锂锰氧化物及其锂离子筛的制备、性能及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因为在可充电锂电池和其他相关领域的广泛应用,锂资源不断受到人们关注。但目前世界上的锂矿储量已不能满足未来人类对锂的需求。因此,开发适宜的技术从盐湖卤水和海水等液态锂资源中提取锂,具有重要意义。尖晶石型锂锰氧化物前驱体经过酸浸脱锂,获得的锰氧化物被称作“锂离子筛”。锂离子筛因在溶液中对锂具有高选择吸附性而成为目前研究最多、性能最好的无机锂离子吸附剂,并开始应用于锂资源提取领域。然而,尽管锂离子筛已在近几十年被大量研究,但研究还不够广泛、深入和系统,锂锰氧化物的结构与锂离子筛的性能之间的关系还缺乏讨论。为此,有必要对各种锂锰氧化物及其相应的离子筛进行晶体结构和吸附性能的综合研究。
     本文首先采用固相法和液相法分别在不同温度下制备了尖晶石锂锰氧化物LiMn2O4。酸浸脱锂后通过XRD、SEM分析发现得到的λ-MnO2锂离子筛均能够保持完整的尖晶石结构和形貌。其中采用液相法在550℃下制备的LiMn2O4酸浸脱锂时Li的溶出率为97.25%,Mn的溶出率为15.47%。脱锂后得到的锂离子筛在HCl-LiCl-LiOH溶液中的吸附容量随pH的升高而升高,最大吸附容量为23.75 mg·g-1,吸附行为符合Langmuir模型。
     为改善LiMn2O4在酸浸过程中Mn溶损较大的缺陷,采用Ni2+、Al3+、Ti4+和Sb5+对其进行掺入改性,并通过TG-DSC. TG-DTA. XRD、SEM、EDS等手段进行表征。利用不同的合成方法和条件分别制备了理论化学式为LiMzMn2_zO4(M=Ni、Al、Ti、Sb,0≤z≤1)的复合锂锰氧化物。当z≤0.5时,Ni、Al和Ti均能完全纳入尖晶石晶格,形成掺入锂锰氧化物。掺入的Ni和Al会导致晶格收缩,掺入的Ti会导致晶格扩张。其中LiNi0.5Mn1.504、LiAlo.5Mn1.5O4并LiTio.5Mn1.5O4在酸浸脱锂前后均能形成完整的尖晶石结构和形貌。LiNi0.5Mn1.5O4酸浸时Li、Mn、Ni的溶出质量百分率分别为28.12%、7.08%和10.14%;LiAlo.5Mn1.5O4的Li、Mn、Al溶出率分别为59.04%、12.70%和14.40%;LiTio.5Mn1.5O4的Li、Mn、Ti溶出率分别为74.71%、29.58%和19.49%。酸浸之后,只有LiAlo.5Mn1.5O4转型得到的锂离子筛在HCl-LiCl-LiOH溶液中具有较高的吸附容量,达到20.21mg·g-1,且吸附符合Langmuir模型。由于晶格存在显著的收缩或扩张,其他各掺入尖晶石锂锰氧化物的酸浸Li溶出率或其离子筛的锂吸附容量均较低。Sb很难掺入尖晶石LiMn2O4晶格形成单一的掺Sb锂锰氧化物,在z=0.5时形成了Sb、Mn互相掺入的LiMn2O4(尖晶石)(?)(?)LiSbO3(钙钛矿)复合相。其Li、Mn和Sb的酸浸溶出率分别为80.55%、34.20%和4.34%。虽然z0.5样品酸浸前后结构稳定、形貌完整,但其锂离子筛的综合性能不佳。
     采用柠檬酸配合法合成了系列尖晶石富锂锂锰氧化物,理论化学通式为Li2O·rMnO2(1.75≤r≤3.0),并通过XRD、SEM、XPS和IR等检测手段进行表征。其中350℃合成的Li2O·2.25MnO2 (LMO)具有纯相尖晶石锂锰氧化物结构,并且在酸浸过程中具有高Li溶出率和低Mn溶损率,Li、Mn溶出率分别为95.45%和6.01%。其酸浸后转型为锂离子筛MO, MO仍然保持尖晶石的结构和形貌。LMO和MO中Mn的平均价态分别为3.82和3.91。酸浸过程中LMO转变为MO的机理是Li+-H+离子交换机理。此后,对离子筛在HCl-LiCl-LiOH溶液、LiCl-NH3·H2O-NH4Cl缓冲体系以及盐湖卤水中的吸附性能进行全面研究。在LiCl-NH3·H2O-NH4Cl缓冲体系中MO的吸附符合Langmuir模型,计算得到其吸附过程的△Gθ小于零,反应自发进行;△Hθ为3.319kJ·mol-1,△Sθ为11.70J·mol-1·K-1;吸附符合准二级动力学方程;由颗粒扩散和液膜扩散等步骤混合控制。离子筛MO在混合缓冲溶液中对Li+具有选择吸附性能,选择顺序为:Na+     首次采用聚氨酯模板法以沥青为粘结剂,制备出了MO泡沫锂吸附剂,并用DTG、XRD、SEM、TEM、EDS、N2吸附-脱附测试等手段对泡沫吸附剂的组成、结构、形貌、孔结构等性质进行全面表征。MO泡沫具有三维互通网络结构,由沥青载体和锂离子筛MO组成,内部呈介孔/微孔分级多孔结构。MO泡沫在HCl-LiCl-LiOH溶液、LiCl-NH3·H2O-NH4Cl缓冲体系以及盐湖卤水中的吸附容量分别为8.73、3.83和1.49mg(Li+)·g-1(Mo泡沫)。MO泡沫对Li+具有吸附选择性,在混合缓冲溶液中对金属离子的吸附亲和顺序为Na+     最后,采用Mn3+和Mn空位两个指标整合了氧化还原和离子交换机理,提出“Mn态定性”模型,并利用该模型创造出直观的机理评价方法——尖晶石锂锰氧化物“Mn态定性”机理判断图,全面讨论了论文涉及的各种锂锰氧化物的脱锂嵌锂机理。
Interest in lithium resources has been increasing because of its wide applications in rechargeable lithium batteries and other related fields. But the present lithium mineral reserves in the world cannot meet the requirement of lithium in the near future. Therefore, to develope appropriate technology to recover lithium from liquid lithium resources, such as salt lake brine and sea water, is of great significance. The treatment of spinel lithium manganese oxide with acid causes the removal of nearly all the Li+from its tetrahedral sites and leaves the manganese oxide called "lithium ion-sieve". Lithium ion-sieve can adsorb lithium selectively in solution, so it has been studied extensively as the best inorganic lithium adsorbent, and began to be applied in lithium recovery area. Although the lithium ion-sieve has been researched in recent decades, the study is not comprehensive, thorough and systematic. There also lacks the discussion on the relationship between the structure of lithium manganese oxide and the performance of its lithium ion-sieve. To this end, it is necessary to widely study the crystal structure of various lithium manganese oxides and adsorption performances of their corresponding lithium ion-sieves.
