5V正极电池材料LiNi_(0.5)Mn_(1.5)O_4的氟掺杂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着能源环境问题的日益严重以及电子产品轻型化的要求,人们对锂离子二次电池的研究不断深入。商业化的锂离子电池正极材料LiCoO2由于价格高,有毒性,人们一直努力在寻找其替代品。锰酸锂由于价格低廉、无毒而倍受关注。而加入镍的LiNi0.5Mn1.5O4充放电平台在4.6~4.8V之间,是5V材料,理论容量可达到147mAh g-1,具有更高的能量密度,有希望作为动力电池得到应用。
     本文主要研究氟掺杂对LiNi0.5Mn1.5O4的影响。采用的溶胶凝胶方法合成的氟掺杂材料比球磨掺氟法效果好。用溶胶凝胶法制备时前驱体在450℃空气中使醋酸盐分解,轻微研磨后压片,在850℃氧气气氛中煅烧12h得到样品材料。
     通过XRD、SEM、BET表征材料结构形貌等物理特性,通过恒电流充放电、循环伏安、交流阻抗等手段对材料电化学稳定性进行测试。比较不同合成条件,不同掺氟量,以及高温条件下不同样品的性能。
     XRD结果表明得到的所有样品均为尖晶石结构,氟掺杂没有明显改变材料的结构。SEM显示随着氟含量的增加颗粒变大也更均匀。氟的加入量增多,材料初始容量降低,循环性能变好,综合考虑LiNi0.5Mn1.5O3.9F0.1效果最好。高温保存过程中,贫锂相的结构会随着锂离子的重新嵌入而发生自放电反应因而电压降低;高温条件下,氟的掺杂可以稳定样品的电化学性能,减小电极与电解液界面的阻抗;高温下,电解液会分解,并且影响电极表面SEI膜的形成而导致不能连续充放电,如果在常温下活化几次后则可以在高温下循环。
     最后对5V体系的电解液进行了初步探索,BMIBF4和PP14-TFSI离子液体均没达到理想效果,要开发与之相匹配的体系仍需要更多研究。
In recent years, as the environmental problems go serious and the electronic products become more and more portable, the study of lithium secondary batteries goes further. Because of the high price and toxicity of the industrialized LiCoO2 cathode material, more attention has been paid to the substitutes for it. Lithium manganese oxide proves one of the most promising cathode materials since it is inexpensive and environmental friendly. LiNi0.5Mn1.5O4 is a 5V cathode material. The charge and discharge plateau is between 4.6 and 4.8V vs. Li/Li+, and the theoretical capacity is 147mAh g-1, so it possesses higher energy density and is promising to be used in Li-ion power sources for electrical vehicles.
     In the present work, fluorine doping in LiNi0.5Mn1.5O4 and the effect on the electrochemical performances are studied. The result shows that sol-gel method to dope fluorine was better than the planetary ball milling. The precursor was first heated to 450℃in air for 5h to make the acetates decompos fully, thereafter ground thoroughly and pressed into pills, and then calcinated in oxygen at 850℃for 12h.
     The samples were characterized by XRD、SEM and BET and the electrochemical performances were tested by constant-current charge and discharge, cyclic voltammograms, AC impedance to optimize the different synthesize conditions, and different fluorine doping amount,and then tested the performances at high temperature.
     XRD results indicate that all the samples belong to spinels phase and there is no obvious difference between different fluorine doping amount samples, and SEM photographs show that the particles become larger and uniform as the fluorine amount increases. At the same time, the initial discharge capacity declines and the cyclability becomes better. LiNi0.5Mn1.5O3.9F0.1 is the best material. At high temperature storage, the cell potentials decline because of self-discharge via the lithium ion intercalation into the poor lithium phase. Fluorine doping reduces the impedance between the electrode and the electrolyte and is beneficial to the electrochemical performance at high temperature. Under high temperature, the electrolyte will decompose and influences the SEI membrane forming on the surface of the electrode, resulting in the failure of continuous charge and discharge. If the sample is activated at room temperature by charge and discharge several times, then it can charge and discharge at high temperature.
     At last, efforts have further been made to explore new electrolytes for the 5V cathode material, but BMIBF4 and PP14-TFSI can not meet the requirements. More work will be done to reach this goal.
引文
[1] Brandt K., Historical development of secondary lithium batteries, Solid State Ionics, 1994, 69(3-4), 173-183.
