4O2 for lithium-ion batteries [J]. Electrochimica Acta,1999,45:151-160.
    [42]Kim J, Amine K. A comparative study on the substitution of divalent, trivalentand tetravalent metal ions in LiNi1-xMxO2(M=Cu2+,Al3+and Ti4+) [J]. Journal of Power Sources,2002,104(1):33-39.
    [43]Pouillerie C, Croguennec L, Delmas C. The LixNi1-yMgyO2(y=0.05,0.10) system: structural modifications observed upon cycling [J]. Solid State Ionics,2000,132: 15-29.
    [44]Pouillerie C, Croguennec L, Biensan P, et al. Synthesis and characterization ofnew LiNi1_yMgyO2 positive electrode materials for lithium-ion batteries [J]. Journal of The Electrochemical Society,2000,147:2061-2069.
    [45]Okada S, Sawa S, Egashira M, et al. Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries [J]. Journal of Power Sources,2001, 97-98:430-432.
    [46]Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Materials,2002,1(2): 123-126.
    [47]Molenda J, Stoklosa A, Bak T. Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties [J]. Solid State Ionics,1989,36(1-2):53-58.
    [48]Shimakawas Y, Numata T, Tabuchi J. Verwey-Type Transition and Magnetic Properties of the LiMn2O4 Spinels [J]. Journal of solid state chemistry,1997,131: 138-143.
    [49]Brian L E, Lee K T, Linda F. N. Positive Electrode Materials for Li-Ion and Li-Batteries [J]. Chemistry Materials,2010,22:691-714.
    [50]Islam M S, Driscoll D J, Fisher C A J, et al. Atomic-Scale Investigation of Defects, Dopants, and Lithium transport in the LiFePO4 Olivine-Type Battery Material [J]. Chemistry Materials,2005,17:5085-5092.
    [51]Fang H S, Pan Z Y, Li L P, et al. The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity [J]. Electrochemistry Communications,2008,10:1071-1073.
    [52]Xie J, Imanishi N, Zhang T, et al. Li-ion diffusion kinetics in LiFePO4 thin film prepared by radio frequency magnetron sputtering [J]. Electrochimica Acta,2009, 54:4631-4637.
    [53]Wang C, Hong J. Ionic/Electronic Conducting Characteristics of LiFePO4 Cathode Materials:The Determining Factors for High Rate Performance [J]. Electrochemical and Solid-State Letters.2007,10(3):A65-A69.
    [54]Srinivasan V, Newman J. Existence of Path-Dependence in the LiFePO4 Electrode Electrochem [J]. Solid-State Letters 2006,9(3):A110-A114.
    [55]Delmas C, Maccario M, Croguennec L, et al. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J]. Nature Materials,2008,7: 665-671.
    [56]Delacourt C, Poizot P, Tarascon J M, et al. The existence of a temperature-driven solid solution in LixFePO4 for 0≤x≤1 [J]. Nature Materials,2005,4:254-260.
    [57]Yang S F, Song Y N, Ngala K, et al. Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides [J]. Journal of Power Sources,2003,119-121:239-246.
    [58]Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Material,2002,1(2):123-128.
    [59]Herle P S, Ellis B, Coombs N. et al. Nano-network electronic conduction in iron and nickel olivine phosphates [J]. Nature Materials,2004,3(3):147-152.
    [60]Ouyang C Y, Shi S Q, Wang Z X, et al. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations [J]. Journal of Physics Condensed Matter,2004,16:2265-2272.
    [61]Li G, Do Y K, Liu K Y, et al. X-ray absorption study of Lix(MnyFe1-y)PO4 (0≤x≤1, 0≤y≤1) [J]. Journal of The Electrochemical Society,2002,149(11): A1414-A1418.
    [62]Anandhakumar S, Sundar M, Selladurai S. Synthesis and performance study of cobalt-substituted lithium iron phosphate [J]. Ionics,2007,13:19-23.
    [63]Yamada A, Kudo Y, Liu K Y. Phase diagram of Lix(MnyFe1-y)PO4 (0≤x, y≤1) [J]. Journal of The Electrochemical Society,2001,148(10):A1153-A1158.
    [64]Shanmukaraj D, Wang G X, Murugan R, et al. Electrochemical studies on composite cathode materials synthesized by citrate gel technique for lithium-ion batteries [J]. Materials Science and Engineering,2008, 149(1):93-98.
