掺杂型离子交换剂的制备及其交换性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以乙酸锂、乙酸镍和乙酸锰为主要原料,采用溶胶-凝胶法,合成出一系列掺镍的锂锰氧化物LiNixMn2-xO4(x=0.00, 0.05, 0.10, 0.20)作锂离子筛前驱体。通过正交试验得到合成锂离子筛前驱体的最佳条件为:镍的掺杂量x为0.05、螯合剂为柠檬酸、焙烧温度700℃、焙烧时间8h。对其尖晶石结构及酸稳定性进行了测定,并选用0.5mol/L过硫酸铵做改型剂对合成的锂离子筛前驱体进行酸处理,制得锂离子筛。测定了其对锂离子的饱和交换容量、pH滴定曲线等离子交换性能。经测定:LiNi0.05Mn1.95O4为尖晶石结构、酸稳定性好,在酸改型过程中Mn2+的溶出率仅为0.31%。酸改型后制得的锂离子筛对锂具有较高的选择性,对0.1mol/L Li+溶液的饱和交换容量达36.72mgLi+/g离子筛。
     测定了锂离子筛的离子交换热力学。作出15℃, 25℃, 35℃, 45℃下锂离子筛的H+-Li+交换等温图,利用Pitzer电解质溶液理论,计算出该离子交换体系的活度系数,得Kielland图,并进一步得到H+-Li+交换的平衡常数及其它热力学参数( K a,ΔG0,ΔH0,ΔS0)。ΔG0LHi为负值,表明所合成的锂离子筛对Li+的选择性大于原来可交换阳离子H+的选择性,吸附锂的过程是自发过程(ΔG0<0)。该离子交换反应是放热反应。
     测定了锂离子筛对锂的离子交换动力学。得到25℃时锂离子筛在0.005, 0.025和0.050 mol/L的Li+溶液中吸附锂的离子交换动力学数据。用缩核模型处理所得的动力学数据,确定锂离子筛吸附Li+时的控制步骤是颗粒扩散控制(PDC),同时得到该实验条件下锂离子筛吸附Li+的动力学方程和颗粒扩散系数De。
A series of Ni-doped lithium manganese oxide LiNixMn2-xO4(x=0.00, 0.05, 0.10, 0.20) were synthesized as lithium ion-sieve precursors by a sol-gel method using acetic lithium, nickel and manganese as raw materials. The optimum conditions of preparing lithium ion-sieve precursors were: citric acid as chelating agent, calcining heat 700℃, calcining time 8h, amount of x 0.05, which were obtained by orthogonal experiments. Their spinel structures and acidic stability were studied. The lithium ion-sieve noted as LiNiMn-H was obtained by acid-modifying the gained LiNi0.05Mn1.95O4 by 0.5 mol/L (NH4)2S2O8. The ion-exchange properties of LiNiMn-H such as its saturation capacity for alkali mental ions and the pH titration curves for Li+, Na+ and K+ were determined.
     The results showed that the dissolving ratio of Mn2+ from the obtained spinel LiNi0.05Mn1.95O4 was only 0.31% during the acid-modified process and the saturated ion-exchange capacity of the obtained lithium ion-sieve LiNiMn-H for 0.1mol/L Li+ solution was 5.29 mmol (36.72mg)Li+/g , which showed a high selectivity for Li+.
     The ion-exchange thermodynamics of lithium ion-sieve was determined. The exchange isothermal diagrams of H+-Li+ on lithium ion- sieve were measured at 15℃, 25℃, 35℃and 45℃respectively. The average activity coefficients of the electrolyte and the Kielland diagrams were calculated by using Pitzer electrolyte solution theory, then the other thermodynamic constants such as equilibrium constant K a,ΔG0,ΔH0andΔS0during the exchange process were computed. The ion exchange free enthalpy of lithium ion-sieve for Li+ were negative, which indicated that its selectivity for Li+ was higher than the original ion H+, the ion exchange process carried out spontaneously (ΔG0<0), and the exchange process was exothermic.