     Firstly, spinel lithium manganese oxide of LiMn2O4 was prepared by solid method and liquid method at different temperatures, respectively. XRD and SEM analysis showed that the lithium ion-sieve ofλ-MnO2 obtained by acid treating LiMn2O4 maintained the spinel structure and morphology. During the acid treatment, the Li and the Mn extraction ratios of the sample prepared by liquid method at 550℃were 97.25% and 15.47%. The resultant lithium ion-sieve could adsorb lithium in HCl-LiCl-LiOH solution, and the adsorption capacity increased with the increase of pH with the maximum adsorption capacity of 23.75 mg-g-1. The adsorption behavior of this lithium ion-sieve was modeled and fitted for Langmuir isotherm equation.
     To reduce the Mn extraction ratio of LiMn2O4 during acid treatment, Ni2+, Al3+, Ti4+and Sb5+ were used to substitute the Mn in LiMn2O4. TG-DSC, TG-DTA, XRD, SEM, EDS and other techniques were employed to characterize the relative materials. Various synthetic methods and conditions were adopted to prepare different substituted lithium manganese oxides with their theoretical chemical formula of LiMzMn2-zO4 (M=Ni, Al, Ti, Sb; 0≤z≤1). Ni, Al and Ti were fully integrated into the spinel lattice when z≤0.5. The incorporated Ni and Al induced the lattice contraction, while the incorporated Ti caused the lattice expansion. LiNi0.5Mn1.5O4, LiAl0.5Mn1.5O4 and LiTi0.5Mn1.5O4 maintained their spinel structure and morphology after acid treatment. During acid treatment, the metallic element extraction ratios were w(Li)=28.12%, w(Mn)=7.08% and w(Ni)=10.14% for LiNi0.5Mn1.5.O4; w(Li)=59.04%, w(Mn)=12.70% and w(Al)= 14.40% for LiAl0.5Mn1.5O4; w(Li)=74.71%, w(Mn)=29.58% and w(Ti)=19.49% for LiTi0.5Mn1.5O4, respectively. Only the lithium ion-sieve derived from LiAl0.5Mn1.5O4 had a relatively high adsorption capacity of 20.21 mg·g-1 in HCl-LiCl-LiOH solution and its adorption behavior complied with Langmuir adsorption model. Due to the remarkable lattice contraction or expansion, other substituted spinels showed low Li extraction ratios or their lithium ion-sieves showed adsorption capacities. It was difficult for Sb to enter in the spinel LiMn2O4 to form Sb-substituted lithium manganese oxide. When z=0.5, the sample formed a combined structure of LiMn2O4 (spinel) and LiSbO3 (perovskite) in which manganese and antimony ions diffused mutually into perovskite and spinel to form a composite. The Li, Mn and Sb extraction ratios of sample z0.5 were 80.55%,34.20% and 4.34%, respectively, during acid treatment. After acid treatment, the resultant lithium ion-sieve exhibited the structural stability and morphology integrity, but the general performance of this lithium ion-sieve was not good.
     A series of spinel lithium-rich manganese oxide with theoretical chemical formula of Li2O·rMnO2 (1.75≤r≤3.0) was synthesized by citric acid complex method. XRD, SEM, XPS and IR were used to characterize the relative materials. The sample of Li2O·2.25MnO2 (LMO) prepared at 350℃presented spinel structure, high Li extraction ratio of 95.45% and low Mn extraction ratio of 6.01% during acid treatment. After acid treatment, LMO transformed to lithium ion-sieve of MO, which maintained spinel structure and morphology. The average valences of Mn in LMO and MO were 3.82 and 3.91, respectively. The transformation from LMO to MO is consistent with the Li+-H+ion exchange mechanism. In addition, the adsorption properties of MO in HCl-LiCl-LiOH solution, LiCl-NH3-H2O-NH4Cl buffer system and the salt lake brine were comprehensively studied. In LiCl-NH3·H2O-NH4Cl buffer system, the lithium adsorption of MO was fit for Langmuir model. The calculated△Gθwas negative, which means the adsorption process occurred spontaneously;△Hθwas 3.319 kJ-mol-1 and△Sθwas 11.70 J-mol-1·K-1. The adsorption process obeyed the pseudo-second-order kinetic model and was controlled by intraparticle diffusion, boundary layer diffusion, etc. Lithium ion-sieve MO showed selectivity for Li+in mixed buffer solution, and the affinity order was Na+     MO foam, a foam-type lithium adsorbent, was prepared by polyurethane template method with pitch as binder. DTG, XRD, SEM, TEM, EDS and N2 adsorption-desorption test were employed to characterize the composition, structure, morphology, pore structure and other properties of the relative materials. The MO foam with three-dimensionally interpenetrating network consisted of the lithium ion-sieve of MO and oxygen-containing cross-linked pitch. The bulk of the MO foam presented meso-/microporous structure. The adsorption capacities of MO foam in HCl-LiCl-LiOH solution, LiCl-NH3·H2O-NH4Cl buffer system and salt lake brine were 8.73,3.83 and 1.49 mg(Li+)·g-1(MO foam), respectively. The affinity order for MO foam in mixed buffer solution was Na+     Finally, the ion exchange mechanism and the redox mechanism for lithium extraction/insertion process in solution were reorganized according to Mn3+content and Mn defects in spinel lithium manganese oxide. The "Determine by Mn" model was proposed. A comprehensive discussion on the lithium extraction/insertion mechanism of the lithium manganese oxides involved in this thesis was made. A "Determine by Mn" mechanism map was created to visually evaluate the extraction/insertion mechanism of all kinds of spinel lithium manganese oxides.