    [65]Molenda J, Ojczyk W, Marzec J. Electrical conductivity and reaction with lithium of LiFe1-yMnyPO4 olivine-type cathode materials [J]. Journal of Power Sources,2007,174(2):689-694.
    [66]Dominko R, Gaberscek M, Drofenik J, et al. The role of carbon black distribution in cathodes for Li ion batteries [J]. Journal of Power Sources,2003,119-121: 770-773.
    [67]Kim J K, Choi J W, Cheruvally G, et al. A modified mechanical activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries [J]. Materials Letters,2007,61(18):3822-3825.
    [68]Mabuchi A, Tokumitsu K, Fujimoto H, et al. Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures [J]. Journal of The Electrochemical Society,1995,142(4):1041-1046.
    [69]Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J]. Electrochemical and Solid-State Letters,2001, 4:A170-A172.
    [70]Chen Z H, Dahn J R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J]. Journal of Electrochemical Society,2002,149(9):A1184-1189.
    [71]Prosini P P, Zane D, Pasquali M. Improved electrochemical performance of a LiFePO4-based composite cathode [J]. Electrochimica Acta,2001,46: 3517-3523.
    [72]Chung H T, Jang S K, Ryu H W, et al. Effects of nano-carbon webs on the electrochemical properties in LiFePO4/C composite [J]. Solid State Communications,2004,131(8):549-554.
    [73]Doeff M M, Hu Y, Mclarnon F, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4[J]. Electrochemical and Solid-State Letts,2003,6(10):A207-A209.
    [74]Liu H, Xie J Y. Synthesis and characterization of LiFeo.9Mgo.1PO4/nano-carbon webs composite cathode [J]. Journal of Materials Processing Technology,2009, 209(1):477-481.
    [75]Park K S, Son J T, Chung H T, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4 [J]. Solid State Communications,2004,129(5):311-314.
    [76]Croce F, Epifanio A D, Hassoun J, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery carhode [J]. Electrochemical and Solid-State Letters,2002,5(3):A47-A50.
    [77]Jong S P, Kyung T L, Kyung S L. Effect of Fe2P in LiFePO4/Fe2P composite on the electrochemical properties synthesized by MA and control of heat condition [J]. Rare Materials,2006,25(6):179-183.
    [78]C S Li, Zhang S Y, Cheng F Y, et al. Porous LiFePO4/NiP Composite Nanospheres as the Cathode Materials in Rechargeable Lithium Ion Batteries [J]. Nano Research,2008,1:242-248.
    [79]Wolfenstine J. Electrical conductivity of doped LiCoPO4 [J]. Journal of Power Sources,2006,158:1431-1435.
    [80]Martha S K, Grinblat J, Haik O, et al. LiMno.gFeo.2PO4:An Advanced Cathode Material for Rechargeable Lithium Batteries [J]. Angewandte Chemie International Edition.2009,48(45):8559-8563.
    [81]Wang Y G, Wang Y R, Hosono E J, et al. The Design of a LiFePO4/Carbon Nanocomposite With a Core-Shell Structure and Its Synthesis by an In Situ Polymerization Restriction Method [J]. Angewandte Chemie International Edition,2008,47:7461-7465.
    [82]Kang B W, Ceder G, Battery materials for ultrafast charging and discharging [J]. Nature,2009,458:190-193.
    [83]Kayyar A, Qian H J, Luo J. Surface adsorption and disordering in based battery cathodes [J]. Applied Physics Letters,2009,95:221905-221905-3.
    [84]Uchiyama T, Nishizawa M, Itoh T, et al. Electrochemical Quartz Crystal Microbalance Investigations of LiMn2O4 Thin Films at Elevated Temperatures [J]. Journal of The Electrochemical Society,2000,147(6):2057-2060.
    [85]Jang D H, Shin Y J, Oh S M. Dissolution of Spinel Oxides and Capacity Losses in 4V□Li/LixMn204 Cells [J]. Journal of The Electrochemical Society,1996,143: 2204-2211.
    [86]Hunter J C. Preparation of a new crystal form of manganese dioxide:λ-MnO2 [J]. Journal of Solid State Chemistry,1981,39(2):142-147.
    [87]Xia Y Y, Zhou Y H, Yoshio M. Capacity fading on cycling of 4V Li/LiMn2O4 cells [J]. Journal of The Electrochemical Society,1997,144(8):2593-2600.
