高电位LiNi_(0.5)Mn_(1.5)O_4正极材料制备及其原位结构相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着LiFePO_4正极材料的商业化,锂离子电池已经成为电动汽车和储能系统应用中重要的动力电源。然而,对于未来电动汽车应用而言,基于LiFePO_4正极材料的锂离子电池的能量密度和功率密度依然不能满足其要求。许多汽车制造商希望为下一代电动汽车开发出更高能量密度和功率密度的锂离子电池。尖晶石LiNi_(0.5)Mn_(1.5)O_4材料因其可在4.7 V左右高电位下工作,并有良好的循环特性,已经成为最具潜力的、可用于设计新型高功率密度锂离子电池的高电位正极材料。LiNi_(0.5)Mn_(1.5)O_4正极材料的电化学性能和电化学特征受其晶体结构影响很大,而其结构又与其制备过程有很大关系。要制备理想尖晶石结构的LiNi_(0.5)Mn_(1.5)O_4材料,一个最重要的步骤就是原材料的混合均匀性。喷雾干燥是一个出色的单元操作,可以从混合溶液中直接获得粉末。本论文尝试应用喷雾干燥或熔盐法制备前躯体,通过优化烧结程序,以期改进尖晶石型LiNi_(0.5)Mn_(1.5)O_4材料合成工艺。同时采用原位XRD研究其充放电过程结构相变,为LiNi_(0.5)Mn_(1.5)O_4正极材料的应用与制备工艺放大提供依据。
     首先,分别采用喷雾干燥辅助烧结法和熔盐法,通过改变不同的热处理条件制备LiNi_(0.5)Mn_(1.5)O_4正极材料,研究混料方式、热处理条件对材料结构与性能的影响。从工艺的复杂性、操作的可控性和产品质量的稳定性等方面来看,喷雾干燥辅助烧结法优于熔盐法。采用XRD、SEM和FT-IR等技术对所制备的LiNi_(0.5)Mn_(1.5)O_4材料的结构和表面形貌进行表征。可以发现,样品的平均晶粒尺寸都处于1~2μm。从其FT-IR光谱中发现所制备的LiNi_(0.5)Mn_(1.5)O_4粉体材料有一对高频(~627 cm~(-1))和低频(~500 cm~(-1))振动峰,所制备的LiNi_(0.5)Mn_(1.5)O_4材料具有Fd3m空间群的立方相尖晶石型结构,并包含(111)晶面的四面体形单晶。
     第二,利用循环伏安、交流阻抗等手段对所制备的LiNi_(0.5)Mn_(1.5)O_4正极材料的电化学特征进行测量。在3.5~5.0 V电压区间,以不同的充放电倍率,对所制备的LiNi_(0.5)Mn_(1.5)O_4正极材料的电化学性能进行测量。研究结果表明,所有的LiNi_(0.5)Mn_(1.5)O_4材料均在4.7 V区域展现出一个水平的充电电压平台,这是由Ni~(2+)/Ni~(4+)氧化还原电对造成的;另一个水平的充电电压平台出现在4.0 V区域,这是因存在Mn~(3+)/Mn~(4+)电对所致。LiNi_(0.5)Mn_(1.5)O_4正极材料电化学性能还受热处理条件影响。对于喷雾干燥辅助烧结法,经过喷雾干燥得到的前躯体在空气气氛中按照三种热处理条件下烧成,热处理条件分别是:样品(a),升温至700℃烧结4 h然后升温至900℃烧结8 h;样品(b),升温至700℃烧结6 h然后升温至900℃烧结6 h;样品(c),升温至700℃烧结8 h然后升温至900℃烧结4 h。可以看到,在0.1 C充放电倍率下,样品(a)、(b)和(c)的首次放电容量分别达到132.0,131.7和129.2 mAh/g。在5 C充放电倍率下,样品(a)、(b)和(c)的首次放电容量分别达到109.1,106.0和104.4 mAh/g。经过300次循环后,其放电容量分别保持在93.9,95.7和95.2 mAh/g。
     为了深入地了解LiNi_(0.5)Mn_(1.5)O_4正极材料结构相变,利用同步辐射XRD技术,在线研究了LiNi_(0.5)Mn_(1.5)O_4正极材料在充放电过程中结构相变规律。从原位XRD谱图的连续性变化过程可以看出,在充电(脱锂)过程中,对应立方晶相的所有布拉格衍射峰向高角度方向位移。根据原位XRD谱图及充放电曲线特征研究发现,尖晶石型LiNi_(0.5)Mn_(1.5)O_4材料在充电过程中存在四个显著的相变。在开始充电阶段,其初始阶段表现出来的立方晶相我们称之为立方晶相-Ⅰ,随着充电电位增加,尖晶石型LiNi_(0.5)Mn_(1.5)O_4材料晶格常数减少结构发生收缩,表明有立方相结构相变存在。在4.78 V电压平台区域,所有的特征衍射峰突然出现一个意外的增强并停留在同样的位置,指明有第二立方晶相生成,称之为立方晶相-Ⅱ,出现两相共存区域。当充电电压达到4.81 V时,形成完全立方晶相-Ⅱ。当充电电位大于4.90 V时,(440)和(400)衍射峰分别发生分裂现象,LiNi_(0.5)Mn_(1.5)O_4正极材料从立方相转变成为四面体结构。在放电过程中,在4.7 V区域,四面体结构转变成立方晶相-II,而在4.5 V区域,立方晶相-II变回到立方晶相-I结构,而当放电电压低于4.1 V时,所有的特征衍射峰又位移到初始的低角度位置。LiNi_(0.5)Mn_(1.5)O_4正极材料在脱锂和嵌锂过程中结构相变过程是可逆的。