     The ion-exchange dynamics of lithium ion-sieve was studied at 25℃. The kinetics curves of lithium ion-sieve for Li+ during the ion-exchange process were measured in 0.005, 0.025和0.050mol/L Li+ solutions respectively. The shrinking-core model was choosen to deal with the dynamics dates of the ion exchange process, and the kinetics controlled step was determined to be particle diffusion control (PDC). Besides, the kinetics equations and diffusion coefficients (De) of the lithium ion-sieve for Li+ were obtained at the experimental conditions .
引文
[1]林大泽.锂的用途及其资源开发[J].中国安全科学学报,2004,14(9):72-76
    [2]王秀莲,李金丽,张明杰.21世纪的能源金属—金属锂在核聚变反应中的应用[J].黄金学报,2001,3(4):249-252
    [3]袁俊生,纪志永.海水提锂研究进展[J].海湖盐与化工,2003,32(5):29-33
    [4]游清治.锂在高新技术领域中的应用及进展[J].新疆有色金属,2003,增刊:70-75
    [5]游清治.锂在热核反应中的应用[J].新疆有色金属,1996(1):112-114
    [6]李承元,李勤,朱景和.世界锂资源的开发应用现状及展望[J].国外金属矿选矿,2001: 22-26
    [7]潘立玲,朱建华,李渝渝.锂资源及其开发技术进展[J].矿产综合利用,2002(2):28-32
    [8]汪镜亮,锂矿物及锂化工产品的供求格局,化工矿物与加工,2001,(3):33-35
    [9]李昱昀,狄晓亮,高洁.国内外盐湖卤水锂资源及开发现状[J].海湖盐与化工,2005,34(5)
    [10]陈正炎,古伟良,陈富珍.国内外盐湖卤水提锂方法及其发展[J].新疆有色金属,1996(1):21-25
    [11]李承元,李勤朱,景和.国内外锂资源概况及其选冶加工工艺综述[J].有色金属,2001(8): 4-8
    [12]游清治.世界锂资源、生产与应用前景[J].世界有色金属,2008(4):42-45
    [13]刘元会,邓天龙.国内外从盐湖卤水中提锂工艺技术研究进展[J].世界科技研究与发展,2006,28(5):69-75
    [14]杨兆娟,向兰.从盐湖卤水中提锂的研究进展[J].海湖盐与化工,2005,34(6):27-29
    [15]Boryta,A Daniel. Removal of boron from lithium chloride brine[P].US:4261960,1979-04-l4
    [16]Mehta,C Vijay.Process for recovery lithium from saltbrines[P].US:4723962.1988-02-90
    [17]张宝全.柴达木盆地盐湖卤水提锂研究概况[J].海湖盐与化工,2000,29(4):9-l3
    [18]钟辉,周燕芳,殷辉安.卤水锂资源开发技术进展[J].矿产综合利用,2003,(1):23-28
    [19]A Lee,W.L Taylor,W.J McDowell,J.S Drury. Journal of Inorganic and Nuclear Chemistry [J].1968,30(10):2807-2821
    [20]F.G.Seeley, W.H Baldwin.Extraction of lithium from neutral salt solutions with fluorinatedβ-diketones[J].Journal of Inorganic and Nuclear Chemistry,1976,38(5):1049-1052
    [21]Shigeo Umetani,Kohji Maeda,Sorin Kihara,Masakazu Matsui.Solvent extraction of lithium and sodium with 4-benzoyl or 4-perfluoroacyl-5-pyrazolone and TOPO[J].Talanta,1987,34 (9):779-782
    [22]G.Q.Liu, Y.J.Wang, Qilu,et al. Synthesis and characterization of spinel type high-powercathode material LiMxMn2-XO4 (M=Ni,Co,Cr)[J].Journal of Physics and Chemistry of Solids.2007,68:780-784.
    [23]R.Chitrakar,H.Kanoh,Y.Miyai,et al.A new type of manganese oxide (MnO2·0.5H2O) derived from Lil.6Mn1.6O4 and its lithiumion-sieve properties [J].Chem Mater,2000,12 (10): 315l-3157
    [24]R Chitrakar,H Kanoh,Y Miyai,et al.Recovery of lithium from sea-water using manganese oxide adsorbent Hl.6Mn1.6O4 derived from Lil.6Mn1.6O4[J ]. Ind Eng Chem Res,2001,40(9): 2054-2058.