    [88]Huang H T, Vincent C A, Bruce P G. Capacity loss of lithium manganese oxide spinel in LiPF6/ethylene carbonate-dimethyl carbonate electrolytes [J]. Journal of The Electrochemical Society,1999,146(2):481-485.
    [89]Tarascon J M, McKinnon W R, Coowar F, et al. Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4 [J]. Journal of The Electrochemical Society,1994,141(6):1421-1432.
    [90]Ostrovskii D, Ronci F, Scrosati B, et al. Reactivity of lithium battery electrode materials toward non-aqueous electrolytes:spontaneous reactions at the electrode-electrolyte interface investigated by FTIR [J]. Journal of Power Sources,2001,103(1):10-17.
    [91]Ouyang, C Y, Shi S Q, Lei M S. Jahn-Teller distortion and electronic structure of LiMn2O4 [J]. Journal of Alloys and Compounds,2009.474(1-2):370-374.
    [92]Yamada A, Tanaka M, Tanaka K, et al. Jahn-Teller instability in spinel Li-Mn-O [J]. Journal of Power Sources,1999,82:73-78.
    [93]GummowR J, Kock A D, Thackeray M M. Improved capacity retention in rechargeable 4V lithium/lithium-manganese oxide (spinel) cells [J]. Solid State Ionics,1994,69(1):59-67.
    [94]Tarascon J M, Mckinnon W R, Coowar F, et al., Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4 [J]. Journal of The Electrochemical Society,1994,141(6):1421-1431.
    [95]Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J]. Journal of Power Sources,2000, 89(2):206-218.
    [96]Deng B, Nakamura H, Yoshio M. Capacity fading with oxygen loss for manganese spinels upon cycling at elevated temperatures [J]. Journal of Power Sources,2008,180(2):864-868.
    [97]Gao Y, Dahn J R. Correlation between the growth of the 3.3 V discharge plateau and capacity fading in Li1+xMn2-xO4 materials [J]. Solid State Ionics,1996,84: 33-40.
    [98]Xia Y Y, Sakai T, Fujieda T, at el. Correlating Capacity Fading and Structural Changes in Li1+yMn2-yO4-δ Spinel Cathode Materials:A Systematic Study on the Effects of Li/Mn Ratio and Oxygen Deficiency [J]. Journal of The Electrochemical Society,2001,148(7):A723-A729.
    [99]Terada N, Yanagi T, Arai S, at el. Development of lithium batteries for energy storage and EV applications [J]. Journal of Power Sources,2001,100:80-92.
    [100]Wang X Q, Nakamura H, Yoshio M. Capacity fading mechanism for oxygen defect spinel as a 4 V cathode material in Li-ion batteries [J]. Journal of Power Sources,2002,110:19-26.
    [101]Xia Y Y, Yoshio M. An Investigation of Lithium Ion Insertion into Spinel Structure Li-Mn-O Compounds [J]. Journal of The Electrochemical Society, 1996,143:825-833.
    [102]Xia Y, Yoshio M. Studies on Li-Mn-O spinet system obtained from melt-impregnation method as a cathode for 4 V lithium batteries Part IV. High and low temperature performance of LiMnO4 [J]. Journal of Power Sources, 1997,66(1-2):129-133.
    [103]Li G H, Yamada A, Fukushima Y, at el. Phase segregation of LixMn2O4 (0.6    [104]Liu W, Kowal K, Farrington G C. Mechanism of the electrochemical insertion of lithium into LiMn2O4 spinels [J]. Journal of The Electrochemical Society, 1998,145(2):459-465.
    [105]Amarilla J M, Petrov K, Pico F, et al. Sucrose-aided combustion synthesis of nanosized LiMn1.99-yLiyM0.01O4 (M=Al3+, Ni2+, Cr3+, Co3+, y=0.01 and 0.06) spinels:Characterization and electrochemical behavior at 25℃ in rechargeable lithium cells [J]. Journal of Power Sources,2009,191:591-600.
    [106]Churikov A V, Kachibaya E I, Sycheva V O, et al. Electrochemical properties of LiMn2-yMeyO4 (Me=Cr, Co, Ni) spinels as cathodic materials for lithium-ion batteries [J]. Russian Journal of Electrochemistry,2009,45(2):175-182.