    [2] 杨遇春,二次锂电池进展,电池,1993,23(5),230-233.
    [3] Winter M., Besenhard J.O., Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochimica Acta, 1999, 45(1-2): 31-50.
    [4] Nishijima M., Tadokoro N., Takeda Y., etc., Li deintercalation-intercalation reaction and structural change in lithium transition metal nitride, Li7MnN4, Journal of the Electrochemical Society, 1994, 141(11): 2966-2971.
    [5] Suzuki S., Shodai T.. Electronic structure and electrochemical properties of electrode material Li7-xMnN4, Solid State Ionics, 1999, (116): 1-9.
    [6] Yang, J., Wang K., Xie J. Y., Ballmilling Synthesis and Electrochemical Characterization of Ternary Lithium Nitrides, Journal of the Electrochemical Society, 2003, 150(1): A140-A142.
    [7] Souza D.C.S., Pralong V., Jacobson A.J., etc., A reversible solid-state crystalline transformation in a metal phophide induced by redox chemistry, Science, 2002, 296: 2012-2015.
    [8] Ohzuku T, Ueda A. Why transition metal (di) oxides are the most attractive materials for batteries. Solid State Ionics, 1994, 69 (3-4):201-211.
    [9] 陈猛,史鹏飞,程新群,塑料锂离子电池研究概况,电池,2000,30(3):129~133.
    [10] 任旭梅,顾辉,陈立泉,新型锂离子电池聚合物电解质的制备,高等学校化学学报,2002,7(2):1383~1385.
    [11] Sakaebe H., Matsumoto H., N-methyl-N-propylpiperidium bis(trifluoromethanesulfonyl)imide (PP13-TFSI)-novel electrolyte base for Li battery, Electrochemistry Comumunications, 2003, 5: 594-598.
    [12] Garcia B., Lavallée S., Perron G.., etc., Room temperature molten salts as lithiumbattery electrolyte, Electrochimica Acta, 2004, 4583-4588.
    [13] Egashira M., Okada S., Yamaki J-I., etc., The preparation of quaternary ammonium-based IL containing a cyano-group ans its properties in a lithium battery electrolytes, Journal of Power Sources, 2004, 138: 240-244.
    [14] Lebdeh Y. A., Abouimrane A., Alarco P-J., etc., Ionic liquids and plastic crystalline phases of pyrazolium imide salts as electrolytes for rechargeable lithium-ion batteries, Journal of Power Sources, 2006, 154: 255-261.
    [15] Wakihara M., Recent developments in lithium ion batteries, Materials Science and Engineering, 2001, 33: 109-134.
    [16] Miura K., Yamada A., Tanaka M., Electric states of spinel LixMn2O4 as a cathode of the rechargeable battery, Electrochimica Acta, 1996, 41(2): 249-256.
    [17] 吴宇平,戴晓兵,马军旗等,锂离子电池-应用与实践,2004,北京,化学工业出版社,400.
    [18] Mizushima K., Jones P.C.,.Goodenough J.B., etc., LixCoO2 (0    [19] Gummow R.J., Thackeray M.M., Characterization of LT-LixCo1-yNiyO2 Electrodes for Rechargeable Lithium Cells, Journal of the Electrochemical Society, 1993, 140(12): 3365-3369.
    [20] Ohzuku T., Ueda A., Nagayama M., Electrochemistry and structural chemistry of LiNiO2(R3m) for 4V secondary lithium cells, Journal of Power Sources, 1993, 140(7): 1862-1870.
    [21] Markovsky B., Rodkin A., Cohen Y. S., etc., The study of capacity fading process of Li-ion batteries: major factors that play a role, Journal of Power Sources, 2003, 119-121, 504-510.
    [22] Kim J., Amine K., A comparative study on the substitution of divalent, trivalent and tetravalent metal ions in LiNi1-xMxO2 (M=Cu2+, Al3+,and Ti4+), Journal of Power Sources, 2002, 104(1): 33-39.
    [23] Ohzuku T., Knakura K., Aoki T., Comparative study of solid-state redox reactions of LiCo1/4Ni3/4O2 for lithium-ion batteries, Electrochimica Acta, 1999, 45: 151-160.
    [24] Pouillerie C., Croguennec L., Biensan P., etc., Synthesis and characterization of new LiNi1-yMgyO2 positive electrode materials for lithium-ion batteries, Journal of the Electrochemical Society, 2000, 147: 2061-2069.