引文
[1]陈东文.锂与社会[J].化学教育,1997,(5):3-4
    [2]刘世友.锂的新用途与展望[J].金属世界,1994,2(6):12-13
    [3]杨斌,戴永年,王达健.金属锂的制备及应用[J].昆明理工大学学报,1996,21(6):42-45
    [4]Demeri M, Kipouros G. Processing titanium and lithium for reduced-cost application[J]. JOM Journal of the Minerals, Metals and Materials Society, 1997,49(6):20~20
    [5]游清治.锂在玻璃陶瓷工业中的应用[J].世界有色金属,2000,(2):26-31
    [6]游清治.我国锂工业近年来的新进展[J].世界有色金属,2002,(7):4-8
    [7]游清治.锂在润滑脂中的应用[J].世界有色金属,1998,(2):39-44
    [8]游清治.锂及其化合物在医药中的应用[J].世界有色金属,1997,(12):41-44
    [9]封国富,张晓.世界锂工业发展格局的变化对中国锂工业的影响和对策[J].稀有金属,2003,27(1):57-61
    [10]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社材料科学与工程出版中心,2002
    [11]游清治.锂在高新技术领域中的应用及进展[J].新疆有色金属,2003,(S2):72-75
    [12]杨晓菲.能源生命金属——锂[J].中国金属通报,2009,(28):34-35
    [13]张江峰,朱小云.全球锂工业现状及发展趋势[J].中国金属通报,2008,(12):6-8
    [14]游清治.世界锂的资源、生产与应用前景[J].世界有色金属,2008,(5):42-45
    [15]冀康平.锂资源的开发与利用[J].无机盐工业,2005,37(5):7-9
    [16]钟辉.偏钛酸型锂交换体制备、机理及其从液态锂矿提锂的研究:[博士学位论文].成都:成都理工大学,2004
    [17]赵元艺.中国盐湖锂资源及其开发进程[J].矿床地质,2003,22(1):99-106
    [18]胡仙峰.青海察尔汗盐湖矿产资源的开发方向思考[J].安全与环境,2007,(13):29-30
    [19]汪镜亮.卤水锂资源提锂现状[J].化工矿物与加工,1999,28(12):1-5
    [20]李昱昀,狄晓亮,高洁.国内外盐湖卤水锂资源及开发现状[J].海湖盐与化工,2005,34(5):31-35
    [21]Mehta V C. Process for recovering lithium from salt brines. U.S. Patent, 4723962,1988-02-09
    [22]陆增,胡士文,袁建军.从高镁锂比盐湖水中提取碳酸锂的方法.中国专利,CN1398785,2003-02-26
    [23]Epstein J A, Feist E M, Zmora J. Extraction of lithium from the dead sea[J]. Hydrometallurgy,1981,6(3-4):269~275
    [24]Lukes J. Process for obtaining monohydrated lithium sulfate from natural brines. U.S. Patent,6547836,2003-04-15
    [25]钟辉,杨建元,张芃.高镁锂比盐湖卤水中制取碳酸锂的方法.中国专利,CN1335262,2002-02-13
    [26]大井健太,蒋修治.海水中稀有金属的提取[J].国外稀有金属,1992,(2):21-26
    [27]Ryabtsev A D, Menzheres L T, Ten A V. Sorption of lithium from brine onto granular LiCl-2Al(OH)3-mH2O sorbent under dynamic conditions [J]. Russian Journal of Applied Chemistry,2002,75(7):1069-1074
    [28]张金才,王敏,戴静.卤水提锂的萃取体系概述[J].盐湖研究,2005,13(1):42-48
    [29]Sachleben R A, Moyer B A, Case F I, et al. Alkylated lariat ethers as solvent extraction reagents:surveying the extraction of alkali metals by bis-t-octylbenzo-14-crown-4-acetic acid by use of potentiometric two-phase titration[J]. Separation Science and Technology,1993,28(6):1357-1360
    [30]朱慎林,朴香兰,维泽明.中性磷类萃取剂从卤水中萃取锂的研究[J].清华大学学报(自然科学版),2000,40(10):47-50
    [31]Hano T, Matsumoto M, Ohtake T, et al. Recovery of lithium from geothermal water by solvent extraction technique [J]. Solvent Extraction and Ion Exchange, 1992,10(2):195~206
    [32]Seeley F G., Baldwin W H. Extraction of lithium from neutral salt solutions with fluorinated β-diketones[J]. Journal of Inorganic and Nuclear Chemistry,1976, 38(5):1049~1052.