    [25]J.R Shiu,D.C Lin,Lee.Method for adsorbing lithium-ions from a lithium containing aqueo- us solution by a granularadsorbent[P].US2003231996,2003
    [26]Y.Miyai,A.Umeno,R.Chitorakaa. Method for producing porous granular lithium adsorbent [P].JP2002282684,2002
    [27]A.Umeno,Y.Miyai,N.Takagi.Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater[J].Ind.Eng.Chem.Res.2002,41(17):4281- 4287
    [28]雷家珩,杨顺林,郭丽萍.水热法制备尖晶石型锂锰氧化物锂离子筛分材料[ P].国家发明专利:CN1702043,2005
    [29]孟兴智.离子筛型锂吸附剂的成型及其性能研究[D].河北:河北工业大学,2005
    [30]袁俊生,孟兴智.离子筛型锂吸附剂的吸附性能研究[J].无机盐工业,2006,38(6):27-29.
    [31]郑春辉.新型含锂复合物的合成及其提锂性能研究[D].青岛科技大学硕士论文,2007
    [32]肖小玲,戴志锋,祝增虎.吸附法盐湖卤水提铿的研究进展,盐湖研究,2005,13(2): 66-69
    [33]LawreneeJ,Reader.Process for recovery of lithium hydroxide from lithium Phosphates [P].US2931703,1960
    [34]Dilic,Mkib,Khol.Recent progress in rechargeable nickelmetal hydride and lithium-ion miniature rechargeable batteries[J].Journal of Power Sources,1990,80:112-135
    [35]董殿权.锂离子筛的制备及离子交换性能[D].天津大学,2006
    [36]刘亦凡,于慧荣,陈学玺,董殿权.无机离子交换体[J].化学通报,1995,(1):11-15
    [37]张艳,钟辉,闫明.盐湖卤水提锂分离材料的研究进展[J].广东微量元素科学,2006,13(2):7-10
    [38]刘文涛.Li1.5Ti1.625O4的合成及其交换性能的研究[D].青岛科技大学,2003
    [39]王祖宛鸟,张凤宝,夏宝林.TiO2超细粒子的微乳法制备、表征及性能研究[J].精细化工,2004,21(4):253-256
    [40]简丽,张前程,张凤宝等.纳米TiO2的制备及其光催化性能[J].应用化工,2003, 32(5):25-26
    [41]钟辉.偏钛酸型锂离子交换剂的交换性质及从气田中提锂[J].应用化学,2000,17(3):307-309
    [42]钟辉,殷辉安.偏钛酸型锂离子交换剂表面性质与选择吸附性研究[J].离子交换与吸附,2003,19 (1):55-60
    [43]董殿权,钟杰,柳敦雷等.尖晶石构造LiCu0.5Mn1.5O4的合成及其在水溶液中对Li+的抽出/嵌入反应[J].应用化学,1998,15(3):114-115
    [44]董殿权,张凤宝,张国亮等.LiMg0.5Mn1.5O4的合成及对Li+的离子交换选择性[J].无机化学学报,2004,20(9):1126-1130
    [45]董殿权,张凤宝,张国亮等.LiAlTiO4的合成及对Li+的离子交换选择性[J].应用化学,2005,22(7):754-758
    [46]Y.F Liu,Q Feng. Li+ Extraction/Insertion Reactions With LiAlMnO4 and LiFeMnO4 Spinels in the Aqueous Phase[J].Journal of Colloid and Interface Science,1994,163(1):130-136
    [47]纪志永,许长春.尖晶石型锂离子筛的研究进展[J].化工进展,2005,24(12):1336-1340.