Lithium ion battery has become a promising power sources for electric vehicle and energy storage system application since LiFePO_4 cathode material is close to commercialization. However, the energy density and power density of lithium ion batteries based on LiFePO_4 cathode materials is still lower than the requirement of the future electric vehicle application. Many automakers hope to develop much higher energy and/or power density lithium ion batteries for next generation electric vehicle. Because of its good electrochemical performance and high operating voltage around 4.7 V, LiNi_(0.5)Mn_(1.5)O_4 spinel is one of the most promising high voltage cathode materials to design novel lithium ion batteries with high power density. The electrochemical characteristics and performance of LiNi_(0.5)Mn_(1.5)O_4 spinel should be influenced significantly by its crystal structure, which is related to the synthesis process. One of the most important steps to prepare the ideal LiNi_(0.5)Mn_(1.5)O_4 spinel is how to mix the raw materials uniformly. Spray drying is an excellent unit operation which can obtain the powder from mixture solution directly. In this dissertation, we tried to apply spray drying or melt salt method to prepare the precursors, and to optimize annealing process. The in situ synchrotron X-ray diffraction technique was also used to study the phase transition of LiNi_(0.5)Mn_(1.5)O_4 spinel during cycling so as to scale up the synthesis routes of LiNi_(0.5)Mn_(1.5)O_4 spinel.
     Firstly, the LiNi_(0.5)Mn_(1.5)O_4 spinel materials were prepared using spray drying assisted annealing process and melt salt method with different heat treatment conditions, respectively. The spray drying process is prior to melt salt process from the comparison of process complex and stability of product quality. The crystal structures of the prepared LiNi_(0.5)Mn_(1.5)O_4 materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transformed infrared spectroscopy (FT-IR). It has been found that the average particle size of the prepared LiNi_(0.5)Mn_(1.5)O_4 powders is estimated to be 1 to 2μm. All of the prepared LiNi_(0.5)Mn_(1.5)O_4 powders have couple of high vibration frequency (~627 cm~(-1)) and low vibration frequency (~500 cm~(-1)) in their FT-IR spectrum. XRD pattern indicates that the prepared LiNi_(0.5)Mn_(1.5)O_4 powders show phase-pure cubic spinel of Fd3m structure and are consist of single crystal of octahedral shape with (111) planes.