    [33]Neilli J R, Arthur T E, Gastonia N C. Recovery of lithium from bitterns. U.S. Patent,3537813,1970-11-03
    [34]杨建元,夏康明.用高镁含锂卤水生产碳酸锂、氧化镁和盐酸的方法.中国专利,CN1724372,2006-01-25
    [35]钟辉,杨建元.用碳化法从高镁锂比盐湖卤水中分离镁锂制取碳酸锂的方法.中国专利,CN1335263,2002-02-13
    [36]郑绵平.从碳酸盐型卤水中提取锂盐方法.中国专利,CN1270927, 2000-10-25
    [37]陈正炎,古伟良,陈富珍.国内外盐湖卤水提锂方法及其发展[J].新疆有色金属,1996,(1):21-25
    [38]曾英,阎树旺.锂的吸附剂[J].化学世界,1995,(7):345-348
    [39]梁尊山.从海水中回收锂[J].国外制盐工业,1990,(1):56-65
    [40]刘亦凡,大井健太.离子记忆无机离子交换体[J].离子交换与吸附,1994,10(3):264-269
    [41]肖小玲,戴志锋,祝增虎,等.吸附法盐湖卤水提锂的研究进展[J].盐湖研究,2005,13(2):68
    [42]潘立玲,朱建华,李渝渝.锂资源及其开发技术进展[J].矿产综合利用,2002,2(2):28-33
    [43]袁俊生,孟兴智,纪志永.尖晶石型锂离子筛吸附剂前驱体的合成研究[J].海湖盐与化工,2005,34(1):6-9
    [44]顾大明,张若楠,高农.尖晶石型锰酸锂制备及其电化学性能[J].哈尔滨工业大学学报,2008,40(4):607-610
    [45]刘韩星,周振平,赵世玺,等.Li-Mn-O体系电极材料的微波合成[J].物理化学学报,2001,17(8):702-707
    [46]卢集政,赖琼钰.锂嵌脱化合物LiMn2O4的微波烧结研究[J].化学研究与应用,1998,10(6):620-623
    [47]周园,岳鸿飞,冉广芬.低温电解法制备球形尖晶石LiMn2O4及性能研究[J].稀有金属材料与工程,2007,36(8):1477-1479
    [48]魏英进.锂离子电池锰基正极材料的合成与表征:[博士学位论文].长春:吉林大学,2004
    [49]Kosova N V, Uvarov N F, Devyatkina E T, et al. Mechanochemical synthesis of LiMn2O4 cathode material for lithium batteries[J]. Solid State Ionics,2000, 135(1-4):107~114
    [50]李运姣,李洪桂,赵中伟,等.机械活化-湿化学合成LiMn2O4的组成、结构与表征[J].中国有色金属学报,2004,14(S1):112-116
    [51]姚耀春.尖晶石LiMn2O4的制备及其电池制作技术与性能研究:[博士学位论文].昆明:昆明理工大学,2005
    [52]康慨,戴受惠,万玉华.固相配位化学反应法合成LiMn2O4的研究[J].功能材料,2000,31(3):283-285
    [53]杜柯,其鲁,胡国荣,等.KC1熔盐法制备LiMn2O4[J].无机化学学报,2006,22(5):867-871
    [54]杜柯,其鲁,胡国荣,等.以微乳液法制备的锰源合成LiMn2O4[J]无机化学学报,2007,23(1):21-24
    [55]周震涛,李新生.熔融浸渍法LiMn2O4的制备及性能[J].稀有金属材料与工程,2003,32(2):134-136
    [56]赵世玺Li-Mn-0体系锂离子电池正极材料的合成及结构研究:[博士学位论文].武汉:武汉理工大学,2002
    [57]沈霞,方建慧,苏毅玲,等.锂离子筛的制备和应用[J].云南大学学报(自然科学版),2005,27(5A):465-467
    [58]刘素琴,路雁雁,黄可龙.溶胶-凝胶法制备尖晶石锂锰氧正极材料[J].无机材料学报,2005,20(6):1368-1372
    [59]童辉,孙育斌,陈永熙,等.溶胶-凝胶法合成锂离子筛前驱体LiMn204的研究[J].化工新型材料,2004,32(4):33-35
    [60]Lee Y S, Sun Y K, Nahm K S. Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries[J]. Solid State Ionics,1998,109(3-4):285~294
    [61]Sun Y K, Oh IH, Kim K Y. Synthesis of spinel LiMn2O4 by the sol-gel method for a cathode-active material in lithium secondary batteries [J]. Industrial and Engineering Chemistry Research,1997,36(11):4839~4846
    [62]Kang S H, Goodenough J B. Li[LiyMn2-y]O4 spinel cathode material prepared by a solution method[J]. Electrochemical and Solid-State Letters,2000,3(12): 536~539
    [63]Kim J, Manthiram A. Low temperature synthesis and electrode properties of Li4Mn5O12[J]. Journal of The Electrochemical Society,1998,145(4):L53-55
    [64]Tabuchi M, Ado K, Kobayashi H, et al. Synthesis of LiMnO2 with α-NaMnO2-type structure by a mixed-alkaline hydrothermal reaction[J]. Journal of The Electrochemical Society,1998,145(4):L49-52
    [65]刘兴泉,李庆,于作龙.锂离子电池阴极材料Li1+xMn2O4的水热合成及表征[J].合成化学,1999,7(4):382-388
    [66]李运姣.锂离子电池正极材料锂锰氧化物的湿化学合成与表征:[博士学位论文].长沙:中南大学,2002
    [67]李嵩,程杰锋,季世军,等.水热合成锂离子正极材料LiMn2O4[J].稀有金属材料与工程,2003,32(6):468-470
    [68]李艳,齐涛,王丽娜,等.离子筛材料的合成及其对盐湖卤水中锂的选择性吸附[J].过程工程学报,2006,6(5):724-728
    [69]钟辉,殷辉安.偏钛酸型锂离子交换剂表面性质与选择吸附性研究[J].离子交换与吸附,2002,18(1):55-60
    [70]董殿权,张凤宝,张国亮,等Li4Ti5O12的合成及对Li+的离子交换动力学[J].物理化学学报,2007,23(6):950-954
    [71]董殿权,钟杰,柳敦雷,等.尖晶石构造LiCuo.5Mn1.5O4的合成及其在水溶液中对Li+的抽出/嵌入反应[J].应用化学,1998,(3):114-115
    [72]董殿权,张凤宝,张国亮,等LiAlTiO4的合成及对Li+的离子交换选择性[J].应用化学,2005,22(7):754-758
    [73]江津河,董殿权,李建隆Li4Mno.5Tio.5O4的合成及其交换选择性[J].应用化学,2006,23(4):357-361
    [74]Feng Q, Kanoh H, Ooi K. Manganese oxide porous crystals[J]. Journal of Materials Chemistry,1999,9(2):319~333
    [75]Thackeray M M, Kock A, Rossouw M H, et al. Spinel electrodes from the Li-Mn-0 system for rechargeable lithium battery applications[J]. Journal of The Electrochemical Society,1992,139(2):363~366
    [76]周亚栋.无机材料物理化学.武汉:武汉工业大学出版社,1994:188-189
    [77]何福城,朱正和.结构化学.北京:人民教育出版社,1979:170-190
    [78]Hunter J C. Preparation of a new crystal form of manganese dioxide:λ-MnO2 [J]. Journal of Solid State Chemistry,1981,39(2):142~147
    [79]Shen X M, Clearfield A. Phase transitions and ion exchange behavior of electrolytically prepared manganese dioxide[J]. Journal of Solid State Chemistry,1986,64(3):270~282
    [80]Clearfield A. Inorganic ion exchange, past, present, and future[J]. Solvent Extraction and Ion Exchange,2000,18(4):656~678