    [25] Poluillerie C., Croguennec L., Delmas C., The LixNi1-yMgyO2 (y=0.05, 0.10) system: structural modifications observed upon cycling, Solid State Ionic, 2000, 132: 15-29.
    [26] Passerini S., Ressler J.J., Le D.B., etc., High rate electrodes of V2O5 aerogel, Electrochimica Acta, 1999, 44(13): 2209-2217.
    [27] Amatucci G.G., Pereira N., Tarascon J.-M., Failure Mechanism and Improvement of the Elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlzMn2-xO4-zFz solid solution, Journal of the Electrochemical Society, 2001, 148 (2): A171-A182.
    [28] Padhi A. K., Nanjundoswamy K.S., Goodenough J.B., Phospho-olibines as positive-electrode materials for rechargeable lithium batteries, Journal of the Electrochemical Society, 1997, 144: 1188-1194.
    [29] Okada S., Sawa S., Egashira M., Cathode properties of pospho-olivine LiMPO4 for lithium secondary batteries, Journal of Power Sources, 2001, 97-98: 430-432.
    [30] Chung S.Y., Blocking J.T., Chiang Y.M., Electronically conductive phospho-olivines as lithium storage electrodes, Nature Material, 2002, 1: 123-128.
    [31] Croce F., Scrosati B., Hassoun J., etc., A Novel concept for the synthesis of an improved LiFePO4 Lithium Battery Cathode, Electrochemical and Solid-State Letters, 2002, 5(3): A47-A50.
    [32] 雷永泉,新能源材料,天津,天津大学出版社,2000,23-43
    [33] 汪燕,冯熙康,杜友良等,锂离子蓄电池材料的研究现状,电源技术,2001,25(3):242-244
    [34] Gao Y., Dahn P.G., The high temperature phase diagram of Li1+xMn2-xO4 and its implication, Journal of the Electrochemical Society, 1996, 143: 1783-1788.
    [35] Huang H., Bruce P.G., 3V and 4V lithium manganese oxide cathodes for rechargeable lithium batteries, Journal of Power Sources, 1995, 54: 52-57.
    [36] Tarascon J.M., Wang E,, Shokoohi P.K., etc., The spinel phase of LiMn2O4 as acathode in secondary lithium cells, Journal of Electrochemical Society, 1991, 138: 2859-2864.
    [37] Toshimi T., Hiroshi H., Hirotoshi E., etc., Structure and electrochemical characterization of Li1+xMn2-xO4 for Li-ion battery applications, Journal of the Electrochemical Society, 1996, 143(1): 100-114.
    [38] 吴宇平,李阳兴,万春荣等,锂离子二次电池正极材料氧化锰锂的研究进展,功能材料,2000,31(1):18-23
    [39] Zhong Q., Bonakdarpour A., Dahn J.R., etc., Synthesis and electrochemistry of LiNixMn2-xO4, Journal of the Electrochemical Society, 1997, 144: 205-213.
    [40] 陈宇,锂快离子导体及尖晶石结构的锂离子电池正极材料的研究,福州大学硕士研究生学位论文,福建,2005
    [41] Kanamura K., Hoshikawa W., Umegaki T., Electrochemical characteristics of LiNi0.5Mn1.5O4 cathodes with Ti or Al current collectors, Journal of the Electrochemical Society, 2002, 149(3): A339-A345.
    [42] Fang H.S., Wang Z.X., Li X.H., etc., Low temperature synthesis of LiNi0.5Mn1.5O4 spinel, Materials Letters, 2006, 60: 1273-1275.
    [43] Wu X.L., Kim S.-B., Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel, Journal of Power Sources, 2002, 109: 53-57.
    [44] Sun Y.-K., Hong K.-J., Prakash J., Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5V materials at elevated temperatures, Electrochemistry Communications, 2002, 4: 344-348.
    [45] Park S.-B., Eom W.-S., Jang H., etc., Electrochemical properties of LiNi0.5Mn1.5O4 cathode after Cr doping, Journal of Power Sources, 2006, 159: 679-684.
    [46] Kim J.-H., Myung S.-T., Sun Y.-K., Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5V class cathode material of Li-ion secondary battery, Electrochimica Acta, 2004, 49:219-227.
    [47] Wen L., Lu Q., Xu G.X., Molten salt synthesis of spherical LiNi0.5Mn1.5O4 cathode materials, Electrochimica Acta, 2006, 51: 4388-4392.