    [48]李栋,郭学益.锰氧化物锂离子筛研究进展[J].中国锰业,2007,25(1):11-14
    [49]J.C Hunter.Preparation of a new crystal form of manganese dioxide:λ-MnO2[J ].Journal of Solid State Chemistry,1981,39:142-147
    [50]Kenta Ooi,Yoshitaka Miyai,Shunsaku Katoh.Extraction reaction withλ- MnO2 in the aqueous phase[J].Chemistry Letters,1988,21:989-992
    [51]Qi Feng,Yoshitaka Miyai, Hirofumi Kanoh. Li+ extraction/insertion with spinel-type lithium manganese oxides[J].Characterization of redox-type and ion-exchange-sites type,1992,8 (7):1861-1867
    [52]Kenta.Ooi,Yoshitaka.Miyai, Jitsuo.Sakakihara.Mechanism of Li+ insertion spinel-type manganese oxide,redox and ion - exchange reactions[J].Langmuir,1991,7:1167-1171
    [53]袁俊生,孟兴智,纪志永.尖晶石型锂离子筛吸附剂前驱体的合成研究[J].海湖盐与化工,2005,34(1):10-12
    [54]纪志永,袁俊生,李鑫钢.锂离子筛的制备及其交换性能研究[J].离子交换与吸附,2006,22(4):323-329
    [55]赵铭铢.固相分段法制备锂离子电池正极材料LiMn2O4的实验[J].过程工程学报,2001, (4):402-407
    [56]C.N Zaheena, C Nithya, R Thirunakaran, A Sivashanmugam, S Gopukumar. Microwave assisted synthesis and electrochemical behaviour of LiMg0.1Co0.9O2 for lithium rechargeable batteries[J].Electrochimica Acta,2009,54(10):2877-2882
    [57]康慨,戴受惠,万玉华.固相配位化学反应法合成LiMn2O4的研究[J].功能材料,2000,31 (3):283-286
    [58]S Kang,J.B Goodenough.Li [LiyMn2 - y]O4 spinel cathode material prepared by a solution method [J].Electrochemical and Solid State Letters,2000,3 (12):536-539
    [59]K Jaekook, A Manthiram.Low temperature synthesis and electrode properties of Li4Mn5O12 [J ].Electrochem Soc,1998,145 (4):L53-L54
    [60]江津河,董殿权,李建隆.Li4Mn0.5Ti0.5O4的合成及其交换选择性[J].应用化学,2006,23(4):357-361
    [61]R.Thirunakaran, K.T Kim, Y.M Kang, Y.L Jai. Cr3+ modified LiMn2O4 spinel interca- lation cathodes through oxalic acid assisted sol-gel method for lithium rechargeable batteries [J].Materials Research Bulletin,2005,40(1):177-186
    [62]R.Thirunakaran,A Sivashanmugam, S Gopukumar,et al.Phthalic acid assisted nano-sized spinel LiMn2O4 and LiCrxMn2?xO4(x=0.00–0.40) via sol-gel synthe- sis and its electro -chemical behaviour for use in Li-ion-batteries[J].Materials Research Bulletin,2008,43(8-9): 2119-2129
    [63]R.Thirunakaran,A Sivashanmugam,S Gopukumar,et al. Electrochemical behaviour of nano- sized spinel LiMn2O4 and LiAlxMn2?xO4 (x=Al:0.00-0.40) synthesized via fumaric acid- assisted sol–gel synthesis for use in lithium rechargeable batteries[J].Journal of Physics and Chemistry of Solids,2008,69(8):2082-2090
    [64]Z Fan,M.S Whittingham.Electrochemistry of the layered manganese dioxides:AxMn1-y (Co, Ni,Fe)yO2 (A=Li,K)rate effects[J].Electrochemical and Solid State Letters,2000,3(7):309-311
    [65]C.H Jiang,S.X Dou, H.K Liu,H.S Zhou.Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction[J].Journal of Power Sources,2007,172,(1): 410-415
    [66]X. L Li,R.M Xiang,T Su,et al. Synthesis and electrochemical properties of nanostructured LiMn2O4 for lithium-ion batteries[J].Materials Letters,2007,61(17):3597-3600
    [67]Z.M Yu,L.C Zhao.Structure and electrochemical properties of LiMn2O4[J].Transactions of Nonferrous Metals Society of China,2007,17(3):659-664