    [107]Peng Z D, Jiang Q L, Du K, et al. Effect of Cr-sources on performance of Li1.05Cro.04Mn1.96O4 cathode materials prepared by slurry spray drying method [J]. Journal of Alloys and Compounds,2010,493:640-644.
    [108]Jiang Q L, Hu G R, Peng Z D, et al. Preparation of spherical spinel LiCr0.04Mn1.96O4 cathode materials based on slurry spray drying method [J]. Rare Metals,2009,28 (6):618-623.
    [109]Grey C P, Dupre N. NMR studies of cathode materials for lithium-ion rechargeable batteries [J]. Chemical Reviews,2004,104:4493-4512.
    [110]Xiao L, Zhao Y, Yang Y, et al. Enhanced electrochemical stability of Al-doped synthesized by a polymer-pyrolysis method [J]. Electrochimica Acta, 2008,54:545-550.
    [111]彭忠东.锂离子电池正极材料合成及中试生产技术研究[D].长沙:中南大学,2002.
    [112]Matsumoto K, Fukutsuka T, Okumura T, et al. Electronic structures of partially fluorinated lithium manganese spinel oxides and their electrochemical properties [J]. Journal of Power Sources,2009,189:599-601.
    [113]Luo Q, Manthiram A. Effect of Low-Temperature Fluorine Doping on the Properties of Spinel LiMn2-2yLiyMyO4-δFδ(M=Fe, Co, and Zn) Cathodes [J]. Journal of the Electrochemical Society,2009,156:A84-A88.
    [114]Singh P, Sil A, Nath M, et al. Preparation and characterization of lithium manganese oxide cubic spinel Li1.03Mn1.97O4 doped with Mg and Fe [J]. Physica B,2010,405:649-654.
    [115]Sun X J, Hu X H, Shi Y, et al. The study of novel multi-doped spinel Li1.15Mn1.96Co0.03Gd0.0104+δ as cathode material for Li-ion rechargeable batteries [J]. Solid State Ionics,2009,180:377-380.
    [116]Raja M W, Mahanty S, Basu R N. Influence of S and Ni co-doping on structure, band gap and electrochemical properties of lithium manganese oxide synthesized by soft chemical method [J]. Journal of Power Sources,2009,192:618-626.
    [117]Li T, Qiu W H, Zhao H L, et al. Electrochemical properties of spinel LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1 synthesized by solid-state reaction [J]. Journal of University of Science and Technology Beijing,2008,15(2):187-191.
    [118]Arumugam D, Kalaignan G P. Synthesis and electrochemical characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries [J]. Journal of Electroanalytical Chemistry,2008,624(1-2):197-204.
    [119]Liu D Q, Liu X Q, He Z Z. Surface modification by ZnO coating for improving the elevated temperature performance of LiMn2O4 [J]. Journal of Alloys and Compounds,2007,436:387-391.
    [120]Tu J, Zhao X B, Xie J, et al. Enhanced low voltage cycling stability of LiMn2O4 cathode by ZnO coating for lithium ion batteries [J]. Journal of Alloys and Compounds,2007,432:313-317.
    [121]Sun Q H, Park M C, Deng Y L. Studies on one-dimensional polyaniline (PANI) nanostructures and the morphological evolution [J]. Materials Chemistry and Physics,2008,110:276-279.
    [122]Liu H, Cheng C, Hu Z, et al. Improving the elevated temperature performance of Li/LiMn2O4 cells by coating with ZnO [J]. Journal of materials science,2005, 40:5767-5769.
    [123]Lim S, Cho J. PVP-functionalized nanometre scale metal oxide coatings for cathode materials:successful application to LiMn2O4 spinel nanoparticles [J]. Chemical Communications,2008, (37):4472-4474.
    [124]Gnanaraj J S, Pol V G, Gedanken A, et al. Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method [J]. Electrochemistry Communications,2003,5: 940-945.
    [125]Lin Y M, Wu H C, Yen Y C, et al. Enhanced High-Rate Cycling Stability of LiMn2O4 Cathode by ZrO2 Coating for Li-Ion Battery [J]. Journal of The Electrochemical Society,2005,152(8):A1526-A1532.
    [126]Kim J S, Johnson C S, Vaughey J T, et al. The Electrochemical Stability of Spinel Electrodes Coated with ZrO2□,□ Al2O3□,□ and SiO2 from Colloidal Suspensions [J]. Journal of The Electrochemical Society,2004,151(10): A1755-A1761.