     Secondly, the electrochemical characteristics of the LiNi_(0.5)Mn_(1.5)O_4 spinel materials were measured using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical performances of the prepared LiNi_(0.5)Mn_(1.5)O_4 cathode materials were tested at different charge/discharge rates between the potential limit of 3.5– 5.0 V. It can be seen, all of the LiNi_(0.5)Mn_(1.5)O_4 spinel materials exhibited a flat voltage profile at around 4.7 V that is attributed to the Ni~(2+)/Ni~(4+) redox couple and another flat voltage profile at around 4.0 V region that arises from the Mn~(3+)/Mn~(4+) redox couple. The electrochemical performance of the prepared LiNi_(0.5)Mn_(1.5)O_4 cathode materials were affected by the heat treatment temperature. As for the spray drying assisted annealing process, three heat treatment conditions were set up. The precursor obtained from spray drying were calined at 700℃for 4 h and 900℃for 8 h in air (sample (a)), 700℃for 6 h and 900℃for 6 h in air (sample (b)) and 700℃for 8 h and 900℃for 4 h in air (sample (c)), respectively. It is found that the initial discharge capacity of the LiNi_(0.5)Mn_(1.5)O_4 spinel sample (a), (b) and (c) with 0.1 C rate are 132.0, 131.7 and 129.2 mAh/g, respectively. The initial discharge capacity of the sample (a), (b) and (c) with 5 C rate can also reach 109.1, 106.0 and 104.4 mAh/g, respectively, and their discharge capacity still keep at 93.9, 95.7 and 95.2 mAh/g after 300 cycles.
     In order to understand the structure transition of the LiNi_(0.5)Mn_(1.5)O_4 spinel cathode materials thoroughly, the in situ synchrotron X-ray diffraction technique was firstly carried out to study the online phase transition of LiNi_(0.5)Mn_(1.5)O_4 spinel during cycling. We found that all of the Bragg peaks refer to the cubic phase of LiNi_(0.5)Mn_(1.5)O_4 spinel were shifted to the higher angle as lithium ion extracted from the host materials. From the in situ XRD patterns and charge-discharge profile, it can be found that four phase transitions existed for LiNi_(0.5)Mn_(1.5)O_4 spinel during charge process. In the initial charge stage, LiNi_(0.5)Mn_(1.5)O_4 spinel with original cubic phases (cubic-I) was observed. The lattice constants of LiNi_(0.5)Mn_(1.5)O_4 spinel decreased with the increase of charge potential, indicating that the material experienced cubic phase transition and structure shrinkage. When the charge potential reached 4.78 V, while the X-ray diffraction peak stayed at the same position, the intensity of it was enhanced suddenly. Thus it can be inferred that two phases (cubic-I and cubic-II) co-existed in this region. However, when the voltage was higher than 4.81 V, only cubic-II remained. Each of the (400), (440) and (511) peaks split into two peaks when the charge potential was higher than 4.90 V, indicating that the LiNi_(0.5)Mn_(1.5)O_4 spinel structure changed from cubic phase to tetragonal one. During the discharge process, the tetragonal phase transformed back to cubic-II structure in the 4.7 V region, and transformed from cubic-II to cubic-I structure in the 4.5 V region. All of the peaks shifted back to the lower angle when discharge state was lower than 4.1 V. It is a reversible phase transition for LiNi_(0.5)Mn_(1.5)O_4 cathode material during lithium ion intercalation process.
引文
[1]. Q. Liu, L. Wen, Y. M. Liu, Spinel LiNi_(0.5)Mn_(1.5)O_4 and its derivatives as cathodes for high-voltage Li-ion batteries, Journal of Solid State Electrochemistry, 14 (2010) 2191-2202