    [68] J.Y Luo,X.L Li,Y.Y Xia.Synthesis of highly crystalline spinel LiMn2O4 by a soft chemical route and its electrochemical performance[J].Electrochimica Acta,2007,52(13): 4525-4531
    [69]Lee Jong H,Hong Jin K,Jang Dong H,et al.Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4(M=Li,B,Al,Co,Ni) for Li secondary batteries [J]. power Sources 2000,89:7-14
    [70]X.L Wu,S.B Kim.Improvement of electrochemical properties of spinel LiNi0.5Mn1.5O4 [J].Journal of Power Sources,2002,109:53-57
    [71]J.H Kim,S.T Myung,Y.K Sun. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5V class cathode material of Li-ion secondary battery[J].Electrochimica Acta 2004,49:219-227
    [72]Y.S Lee, Kumada Noki.Synthsis and characterization of lithium aluminium-doped spinel LiAlxMn2-XO4 for lithium secondary battery[J].Journal of power sources,2001,96:376-384
    [73]M.Womes,P.E.Lippens,B.León,et al.X-ray absorption spectra of the spinel LiCu0.5Mn1.5O4 [J].Journal of Power Sources,2008,175(1):570-574
    [74]I.S Jeong,J.U Kim,Hal-Bon,et al. Electrochemical properties of LiMgxMn2-XO4 spinel phases for rechargeable lithium batteries[J].Journal of power sources,2001,102:55-59
    [75]X.M He,J.J Li,Y.W Wang,et al.Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries[J].Journal of Power Sources,2005,150(4):216-222
    [76]J.T Son,H.G Kim.New investigation of fluorine-substituted spinel LiMn2O4?xFx by using sol-gel process[J].Journal of Power Sources,147(1-2):220-226
    [77]M.Molenda,R.Dziembaj,D.Majda, M.Dudek.Synthesis and characterisation of sulphided lithium manganese spinels LiMn2O4?ySy prepared by sol–gel method[J]. Solid State Ionics,2005,176(19-22):1705-1709
    [78]Y.J Kang,J.H Kim,Y.K Sun.Structural and electrochemical study of Li–Al–Mn–O–F spinel material for lithium secondary batteries[J].Journal of Power Sources,2005,146,( 1-2):237-240
    [79]W.R Liu,S.H Wu,H.S Sheu.Preparation of spinel Li1.06Mn2O4?zClz cathode materials by the citrate gel method[J].Journal of Power Sources,2005,146(1-2):232-236
    [80]Y.K Sun,B Oh, H.J Lee. Synthesis and electrochemical characterization of oxysulfide spinel LiAl0.15Mn1.85O3.97S0.03 cathode materials for rechargeable batteries[J].Electrochimica Acta,2000,46 (4):541-546
    [81]陈猛,杨闯,肖斌等.尖晶石型LiNi0.1Mn1.9O4材料的合成及性能研究[J].化学工程师,2006,(2):11-13
    [82]赵丽丽,王榕树.锂离子交换剂制备及交换反应动力学[J].物理化学学报,2003,19 (10):933-937
    [83]董殿权,张凤宝,张国亮,刘亦凡.Li4Ti5O12的合成及对Li+的离子交换动力学[J].物理化学学报,2007,23(6):950-954
    [84]天津化工研究院.无机盐工业手册(上册)[M].北京:原子能出版社,1989年.31-79
    [85]张铨昌,杨华蕊,韩成.天然沸石离子交换性能及其应用[M].北京:科学出版社,1986年:73-103
    [86]Pitzer K S,Activity coefficients in electrolyte solution[M].2ed.Boca Raton:CRC Press,1991
    [87] Pitzer K S,Silvester LF.J Phys Chem,1978,82(11):1239-1245
    [88]李以圭,陆九芳,电解质溶液理论[M].北京:清华大学出版社,2005年3月,79-98
    [89]李以圭,金属溶剂萃取热力学[M].北京:清华大学出版社,1988年,24-103
    [90]姜志新,谌竟清,宋正孝,离子交换分离工程[M].天津:天津大学出版社,1992,6:84-120
    [91]靳朝辉.离子交换动力学的研究[D].天津大学,2004, 5
    [92]姜志新.离子交换动力学及其应用(上)[J].离子交换与吸附,1989,5(1):54-73
    [93]姜志新.离子交换动力学及其应用(下)[J].离子交换与吸附,1989,5(3):221-233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700