    [127]Cho J, Kim T J, Park B. The Effect of a Metal-Oxide Coating on the Cycling Behavior at 55℃ in Orthorhombic LiMnO2 Cathode Materials [J]. Journal of The Electrochemical Society,2002,149(3):A288-A292.
    [128]Lee S W, Kim K S, Moon H S, et al. Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery [J]. Journal of Power Sources,2004,126:150-155.
    [129]Ha H W, Yun N J, Kim K. Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries [J]. Electrochimica Acta, 2007,52:3236-3241.
    [130]Yang Z X, Yang W S, Evans D G, et al. The effect of a Co-Al mixed metal oxide coating on the elevated temperature performance of a LiMn2O4 cathode [J]. Journal of Power Sources,2009,189:1147-1153.
    [131]Cho J, Kim Y W, Kim B, et al. A Breakthrough in the Safety of Lithium Secondary Batteries by Coating the Cathode Material with AIPO4 Nanoparticles [J]. Angewandte Chemie International Edition,2003,42:1618-1621.
    [132]Cho J, Lee J G, Kim B, et al. Effect of P2O5 and AlPO4 Coating on LiCoO2 Cathode Material [J]. Chemistry of Materials,2003,15:3190-3193.
    [133]Liu D Q, He Z Z, Liu X Q. Increased cycling stability of AlPO4-coated LiMn2O4 for lithium ion batteries [J]. Materials Letters,2007,61(25): 4703-4706.
    [134]Tu J, Zhao X B, Cao G S, et al. Improved performance of LiMn2O4 cathode materials for lithium ion batteries by gold coating [J]. Materials Letters,2006,60: 3251-3254.
    [135]Zhou W J, He B L, Li H L. Synthesis, structure and electrochemistry of Ag-modified LiMn2O4 cathode materials for lithium-ion batteries [J]. Materials Research Bulletin,2008,43:2285-2294.
    [136]Sona J T, Park K S, Kim H G, et al. Surface-modification of LiMn2O4 with a silver-metal coating [J]. Journal of Power Sources,2004,126:182-185.
    [137]Park S C, Kim Y M, Han S C, et al. The elevated temperature performance of LiMn2O4 coated with LiNi1-xCoxO2 (X=0.2 and 1) [J]. Journal of Power Sources, 2002,107:42-47.
    [138]Liu D Q, Liu X Q, He Z Z, The elevated temperature performance of LiMn2O4 coated with Li4Ti5O12 for lithium ion battery [J]. Materials Chemistry and Physics,2007,105:362-366.
    [139]Liu D Q, Yu J, Sun Y H, et al. Preparation and Rate Property of Li4Ti5O12-coated LiMn2O4 for Lithium Ion Battery [J]. Chinese Journal of Inorganic Chemistry,2007,1:41-45.
    [140]Yuan Y F, Wu H M, Guo S Y, et al. Preparation, characteristics and electrochemical properties of surface-modified LiMn2O4 by doped LiNi0.05Mn1.95O4[J]. Applied Surface Science,2008,255:2225-2229.
    [141]Chan H W, Duh J G, Sheu H S. In Situ Synchrotron X-Ray Diffraction Investigations of LiCuxMn2-xO4 Surface Coated LiMn2O4 Spinel Cathode Material during Charge with Various Rates [J]. Journal of The Electrochemical Society,2006,153(8):A1533-A1538.
    [142]Matsuo Y, Kostecki R, McLarnon F. Surface Layer Formation on Thin-Film LiMn2O4 Electrodes at Elevated Temperatures [J]. Journal of The Electrochemical Society,2001,148(7):A687-A692.
    [143]Park S C, Kim Y M, Kang Y M, et al. Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2 [J]. Journal of Power Sources,2001, 103:86-92.
    [144]Han A R, Kim T W, Park D H, et al. Soft Chemical Dehydration Route to Carbon Coating of Metal Oxides:□ Its Application for Spinel Lithium Manganate [J]. The Journal of Physical Chemistry C,2007,111:11347-11352.
    [145]Patey T J, Buchel R, Ng S H, et al. Flame co-synthesis of LiMn2O4 and carbon nanocomposites for high power batteries [J]. Journal of Power Sources,2009, 189:149-154.
    [146]Li J g, He X M, Zhao R S. Electrochemical performance of SrF2-coated LiMn2O4 cathode material for Li-ion batteries [J]. Transactions of Nonferrous Metals Society of China,2007,17:1324-1327.