    [81]Sato K,Poojary D M, Clearfield A. The surface structure of the proton-exchanged lithium manganese oxide spinels and their lithium-ion sieve properties [J]. Journal of Solid State Chemistry,1997,131(1):84~93
    [82]Ooi K, Miyai Y, Katoh S. Extraction reaction with λ-MnO2 in the aqueous phase[J]. Chemistry Letters,1988,21(5):989~992
    [83]Feng Q, Miyai Y, Kanoh H, et al. Li+Extraction/insertion with spinel-type lithium manganese oxides[J]. Characterization of redox-type and ion-exchange-sites type, 1992,8(7):1861~1867
    [84]Ooi K, Yoshitaka M, Jitsuo S. Mechanism of Li+insertion spinel-type manganese oxide, redox and ion-exchange reactions[J]. Langmuir,1991,7(6):1167~1171
    [85]李少鹏,张钦辉,孙淑英.TiO2离子筛的制备及表征[J].天津大学学报,2007,40(4):453-45
    [86]蔡邦肖.日本的海水化学资源提取技术研究[J].东海海洋,2000,18(4):52-56
    [87]闫树旺,钟辉,周永兴.二氧化钛吸附剂的研制及从卤水中提锂[J].离子交换与吸附,1992,8(3):222-228
    [88]钟辉,郭灵虹.偏钛酸型锂离子交换剂固相反应动力学[J].应用化学,1998,15(3):103-105
    [89]钟辉.偏钛酸型锂离子交换剂的交换性质及从气田卤水中提锂[J].应用化学,2000,17(3):307-309
    [90]袁俊生,纪志永.海水提锂研究进展[J].海湖盐与化工,2003,32(5):29-33
    [91]Miyai Y, Ooi K, Katoh S, et al. The pHtitration Study of lithium ion adsorption on λ-MnO2[J]. Bulletin of the Chemical Society of Japan,1988,61(2):407~411
    [92]Clearfield A. Role of ion exchange in solid state chemistry[J]. Chemical Reviews,1988,88(1):125~148
    [93]Chitrakar R, Kanoh H, Miyai Y. Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4[J]. Industrial and Engineering Chemistry Research,2001,40(9):2054~2058
    [94]Chitrakar R, Kanoh H, Miyai Y, et al. A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties [J]. Chemistry of Materials,2000,12(10):3151~3157
    [95]Miyai Y,邱伟之.以MgMn2O4制备的新型离子筛吸附剂从海水中回收锂[J].湿法冶金,1989,(2):66-71
    [96]Feng Q, Miyai Y, Kanoh H. Li+and Mg2+extraction and Li+insertion reactions with LiMgo.5Mn1.5O4 spinel in the aqueous phase[J]. Chemistry of Materials, 1993,5(3):311~316
    [97]纪志永,袁俊生,李鑫钢.锂离子筛的制备及其交换性能研究[J].离子交换与吸附,2006,22(4):323-329
    [98]雷家珩,弓巧侠,尚建华,等.锂离子筛前驱体正尖晶石结构LiMn2O4的合成及其特性研究[J].武汉大学学报(理学版),2001,47(6):707-711
    [99]袁俊生,李恒,孟兴志.离子筛型锂吸附剂的吸附性能研究[J].无机盐工业,2006,38(6):27-29
    [100]张绍成,董丽春,戈桦,等.负载二氧化锰球形吸附剂的制备及锂吸附性质的研究[J].离子交换与吸附,1993,9(1):54-58
    [101]张碧泉.Mn02的离子交换行为及其离子筛法提取锂[J].应用化学,1998, 15(5):98-100
    [102]Zhang Q H, Sun S Y, Li S P. Adsorption of lithium ions on novel nanocrystal MnO2[J]. Chemical Engineering Science,2007,62(18):4869~4874
    [103]Jang J H, Dong D Q, Chen G H, et al. Li+extractiodinsertion reaction with Mg2Mno.5Tio.5O4 inverse spinel in the aqueous phase[J]. Rare Metals,2007, 26(6):536~539
    [104]Wang L, Ma W, Liu R, et al. Correlation between Li+adsorption capacity and the preparation conditions of spinel lithium manganese precursor [J]. Solid State Ionics,2006,177(17-18):1421~1428
    [105]刘亦凡,冯旗,大井健太.Li+记忆尖晶石构造LiAlMnO4的合成及离子交换性能[J].离子交换与吸附,1995,11(3):216-222
    [106]董殿权,张凤宝,张国亮等.LiMgo.5Mn1.5O4的合成及对Li+的离子交换选择性[J].无机化学学报,2004,20(9):1126-1130
    [107]Sagara F, Ning W B, Yoshida I, et al. Preparation and adsorption propertities of λ-MnO2 celluse hybrid-type ion-exchanger for lithium ion, application to the enrichment of lithium ion from seawater[J]. Separation Science and Technology,1989,24(14):1227~1243
    [108]Onodera Y, Iwasaki T, Hayashi H, et al. Preparation of λ-MnO2 held in a porous material[J]. Chemistry and Industry,1990, (19):106~107
    [109]Miyai Y, Umeno A, Kano H. Preparation of porous granular lithium selective adsorbent for improvement of adsorption rate and its economical effect[J]. Bulletin of the Society of Sea Water Science, Japan,2002,56(1):57-63
    [110]Umeno A, Miyai Y, Takagi N. Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater[J]. Industrial and Engineering Chemistry Research,2002,41(17):4281~4287
    [111]Shiu J Y, Lin J R, Lee D C, et al. Method for adsorbing lithium ions from a lithium-containing aqueous solution by a granular adsorbent. U.S. Patent, 20030231996,2003-12-18
    [112]张绍成,冉广芬.吸附法盐湖卤水提锂[J].离子交换与吸附,1998,14(4):351-358
    [113]张绍成,戈桦,董丽春.聚丙烯酰-MnO2粒状离子交换剂的制备及对锂的离子交换性质的研究[J].离子交换与吸附,1991,7(1):33-37
    [114]董丽春,张绍成.MnO2-聚丙烯酰胺复合吸附剂对Li+离子吸附的pH滴定研究[J].离子交换与吸附,1990,6(2):100-106
    [115]马培华,邓小川,李法强,等.二氧化锰法从盐湖卤水中提锂的方法.中国专利,CN1511963,2004-07-14
    [116]弓巧侠.锂离子筛分材料的筛分性能及其机理探讨:[硕士论文].武汉:武汉理工大学,2002
    [117]孙育斌.溶胶~凝胶法合成锂离子筛分材料的研究:[硕士论文].武汉:武汉理工大学,2003
    [118]孟兴智.离子筛型锂吸附剂的成型及其性能研究:[硕士论文].天津:河北工业大学,2005