    [2]. J. W. Fergus, Recent developments in cathode materials for lithium ion batteries, Journal of Power Sources, 195 (2010) 939-954
    [3]. H. Liu, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu, Cathode materials for lithium ion batteries prepared by sol-gel methods, Journal of Solid State Eletrochemistry, 8 (2004) 450-466
    [4]. Y.Xia, T.Sakai, T.Fujieda, X.Q.Yang, X.Sun, Z.F.Ma, J.McBreen, and M.Yoshio, Correlating capacity fading and structural changes in Li1+xMn2-yO_4-δspinel cathode materials: A systematic study on the effects of Li/Mn ratio and oxygen deficency, Journal of The Electrochemical Society, 148 (2001) 723-728
    [5]. Z.F. Ma, X.Q. Yang, X.Sun, J. McBreen, Charge-discharge behavior and phase transition of mixed LiMn_2O_4 and LiNi0.8Co0.2O2 cathode materials for lithium ion batteries, Journal of New Materials for Electrochemical Systems, 4 (2001) 121-124
    [6]. H. Kawai, Mo Nagata, H Tukamoto, A R. West, High-voltage lithium cathode materials, Journal of Power Sources, 81–82 (1999) 67-72
    [7]. R. Santhanam, B. Rambabu, Research progress in high voltage spinel LiNi_(0.5)Mn_(1.5)O_4 material, Journal of Power Sources, 195 (2010) 5442–5451
    [8].唐致远,胡冉,王雷, 5V锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_4的研究进展,化工进展, 25 (2006) 31-34
    [9]. A Ito, D Li, Y Lee, K Kobayakawa, Y Sato,Influence of Co substitution for Ni and Mn on the structural and electrochemical characteristics of LiNi_(0.5)Mn_(1.5)O_4,Journal of Power Sources, 185 (2008) 1429-1433
    [10]. S. Mandal, R. M. Rojas, J. M. Amarilla, P. Calle, N. V. Kosova,V. F. Anufrienko, and J. M. Rojo, High Temperature Co-doped LiMn_2O_4-Based Spinels. Structural, Electrical, and Electrochemical Characterization, Chemistry of Materials, 14 (2002) 1598-1605
    [11]. E Zhecheva, R Stoyanova, R Alc′antara, P Lavela, J L. Tirado, EPR studies of Li deintercalation from LiCoMnO_4 spinel-type electrode active material, Journal of Power Sources, 159 (2006) 1389-1394
    [12]. A Kajiyama, K Takada, T Inada, M Kouguchi, S Kondo, M Watanabe, Synthesis and electrochemical properties of LixCo_(0.5)Mn_(0.5)O_2, Solid State Ionics, 149 (2002) 39-45
    [13]. R.M. Rojas, J.M. Amarilla, L. Pascual, J.M. Rojo, D. Kovacheva, K. Petrov, Combustion synthesis of nanocrystalline LiNiyCo1-2yMn1+yO_4 spinels for 5V cathode materials: Characterization andelectrochemical properties, Journal of Power Sources, 160 (2006) 529-535
    [14]. J.M. Amarilla, R.M. Rojas, F. Pico, L. Pascual, K. Petrov, D. Kovacheva, M.G. Lazarraga, I. Lejona, J.M. Rojo, Nanosized LiMyMn2-yO_4 (M=Cr, Co and Ni) spinels synthesized by a sucrose-aided combustion method: Structural characterization and electrochemical properties, Journal of Power Sources, 174 (2007) 1212-1217
    [15]. M. E. Arroyo y de Dompablo, J. Moralesc, A First-Principles Investigation of the Role Played by Oxygen Deficiency in the Electrochemical Properties of LiCu_(0.5)Mn_(1.5)O_4?δSpinels, Journal of The Electrochemical Society, 153 (2006) 2098-2102
    [16]. Y E. Eli, J. T. Vaughey, M. M. Thackeray, S. Mukerjee, X. Q. Yang, and J. McBreen, LiNi_xCu_(0.5-x)Mn_(1.5)O_4 Spinel Electrodes, Superior High-Potential Cathode Materials for Li Batteries, I. Electrochemical and Structural Studies,Journal of The Electrochemical Society, 146 (1999) 908-913
    [17]. J. Molenda, D. Pa?ubiak, J. Marze, Transport and electrochemical properties of the LiyCr_xMn_(2-x)O_4 (0 < x < _(0.5)) cathode material, Journal of Power Sources, 144 (2005) 176-182