    [147]Lee K S, Myung S T, Amine K, et al. Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries [J]. Journal of Materials Chemistry, 2009,19:1995-2005.
    [148]Eddrief M, Dzwonkowski P, Julien C, et al. The ac conductivity in B2O3Li2O films [J]. Solid State Ionics,1991,45:77-82.
    [149]Soppe W, Aldenkamp F, Hartog H W, The structure and conductivity of binary and ternary glasses (B2O3)1-x-y(Li2O)x(Li2Cl2)y [J]. Journal of Non-Crystalline Solids,1987,91:351-374.
    [150]Chan H W, Duh J G, Sheen S R. Electrochemical performance of LBO-coated spinel lithium manganese oxide as cathode material for Li-ion battery [J]. Surface & Coatings Technology,2004,188-189:116-119.
    [151]Sahan H, Goktepe H, Patat S, et al. The effect of LBO coating method on electrochemical performance of LiMnO4 cathode material [J]. Solid State Ionics,2008,178:1837-1842.
    [152]Hu G H, Wang X B, Chen F, et al. Study of the electrochemical performance of spinel LiMn2O4 at high temperature based on the polymer modified electrode [J]. Electrochemistry Communications,2005,7:383-388.
    [153]Arbizzani C, Mastragostino M, Rossi M. Preparation and electrochemical characterization of a polymer Li1.03Mn1.97O4/pEDOT composite electrode [J]. Electrochemistry Communications,2002,4:545-549.
    [154]Ren H B, Wang Y R, Li D C, et al. Synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium battery by the rheological phase method [J]. Journal of Power Sources,2008,178:439-444.
    [155]Hwanga B J, Hsu K F, Hu S K, et al. Template-free reverse-micelle process for the synthesis of a rod-likeLiFePO4/C composite cathode material for lithium batteries [J]. Journal of Power Sources,2009,194:515-519.
    [156]Hosono E, Kudo T, Honma I, et al. Synthesis of single crystallinespinel LiMn2O4 nanowires for a lithium ion battery with high powerdensity [J]. Nano Letters,2009,9(3):1045-1051.
    [157]Gabrisch H, Wilcox J, Doeff M M. TEM study of fracturing in sphericaland plate-like LiFePO4 particles, Electrochem [J]. Solid-State Letters,2008,11(3): A25-A29.
    [158]Deng C, Zhang S, Wu B, et al. Synthesis and characteristics of nanostructured Li(Co1/3Ni1/3Mni/3)O2 cathode material prepared at 0℃ [J]. Journal of Solid State Electrochemistry,2010,14:871-875.
    [159]Zhu H L, Chen Z Y, Ji S, et al. Influence of different morphologies onelectrochemical performance of spinel LiMn2O4 [J]. Solid State Ionics,2008, 179:1788-1793.
    [160]Ju S H, Kang Y C. Fine-sized LiNi0.8Co0.15Mn0.05O2 cathode powders preparedby combined process of gas-phase reaction and solid-state reaction methods [J]. Journal of Power Sources,2008,178:387-392.
    [161]Du K, Hu G R, Peng Z D, et al. Synthesis of spinel LiMn2O4 with manganese carbonate prepared by micro-emulsion method [J]. Electrochimica Acta,2010, 55:1733-1739.
    [162]Zhu H L, Chen Z Y, Ji S, et al. Influence of different morphologies onelectrochemical performance of spinel LiMn2O4 [J]. Solid State Ionics,2008, 179:1788-1793.
    [163]Amatucci G, Tarascon J M. Optimization of Insertion Compounds Such as LiMn2O4 for Li-Ion Batteries [J]. Journal of The Electrochemical Society,2002, 149(12):K31-K46.
    [164]Hon Y M, Fung K Z, Lin S P, et al. Effects of Metal Ion Sources on Synthesis and Electrochemical Performance of Spinel LiMn2O4 Using Tartaric Acid Gel Process, [J]. Journal of Solid State Chemistry,2002,163:231-238.
    [165]Bao S J, Li C M, Li H L, et al. Morphology and electrochemistry of LiMn2O4 optimized by using different Mn-sources [J]. Journal of Power Sources,2007, 164(2):885-889.
    [166]Femandes J B, Desai D, Kamat D V N. Manganese dioxide-a review of a battery chemical part Ⅰ. Chemical syntheses and x-ray diffraction studies of manganese dioxides [J]. Journal of Power Sources,1985,15(4):209-237.