    [119]纪志永.锂吸附剂的合成及其吸附性能研究:[硕士论文].天津:河北工业大学,2004
    [120]王小敏.盐湖卤水中提取锂离子的研究:[硕士论文].福州:福建师范大学,2008
    [121]孙淑英,张钦辉,于建国.纳米MnO2离子筛的锂吸附性能[J].化工学报,2007,58(7):1757-1761
    [122]雷家珩,尚建华,陈永熙,等.锰系离子筛材料的合成及性能研究[J].化工新型材料,2001,29(6):28-30
    [123]纪志永,袁俊生,李鑫钢.锂吸附剂的合成及其吸附性能[J].化学工程,2007,35(8):9-13
    [124]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society,1918,40(9): 1361~1403
    [125]Freundlich H M F Adsorption in solution[J]. Journal of Physical Chemistry, 1906,57:385~410
    [126]李俊涛,张密林,王君,等.尖晶石型LiMn2O4的研究进展[J].应用科技,2004,31(4):65-66
    [127]Tang W P, Kanoh H, Yang X J, et al. Preparation of plate-form manganese oxide by selective lithium extraction from monoclinic Li2MnO3 under hydrothermal conditions[J]. Chemistry of Materials,2000,12(11):3271~3279
    [128]Liu Y F, Feng Q, Ooi K. Li+extraction/insertion reactions with LiAlMnO4 and LiFeMnO4 spinels in the aqueous phase [J]. Journal of Colloid and Interface Science,1994,163(1):130~136
    [129]Tian L Y, Ma W, Han M. Adsorption behavior of Li+onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide [J]. Chemical Engineering Journal,2010,156(1):134~140
    [130]Guo H J, LiXH, Zhang X M, et al. Characteristics of LiCoO2, LiMn2O4 and LiNio.45Coo.1Mno.45O2 as cathodes of lithium ion batteries[J]. Journal of Central South University of Technology,2005,12(s1):44~49
    [131]Wang Z X, Fang H S, Yin Z L, et al. Synthesis and characterization of high-voltage cathode material LiNio.5Mn1.5O4 by one-step solid-state reaction[J]. Journal of Central South University of Technology,2005,12(s1):54~58
    [132]董殿权,刘维娜,刘亦凡.LiNio.05Mn1.95O4的合成及其对Li+的离子交换热力学[J].物理化学学报,2009,25(7):1279-1284
    [133]Yang S H, Richard L M. Redox reactions of cobalt, aluminum and titanium substituted lithium manganese spinel compounds in lithium cells[J]. Solid State Ionics,2001,139(1-2):13~25
    [134]唐致远,李建刚,薛建军.锂电池正极材料LiMn2O4的改性与循环寿命[J].化学通报,2000,(8):10-14
    [135]廖立兵,李国武.X射线衍射方法与应用[M].北京:地质出版社,2008:113-114
    [136]Raja M W, Mahanty S, Basu R N. Influence of S and Ni co-doping on structure, band gap and electrochemical properties of lithium manganese oxide synthesized by soft chemical method[J]. Journal of Power Sources,2009, 192(2):618~626
    [137]Crasa F L, Blochb D, Anne M, et al. Lithium intercalation in Li-Mg-Mn-0 and Li-Al-Mn-0 spinels[J]. Solid State Ionics,1996,89(3-4):203~213
    [138]Liu W, Kowal K, Farrington G C. Electrochemical characteristics of spinel phase LiMn2O4-based cathode materials prepared by the pechini process[J]. Journal of The Electrochemical Society,1996,143(11):3590~3596
    [139]Zou J, Dong Y, Zhou S. Study on the hydrolytic property and thermal stability of LiAlO2 substrate[J]. Journal of Crystal Growth,2006,294(2):339~342
    [140]Xiao L F, Zhao Y Q, Yang Y Y, et al. Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method[J], Electrochimica Acta,2008,54(2):545~550
    [141]Alcantara R, Jaraba M, Lavela P, et al. X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNio.5Mn1.5O4 electrodes [J]. Journal of Electroanalytical Chemistry,2004,566(1):187~192
    [142]Fourquet J L, Gillet P A, Bail A L. H+/Li+topotactic exchange on LiSbO3:The series Li1-xHxSbO3(0    [143]Chitrakar R, Abe M. Synthetic inorganic ion exchange materials XLVII. preparation of a new crystalline antimonic acid HSbO3.O.12H2O[J]. Materials Research Bulletin,1988,23(9):1231~1240
    [144]大连理工大学无机化学教研室.无机化学.北京:高等教育出版社,2004:541-543
    [145]Ohzuku T, Kitagawa M, Hirai T. Electrochemisty of manganese dioxide in lithium nonaqueous cell[J]. Journal of The Electrochemical Society,1990, 137(3):769~775
    [146]Su Y C, Zou Q F, Wang Y W, et al. Structure and electrochemical behavior of LiCryMn2-yO4 compositions[J]. Materials Chemistry and Physics,2004, 84(2-3):302~307
    [147]Simon D R, Kelder E M, Wagemaker M, et al. Characterization of proton exchanged Li4Ti5O12 spinel material[J]. Solid State Ionics,2006,177(26-32): 2759~2768
    [148]Kumada N, Takahashi N, Kinomura N. Preparation and crystal structure of a new lithium bismuth oxide:LiBiO3 [J]. Journal of Solid State Chemistry,1996, 126(1):121~126
    [149]Chitrakar R, Kanoh H, Miyai Y, et al. Synthesis of spinel-type lithium antimony manganese oxides and their Li+extraction/insertion reactions[J]. Journal of Materials Chemistry,2000, (10):2325~2329