    [18]. A. Eftekhari, Electrochemical performance and cyclability of LiFe_(0.5)Mn_(1.5)O_4 as a 5 V cathode material for lithium batteries, Journal of Power Sources, 124 (2003) 182-190
    [19]. M. Gracia, J. F. Marco, J. R. Gancedo, J. Ortiz, R. Pastene, and J. L. Gautier, Characterization of The Lithium-Manganese Ferrite LiFeMnO_4 Prepared by Two Different Methods, Journal of Physic Chemistry, C 114(2010) 12792–12799
    [20]. D. Liu, Y. Lu, and J. B. Goodenough, Rate Properties and Elevated Temperature Performances of LiNi_(0.5-x)Cr_2xMn_(1.5-x)O_4 as 5 V Cathode Materials for Lithium-Ion Batteries, Journal of The Electrochemical Society, 157(2010) 1269-1273
    [21]. J.-H. Kim, S.-T. Myung, C. S. Yoon, S. G. Kang, Y.-K. Sun, Comparative Study of LiNi_(0.5)Mn_(1.5)O_4- and LiNi_(0.5)Mn_(1.5)O_4 Cathodes Having Two Crystallographic Structures: Fd3hm and P4332, Chemistry of Materials, 16 (2004) 906-914
    [22]. X.Y. Feng, C. Shen, X. Fang, C.H. Chen, Synthesis of LiNi_(0.5)Mn_(1.5)O_4 by solid-state reaction with improved electrochemical performance, Journal of Alloys and Compounds, 509 (2011) 3623-3626
    [23]. T. Li, W. Qiu, G. Zhang, H. Zhao, J. Liu, Synthesis and electrochemical characterization of 5V LiNi_(0.5)Mn_(1.5)O_4 cathode materials by low-heating solid-state reaction, Journal of Power Sources, 174 (2007) 515-518
    [24]. C-Y Lin, J-G Duh, C-H Hsu, J-M Chen, LiNi_(0.5)Mn_(1.5)O_4 cathode material by low-temperature solid-state method with excellent cycleability in lithium ion battery, Materials Letters, 64 (2010) 2328-2330
    [25]. K. Kanamura, W. Hoshikawa, Electrochemical reaction of 5 V cathode LiNi0.4Mn1.6O_4, Solid State Ionics, 177 (2006) 113-119
    [26]. R. Alca′ntara, M. Jaraba, P. Lavela, J.L. Tirado, Optimizing preparation conditions for 5 V electrode performance and structural changes in Li1-xNi_(0.5)Mn_(1.5)O_4 spinel, Electrochimica Acta, 47 (2002) 1829-1835
    [27]. Y Idemoto, H. Narai, N. Koura, Crystal structure and cathode performance dependence on oxygen content of LiNi_(0.5)Mn_(1.5)O_4 as a cathode material for secondary lithium batteries, Journal of Power Sources, 119-121 (2003) 125–129
    [28]. K Amine, K Tukamoto, H. Yasuda, Y Fujita, A new three volt spinel Li_(1+x)Ni_(0.5)Mn_(1.5)O_4 for secondary lithium batteries, Journal of The Electrochemical Society, 143 (1996) 1607-1613
    [29]. Q Zhong, A Bonakdarpour, M Zhang, Y Gao, J R Dahn, Synthesis and electrochemistry of LiNi_xMn_(2-x)O_4, Journal of The Electrochemical Society, 144 (1997) 205-213
    [30]. G.Q. Liu, L. Wen, G.Y. Liu, Y.W. Tian, Rate capability of spinel LiCr_(0.1)Ni_(0.4)Mn_(1.5)O_4, Journal of Alloys and Compounds, 501 (2010) 233-235
    [31]. G. Du, Y. NuLi, J. Yang, J. Wang, Fluorine-doped LiNi_(0.5)Mn_(1.5)O_4 for 5 V cathode materials of lithium-ion battery, Materials Research Bulletin, 43 (2008) 3607-3613
    [32]. X.X. Xu, J. Yang, Y.Q. Wang, Y.N. NuLi, J.L. Wang, LiNi_(0.5)Mn_(1.5)O_(3.975)F_(0.05) as novel 5V cathode material, Journal of Power Sources, 174 (2007) 1113-1116
    [33]. X. Huang, Q. Zhang, J. Gan, H. Chang, Y. Yang, Hydrothermal Synthesis of a Nanosized LiNi_(0.5)Mn_(1.5)O_4 Cathode Material for High Power Lithium-Ion Batteries, Journal of The Electrochemical Society, 158 (2011) 139-145
    [34]. T-F Yi, Y-R Zhu, R-S Zhu, Density functional theory study of lithium intercalation for 5 V LiNi_(0.5)Mn_(1.5)O_4 cathode materials, Solid State Ionics, 179 (2008) 2132-2136