    [167]Chabre Y, Pannetier J. Structural and electrochemical properties of the proton/ y-MnO2 system [J]. Progress in Solid State Chemistry,1995,23:1-130.
    [168]Ikeda H, Narukawa S. Behaviour of various cathode materials for non-aqueous lithium cells [J]. Journal of Power Sources,1983,9(3):329-334.
    [169]Ohzuku T, Kitagawa M, Hirai T. Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell:III. X-Ray Diffractional Study on the Reduction of Spinel-Related Manganese Dioxide [J]. Journal of The Electrochemical Society, 1990,137(3):769-775.
    [170]Ohzuku T, Kitagawa M, Hirai T. Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell:I. X-Ray Diffractional Study on the Reduction of Electrolytic Manganese Dioxide [J]. Journal of The Electrochemical Society, 1989,136(11):3169-3174.
    [171]三井金属矿业公司,松下电器产业公司.生产尖晶石型锰酸锂的方法、阴极材料和非水电解质二次电池[P].CN 1151072C,2004-5-26.
    [172]杜拉塞尔公司.锂锰氧化物尖晶石的制备方法[P].CN 1097558C,2003-1-1.
    [173]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002,1-36.
    [174]梅光贵,张文山,曾湘波,等.中国锰业技术[M].长沙,中南大学出版社,2011,317.
    [175]邹兴,孙宁磊,王国承.用空气直接氧化游离二价锰离子制备高纯四氧化三锰[J].北京科技大学学报,2007,29(12):1251-1253.
    [176]李继光,孙旭东,茹红强,等.湿化学法合成单分散陶瓷超微粉体的基本理[J].功能材料,1997,28(4):333-336.
    [177]LaMer V K, Dineger R H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. Journal of the American Chemical Society,1950, 72(11):4847-4854.
    [178]郑忠.胶体化学导论[M].北京:高等教育出版社,1989,78-80.
    [179]丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社,1985,48-52.
    [180]曹茂盛.超细颗粒制备科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1995,10-14.
    [181]顾艳芳,胡黎明.沉淀过程中超细颗粒的凝并与生长模型[J].华东化工学院学报,1992,18(4):551-554.
    [182]Prywer J. Theoretical ananlysis of changes in habit of growth rates of individual faces [J]. Journal of Crystal Growth,1999,197:27-28.
    [183]王宇菲,卓海宇.沉淀法制备纳米粉体及其形貌控制[J].湖南有色金属,2002,18(5):23-25.
    [184]Xing S T, Zhou Z C, Ma Z C, et al. Facile synthesis and electrochemical properties of Mn3O4 nanoparticles with a large surface area [J]. Materials Letters, 2011,65:517-519.
    [185]Han Y F, Chen F X, Zhong Z Y, et al. Complete oxidation of low concentration ethanol in aqueous solution with H2O2 on nanosized Mn3O4/SBA-15 catalyst [J]. Journal of Chemical Engineering,2007,134:276-281.
    [186]Liu S Y, Xie J, Zheng Y X, et al. Nanocrystal manganese oxide (Mn3O4, MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties [J]. Electrochimica Acta,2012,66:271-278.
    [187]He X M, Li J J, Y Cai, et al. Preparation of spherical spinel LiMn2O4 cathode material for Li-ion batteries [J]. Materials Chemistry and Physics,2006,95: 105-108.
    [188]Dhaouadi H, Madani A, Touati F. Synthesis and spectroscopic investigations of Mn3O4 nanoparticles [J]. Materials Letters,2010,64:2395-2398.
    [189]Dubai D P, Dhawale D S, Salunkhe R R, et al. A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application [J]. Journal of Alloys and Compounds,2009,484:218-221.
    [190]Anilkumar M, Ravi V. Synthesis of nanocrystalline Mn3O4 at 100℃ [J]. Materials Research Bulletin,2005,40:605-609.
    [191]Phillips R, Rohani S, Baldyga J. Micromixing in a single-feed semi-batch precipitation process [J]. AIChE Journal,1999,45(1):82-92.
    [192]Bernard M C, Goff A H L, Thi B V. Electrochromic Reactions in Manganese Oxides:I Raman Analysis [J]. Journal of The Electrochemical Society,1993,140: 3065-3070.