    [150]Ouyang C Y, Shi S Q, Lei M S. Jahn-Teller distortion and electronic structure of LiMn2O4 [J]. Journal of Alloys and Compounds,2009,474(1-2):370~374
    [151]Feng Q, Kanoh H, Miyai Y, et al. Li+extraction/insertion reactions with LiZno.5Mn1.5O4 spinel in the aqueous phase[J]. Chemistry of Materials,1995, 7(2):379~384
    [152]Yang X J, Kanoh H, Tang W P, et al. Synthesis of Li1.33Mn1.67O4 spinels with different morphologies and their ion adsorptivities after delithiation[J]. Journal of Materials Chemistry,2000, (10):1903~1909
    [153]Thackeray M M. Manganese oxides for lithium batteries[J]. Progress in Solid State Chemistry,1997,25(1-2):1-71
    [154]Tang X C, Jiang C K, Pan C Y, et al. Synthesis and phase transition of Li-Mn-0 spinels with high Li/Mn ratio by thermo-decomposition of LiMnC2O4(Ac) [J]. Journal of Solid State Chemistry,2006,179(4):1100~1109
    [155]陈永熙,周立娟,郭丽萍,等.锂锰氧化物中锰的平均化合价的测定研究[J].武汉理工大学学报,2001,23(10):1-3
    [156]Su R J, Dai C S. Synthesis and Electrochemical behavior of Mg, F dual substitutions spinel LiMgo.1Mn1.9O3.95Fo.05[J]. Rare materials and engineering, 2007,36(S3):182~187
    [157]Wu Q H, Xu J M, Zhuang Q C, et al. X-ray photoelectron spectroscopy of LiM0.05Mn1.95O4 (M=Ni, Fe and Ti)[J]. Solid State Ionics,2006,177(17-18): 1483~1488
    [158]Wang L, Meng C G, Ma W. Study on Li+uptake by lithium ion-sieve via the pH technique[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,334(1):34~39
    [159]Ammundsen B, Jones D J, Roziere J, et al. Mechanism of proton insertion and characterization of the proton sites in lithium manganate spinels[J]. Chemistry of Materials,1995,7(11):2151~2160.
    [160]Misak N Z. Some aspects of the application of adsorption isotherms to ion exchange reactions[J]. Reactive and Functional Polymers,2000,43(1-2): 153~164
    [161]Wang L, Meng C G, Han M, et al. Lithium uptake in fixed-pH solution by ion sieves[J]. Journal of Colloid and Interface Science,2008,325(1):31~40
    [162]张绍成,冉广芬.吸附法盐湖卤水提锂[J].新疆有色金属,1996,1:15.
    [163]张绍成,冉广芬.吸附法盐湖卤水提锂工艺试验[J].盐湖研究,1997,5(1):59-68
    [164]何力,陈儒庆,徐运海,等.用吸附法从察尔汗盐湖卤水中提取锂[J].湿法冶金,2003,22(3):118-128
    [165]王禄.尖晶石型锰氧化物锂离子筛制备及提锂性能:[博士论文].大连理工大学,2008
    [166]王禄,马伟,韩梅,等.高效锂离子筛吸附剂MnO2·0.5H2O的软化学合成及吸附性能研究[J].化学学报,2007,65(12):1135-1139
    [167]Ni Z M, Xia S J, Wang L G, et al. Treatment of methyl orange by calcined layered double hydroxides in aqueous solution:adsorption property and kinetic studies[J]. Journal of Colloid and Interface Science,2007,316(2):284~291
    [168]Li Y H, Di Z, Ding J, et al. Adsorption thermodynamic, kinetic and desorption studies of Pb on carbon nanotubes[J]. Water Research,2005,39(4):605~609
    [169]Ooi K, Miyai Y, Katoh S, et al. Analysis of pH titration data in a X,-MnO2+LiOH system on the basis of redox mechanism[J]. Langmuir,1990, 6(1):289~291
    [170]Ozcan A S, Ozcan A. Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite[J]. Journal of Col loid and Interface Science,2004, 276(1):39~46
    [171]He Y S, McKay G. Pseudo-second order model for sorption processes[J]. Process Biochemistry,1999,34(5):451~465
    [172]姜志新,谌竟清,宋正孝.离子交换分离工程.天津:天津大学出版社,1992,84-120
    [173]陶祖贻,赵爱民.离子交换平衡及动力学.北京:原子能出版社,1989,32.
    [174]郑春辉.新型含钛复合物的合成及其提锂性能研究:[硕士论文].青岛:青岛科技大学,2007
    [175]Onodera Y, Iwasaki T, Hayashi H, et al. Preparation method and litium adsorption property of λ-MnO2-Silica composite[J]. Chemistry Letters,1990, 19(10):1801~1804
    [176]Chung K S, Lee J C, Kim W K, et al. Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater[J]. Journal of Membrane Science,2008,325(2):503~508
    [177]Mochida I, Korai Y, Ku C H, et al. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch[J]. Carbon, 2000,38(2):305~328
    [178]Mianowski A, Blazewiczb S, Robak Z. Analysis of the carbonization and formation of coal tar pitch mesophase under dynamic conditions [J]. Carbon, 2003,41(12):2413~2424
    [179]Yang J, Shen Z M, Hao Z B. Preparation of highly microporous and mesoporous carbon from the mesohase pitch and its carbon foams with KOH[J]. Carbon,2004,42(8-9):1872~1875
    [180]Zhang J, Kong L B, Cai J J, et al. Hierarchically porous nickel hydroxide/mesoporous carbon composite materials for electrochemical capacitors[J]. Microporous and Mesoporous Materials,2010,132(1-2): 154~162.