    [35]. T-F Yi, Y-R Zhu, Synthesis and electrochemistry of 5V LiNi_(0.4)Mn_(1.6)O_4 cathode materials synthesized by different methods, Electrochimica Acta, 53 (2008) 3120-3126
    [36]. T-F Yi, X-G Hu, Preparation and characterization of sub-micro LiNi_(0.5-x)Mn_(1.5)+xO_4 for 5V cathode materials synthesized by an ultrasonic-assisted co-precipitation method, Journal of Power Sources, 167 (2007) 185-191
    [37]. S. Nieto, S.B. Majumder, R.S. Katiyar, Improvement of the cycleability of nano-crystalline lithium manganate cathodes by cation co-doping, Journal of Power Sources, 136 (2004) 88-98
    [38]. X. Fang, N. Ding, X.Y. Feng, Y. Lu, C.H. Chen, Study of LiNi_(0.5)Mn_(1.5)O_4 synthesized via a chloride-ammonia co-precipitation method: Electrochemical performance diffusion coefficient andcapacity loss mechanism, Electrochimica Acta, 54 (2009) 7471-7475
    [39]. Y Fan, J Wang, X Ye, J Zhang, Physical properties and electrochemical performance of LiNi_(0.5)Mn_(1.5)O_4 cathode material prepared by a coprecipitation method, Materials Chemistry and Physics, 103 (2007) 19-23
    [40]. Z Chang, D Dai, H Tang, X Yu, X-Z Yuan, H Wang, Effects of precursor treatment with reductant or oxidant on the structure and electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4, Electrochimica Acta, 55 (2010) 5506-5510
    [41]. M. Aklalouch, J. M. Amarilla, R. M. Rojas, I. Saadoune, J. M. Rojo, Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi_(0.5)Mn_(1.5)O_4-based positive electrode, Journal of Power Sources, 185 (2008) 501-511
    [42]. M. Aklalouch, R. M. Rojas, J. M. Rojo, I. Saadoune, J. M. Amarilla, The role of particle size on the electrochemical properties at 25 and at 55 oC of the LiCr0.2Ni0.4Mn1.4O_4 spinel as 5 V-cathode materials for lithium-ion batteries, Electrochimica Acta, 54 (2009) 7542-7550
    [43]. X. Zhang, H. Zheng, V. Battaglia, R. L. Axelbaum, Flame synthesis of 5 V spinel LiNi_(0.5)Mn_(1.5)O_4 cathode-materials for lithium-ion rechargeable-batteries, Proceedings of the Combustion Institute, 33 (2011) 1867-1874
    [44]. J. M. Amarilla, R. M. Rojas, J. M.a Rojo, Understanding the sucrose-assisted combustion method: Effects of the atmosphere and fuel amount on the synthesis and electrochemical performances of LiNi_(0.5)Mn_(1.5)O_4 spinel, Journal of Power Sources, 196 (2011) 5951-595
    [45]. L. Zhang, X. Lv, Y.Wen, F. Wang, H. Su, Carbon combustion synthesis of LiNi_(0.5)Mn_(1.5)O_4 and its use as a cathode material for lithium ion batteries, Journal of Alloys and Compounds, 480 (2009) 802-805
    [46]. M. Aklalouch, J. M. Amarilla, R. M. Rojas, I. Saadoune, J. M. Rojo, Sub-micrometric LiCr0.2Ni0.4Mn1.4O_4 spinel as 5 V-cathode material exhibiting huge rate capability at 25 and 55oC, Electrochemistry Communications, 12 (2010) 548-552
    [47]. Z. Zhao, J. Ma, H. Tian, L. Xie, J. Zhou, Preparation and Characterization of Nano-Crystalline LiNi_(0.5)Mn_(1.5)O_4 Cathode Material by the Soft Combustion Reaction Method, Journal of America Ceramic Society, 88 (2005) 3549-3552
    [48]. Y. Talyosef, B. Markovsky, R. Lavi, G. Salitra, D. Aurbach, D. Kovacheva, M. Gorova, E. Zhecheva, R. Stoyanova, Comparing the Behavior of Nano- and Microsized Particles of LiNi_(0.5)Mn_(1.5)O_4 Spinel as Cathode Materials for Li-Ion Batteries, Journal of The Electrochemical Society, 154 (2007) 682-691
    [49]. T-F Yi , J. Shu, Y-R Zhu, R-S Zhu, Advanced electrochemical performance of LiMn1.4Cr0.2Ni0.4O_4 as 5Vcathode material by citric-acid-assisted method, Journal of Physics and Chemistry of Solids, 70 (2009) 153-158