    [48] Myung S.-T., Konaba S., Kumagai N., etc., Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method, Electrochimica Acta, 2002, 47: 2543-2549.
    [49] Myung S.-T., Chung H.-T., Preparation and characterization of LiMn2O4 powders by the emulsion drying method, Journal of Power Sources, 1999, 84: 32-38.
    [50] Alcántara R., Jaraba M., Lavela P., etc., Optimizing preparation conditions for 5V electrode performance and structural changes in Li1-xNi0.5Mn1.5O4 spinel, Electrochimica Acta, 2002, 47: 1829-1835.
    [51] Park S.H., Sun Y.-K., Synthesis and electrochemical properties of 5V spinel LiNi0.5Mn1.5O4 cathode materials prepared by ultrasonic spray pyrolysis method, Electrochimica Acta, 2004, 50: 431-434.
    [52] Yu L.H., Cao Y.L., Yang H.X., etc., Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method, Journal of Solid State Electrochemistry, 2006, 10: 283-287.
    [53] Oh, S.W., Park, S.H., Kim, J.H., etc., Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution, Journal of Power Sources, 2006, 157: 464-470.
    [54] Amatucci, G.G., Pereira, N., Zheng, T., etc., Enhancement of the electrochemical properties of LiMn2O4 through chemical substitution, Journal of Power Sources, 1999, 81-82: 39-43.
    [55] Palacín, M.R., Amatucci, G.G., Anne, M., etc., Elecrochemical and structural study of the 3.3V reduction step in defective LixMn2O4 and LiMn2O4-yFy compounds, Journal of Power Sources, 1999, 81-82: 627-631.
    [56] 杨军,解晶莹,王久林,化学电源测试原理与技术,北京,化学工业出版社,2006,16-49.
    [57] 安平, 其鲁. 锂离子二次电池的应用和发展,北京大学学报(自然科学版), 2006, 42:1-7, 增刊.
    [58] Campion, C. L., Li, W.T., Euler, W. B., etc., Suppression of toxic compounds produced in the decomposition of lithium-ion battery electrolytes, Electrochemical and Solid-State Letters, 2004, 7: A194-A197.
    [59] Sloop, S.E., Kerr, J.B., Kinoshita, K., The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge, Journal of Power Sources, 2003, 119-121: 330-337.
    [60] Li, W.T., Campion, C.L., Lucht, B.L., etc., Additives for stabilizing LiPF6-based electrolytes against thermal decomposition, Journal of the Electrochemical Society, 2005, 152(7): A1361-A1365.
    [61] Yang, H., Zhuang, G.V., Ross J., Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6, Journal of Power Sources, 2006, 161: 573-579.
    [62] Wang, Q.S., Sun, J.H., Yao, X.L., etc., Thermal stability of LiPF6/EC + DEC electrolyte with charged electrodes for lithium ion batteries, Thermochimica Acta, 2005, 437: 12-16.
    [63] Hammami, A., Raymond, N., Armand, M., Runaway risk of forming toxic compounds, Nature, 2004, 424: 635-636.
    [64] 金慧芬,王荣,高俊奎,商业化锂离子电池的热稳定性研究,电源技术,2007, l31(1): 23-25, 33
    [65] MacNeil, D.D., Dahn, J.R., The reactions of Li0.5CoO2 with nonaqueous solvents at elevated temperatures, Journal of the Electrochemical Society, 2002, 149(7): A912-A919.
    [66] MacNeil, D.D., Dahn, J.R., The reaction of charged cathodes with nonaqueous solvents and electrolytes, Journal of the Electrochemical Society, 2001, 148(11): A1205-A1210.
    [67] Li, D.C., Ito, A., Kobayakawa, K., etc., Electrochemical characteristics of LiNi0.5Mn1.5O4 prepared by spray drying and post-annealing, Electrochimica Acta, 2007, 52: 1919-1924.
    [68] Kim, J.H., Myung, S.T., Yoon, C.S., etc. Chemistry of Materials, 2004, 16: 906
    [69] Aurbach, D., Markovsky, B., Talyossef, Y., etc., Studies of cycling behavior, aging, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells, Journal of Power Sources, 2006, 162: 780-789.
    [70] Markevich, E., Baranchugov, V., Aurbach, D., On the possibility of using ionic liquids as electrolyte solutions for rechargeable 5V Li ion batteries, Electrochemistry Communications, 2006, 8: 1331-1334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700