    [181]代斌.新疆膨润土资源及其开发利用研究:[会议论文].中西部地区无机化学、化工学术交流会,2008
    [182]Matsumoto T, Mochida I. Oxygen distribution in oxidatively stabilized mesophase pitch fiber[J]. Carbon,1993,31(1):143~147
    [183]Matsumoto T, Mochida I. A structural study on oxidative stabilization of mesophase pitch fibers derived from coaltar[J]. Carbon,1992,30(7): 1041-1046
    [184]Drbohlav J, Stevenson W T K. The oxidative stabilization and carbonization of a synthetic mesophase pitch, part I:The oxidative stabilization process[J]. Carbon,1995,33(5):693-711
    [185]Liedtke V, Huttinger K J. Mesophase pitches as matrix precursor of carbon fiber reinforced carbon:Ⅱ. Stabilization of mesophase pitch matrix by oxygen treatment[J]. Carbon,1996,34(9):1067~1079
    [186]Wang Y G, Korai Y, Mochida I, et al. Modification of synthetic mesophase pitch with iron oxide, Fe2O3[J]. Carbon,2001,39(11):1627~1634
    [187]Ramos-Fernandez J M, Martinez-Escandell M, Reinoso F R. Preparation of mesophase pitch doped with TiO2 or TiC particles[J]. Journal of Analytical and Applied Pyrolysis,2007,80(2):477~484
    [188]Rahman M M, Cesano F, Bardelli F, et al. Hybrid SnO2/carbon composites: From foams to films by playing with the reaction conditions [J]. Catalysis Today,2010,150(1-2):84~90
    [189]Margolese D, Melero J A, Christiansen S C, et al. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups[J].Chemistry of Materials,2000,12(8)2448~2459
    [190]Pinto M L, Pires J, Carvalho A P, et al. Characterization of adsorbent materials supported on polyurethane foams by nitrogen and toluene adsorption [J]. Microporous and Mesoporous Materials,2005,80(1-3):253~262
    [191]Liu H, Li S, Zhang S, et al. Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas[J]. Catalysis Communications 2008,9(1):51~54
    [192]Ammundsen B, Jones D J, Roziere J, et al. Ion Exchange in manganese dioxide spinel:proton, deuteron, and lithium sites determined from neutron powder diffraction data[J]. Chemistry of Materials,1998,10(6):1680~1687
    [193]Ammundsen B, Jones D J, Roziere J, et al. Effect of chemical extraction of lithium on the local structure of spinel lithium manganese oxides determined by X-ray absorption spectroscopy[J]. Chemistry of Materials,1996,8(12): 2799~2808
    [194]Ammundsen B, Islam M S, Jones D J, et al. Local structure and defect chemistry of substituted lithium manganate spinels:X-ray absorption and computer simulation studies[J]. Journal of Power Sources,1999,81-82: 500~504
    [195]Ammundsen B, Jones D J, Roziere J. X-Ray absorption fine structure spectroscopy as a probe of local structure in lithium manganese oxides[J]. Journal of Solid State Chemistry,1998,141(1):294~297
    [196]Pickup D M, Simon D, Fooken M, et al.6Li MAS NMR study of stoichiometric and chemically delithiated LixMn2O4 spinels[J]. Journal of Materials Chemistry,2003,13(4):963~968
    [197]Kanzaki Y, Suzuki N, Chitrakar R, et al.7Li/6Li isotope separation on inorganic ion-exchangers and NMR study of the H+/Li+ion-exchange reaction[J]. The Journal of Physical Chemistry B,2002,106(5):988-995
    [198]Ariza M J, Jones D J, Roziere J, et al. Muon spin relaxation study of spinel lithium manganese oxides[J]. The Journal of Physical Chemistry B,2003, 107(24):6003~6011
    [199]Kim Y S, Kanoh H, Chitrakar R, et al. Electronic structure and chemical bonding of Li and protons in spinel type manganese oxides by cluster calculation(HMn2O4) [J]. Chemistry Letters,2000,29(10):1224~1225
    [200]Clearfield A. Inorganic ion exchange, past, present and future [J]. Solvent Extraction and Ion Exchange,2000,18(4):655~678
    [201]赵中伟,霍广生.Li-Mn-H2O系热力学分析[J].中国有色金属学报,2004,14(11):1926-1933
    [202]Ammundsen B, Aitchison P B, Burns G R, et al. Proton insertion and lithium-proton exchange in spinel lithium manganates J. Solid State Ionics 1997,97(1-4):269~276
    [203]Feng Q, Kanoh H, Miyai Y, et al. Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase[J]. Chemistry of Materials,1995,7(1):148~153
    [204]Aitchison P B, Ammundsen B, Roziere J, et al. Local structure and lithium-proton ion exchange in Li1-x/3COxMn1.67-2x-3O4 spinels[J]. Solid State Ionics,2005,176(7-8):813~821
    [205]Wagemaker M, Simon D R, Kelder E M, et al. Proton positions in spinel Ho.9Li0.[Li0.33Ti1.67]O4, an ion-exchanged spinel Li1[Lio.33Ti1.67]O4[J]. Physica B 2004,350(1-3):e995-e998
    [206]Ariza M J, Jones D J, Roziere J, et al. Muon spectroscopy for studying magnetism and protons and lithium dynamics in spinel manganese oxides[J]. Journal of Physics and Chemistry of Solids,2004,65(2-3):597~602
    [207]Fang C M, de Wijs G A. Local structure and chemical bonding of protonated LixMn2O4 spinels from first principles[J]. Chemistry of Materials,2006,18(5): 1169~1173
    [208]Ammundsen B,Roziere J, Islam M S. Atomistic simulation studies of lithium and proton insertion in spinel lithium manganates[J]. The Journal of Physical Chemistry B,1997,101(41):8156~8163
    [209]Ooi K, Miyai Y, Katoh S, et al. Topotactic Li+insertion to A,-MnO2 in the aqueous phase [J]. Langmuir,1989,5(1):150~157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700