    [193]Chang Y Q, Yu D P, Long Y, et al. Large-scale fabrication of single-crystalline Mn3O4 nanowires via vapor phase growth [J]. Journal of Crystal Growth,2005, 279:88-92.
    [194]Zhu H L, Chen Z Y, Ji S, et al. Influence of different morphologies on electrochemical performance of spinel LiMn2O4 [J]. Solid State Ionics,2008,179: 1788-1793.
    [195]Taniguchi I, Fukuda N, Konarova M. Synthesis of spherical LiMn2O4 microparticles by a combination of spray pyrolysis and drying method [J]. Powder Technology,2008,181:228-236.
    [196]Fey G T K, Cho Y D, PremKumar T. A TEA-starch combustion method for the synthesis of fine-particulate LiMnO4[J]. Materials Chemistry and Physics,2004, 87:275-284.
    [197]Aishui Y A,Frech R. Novel High Rate Lithium Intercalation Cathode Materials [J]. Journal of The Electrochemical Society,2002,149(2):A99-A102.
    [198]Bao S J, Li C M, Li H L, et al. Morphology and electrochemistry of LiMn2O4 optimized by using different Mn-sources [J] Journal of Power Sources,2007 164: 885-889.
    [199]Jossen A. Fundamentals of battery dynamics [J]. Journal of Power Sources, 2006,154(2):530-538.
    [200]Lasia A. Impedance of porous electrodes [J]. Journal of Electroanalytical Chemistry,1995,397(1-2):27-33.
    [201]Nobili F, Tossici R, Croce F, et al. An electrochemical ac impedance study of LixNi0.75Co0.25O2 intercalation electrode [J]. Journal of Power Sources,2001,94: 238-241.
    [202]Dahn J R, Jiang J W, Moshurchak L M. High-rate overcharge protection of LiFePO4-based Li-ion cells using the redox shuttle additive 2,5-diterbuty 1-1, 4-dimethoxybenzene [J]. Journal of The Electrochemical Society,2005,152(6): A1283-A1289.
    [203]Moshurchak L M, Buhrmester C, Dahn J R. Spectroelectrochemical studies of redox shuttle overcharge additive for LiFePO4-based Li-ion batteries [J]. Journal of The Electrochemical Society,2005,152(6):A1279-A1282.
    [204]Nakamura T, Sakumoto K, Okamoto M. Electrochemical study on Mn2+ substitution on LiFePO4 olivine compound [J]. Journal of Power Sources, 2007,174:435-441.
    [205]Rho Y H, Kanamura K. Li+ ion diffusion in LiCoO2 thin film prepared by the poly(vinylprrolidone) Sol-gel methode [J]. Journal of The Electrochemical Society,2004,151(9):A1406-A1411.
    [206]Liu H, Fu L J, Zhang H P, et al. Effects of carbon coating on nanocomposite electrodes for lithium-ion battery [J]. Electrochemical and Solid-State Letters, 2006,9(12):A529-A533.
    [207]Yu D Y W, Fietzek C, Weydanz W. Study of LiFePO4 by cylic voltammetry [J] Journal of The Electrochemical Society,2007,154(4):A253-A257.
    [208]Liu Q, Du K, Guo H W, et al. Structural and electrochemical properties of Co-Mn-Mg multi-doped nickel based cathode materials LiNi0.9Co0.1-x[Mn1/2Mg1/2]xO2 for secondary lithium ion batteries [J]. Electrochimica Acta,2013,90:350-357.
    [209]Tsai Y W, Lee J F, Liu D G, et al. In-situ X-ray absorption spectroscopy investigations of a layered LiNi0.65Co0.25Mn0.1O2 cathode material for rechargeable lithium batteries [J]. Journal of Materials Chemistry,2004, 14:958-965.
    [210]Michael E S, Novak P, Schnyder B, et al. Characterization of Layered Lithium Nickel Manganese Oxides Synthesized by a Novel Oxidative Coprecipitation Method and Their Electrochemical Performance as Lithium Insertion Electrode Materials [J]. Journal of The Electrochemical Society,1998,145(4): 1113-1121.
    [211]Dupin J C, Gonbeau D, Moudden H B, et al. XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation [J]. Thin Solid Films, 2001,384:23-32.
    [212]岳鹏.锂离子电池镍基LiNi1-2xCoxMnxO2正极材料合成及改性研究[D].长沙:中南大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700