    [50].黄振德,高分子络合法制备5V正极材料LiNi_(0.5)Mn_(1.5)O_4及改性研究,大众科技, 9 (2007) 121-123
    [51]. S-H Park, S-W Oh, C-S Yoon, S-T Myung, Y-K Sun, LiNi_(0.5)Mn_(1.5)O_4 Showing Reversible Phase Transition on 3 V Region, Electrochemical and Solid-State Letters, 8 (2005) 163-167
    [52]. M Yamada, B Dongying, T Kodera, Mass production of cathode materials for lithium ion battery by flame type spray plrolysis, Journal of Ceramic Society of Japan, 117 (2007) 1011-1020
    [53]. S.H. Park, S.-W. Oh, S.H. Kang, I. Belharouak, K. Amine, Y.-K. Sun, Comparative study of different crystallographic structure of LiNi_(0.5)Mn_(1.5)O_4?δcathodes with wide operation voltage (2.0–5.0 V), Electrochimica Acta, 52 (2007) 7226-7230
    [54]. S-W Oh, S-H Park, J-H Kim, Y C Bae, Y-K Sun, Improvement of electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 spinel material by fluorine substitution, Journal of Power Sources, 157 (2006) 464-470
    [55]. S-H Park, Y-K Sun, Synthesis and electrochemical properties of 5V spinel LiNi_(0.5)Mn_(1.5)O_4 cathode materials prepared by ultrasonic spray pyrolysis method, Electrochimica Acta, 50 (2004) 431-434
    [56]. D Li, A. Ito, K. Kobayakawa, H. Noguchi, Y. Sato, Electrochemical characteristics of LiNi_(0.5)Mn_(1.5)O_4 prepared by spray drying and post-annealing, Electrochimica Acta, 52 (2007) 1919-1924
    [57]. A. Ito, D. Li, Y. Lee, K. Kobayakawa, Y. Sato, Influence of Co substitution for Ni and Mn on the structural and electrochemical characteristics of LiNi_(0.5)Mn_(1.5)O_4, Journal of Power Sources, 185 (2008) 1429-1433
    [58]. J.-H. Kim, S.-T. Myung, Y.-K. Sun, Molten salt synthesis of LiNi_(0.5)Mn_(1.5)O_4 spinel for 5 V class cathode material of Li-ion secondary battery, Electrochimica Acta, 49 (2004) 219-227
    [59]. L Wen, Q Lu, G X Xu, Molten salt synthesis of spherical LiNi_(0.5)Mn_(1.5)O_4 cathode materials, Electrochimica Acta, 51 (2006) 4388-4392
    [60]. J.-H. Kim, C. S. Yoon, S.-T. Myung, J Prakash, Y.-K. Sun, Phase Transitions in Li1-δNi_(0.5)Mn_(1.5)O_4 during Cycling at 5 V,Electrochemical and Solid-State Letters, 7 (2004) 216-220
    [61]. S H Oh, K Y Chung, S H Jeon, C S Kim, W I Cho, B W Cho, Structural and electrochemical investigations on the LiNi_(0.5-x)Mn_(1.5-y)M_(x+y)O_4 (M =Cr, Al, Zr) compound for 5V cathode material, Journal of Alloys and Compounds, 469 (2009) 244-250
    [62]. Y.S. Lee, Y.K. Sun, S. Ota, T. Miyashita, M. Yoshio, Preparation and characterization of nano-crystalline LiNi_(0.5)Mn_(1.5)O_4 for 5 V cathode material by composite carbonate process,Electrochemistry Communications, 4 (2002) 989-994
    [63]. M.W. Raja, S. Mahanty, R.N. Basu Multi-faceted highly crystalline LiMn2O_4 and LiNi_(0.5)Mn_(1.5)O_4 cathodes synthesized by a novel carbon exo-templating method, Solid State Ionics, 180 (2009) 1261-1266
    [64]. M Jo, Y-K Lee, K M Kim, J Cho, Nanoparticle–Nanorod Core–Shell LiNi_(0.5)Mn_(1.5)O_4 Spinel Cathodes with High Energy Density for Li-Ion Batteries, Journal of The Electrochemical Society, 157 (2010) 841-845
    [65]. Y. Kobayashi, H. Miyashiro, K. Takei, H. Shigemura, M. Tabuchi, H. Kageyama, T. Iwahori, 5 V Class All-Solid-State Composite Lithium Battery with Li3PO_4 Coated LiNi_(0.5)Mn_(1.5)O_4, Journal of The Electrochemical Society, 150(2003) 1577-1582
    [66]. M. Mohamedi, M. Makino, K. Dokko, T. Itoh, I. Uchida, Electrochemical investigation of LiNi_(0.5)Mn_(1.5)O_4 thin film intercalation electrodes, Electrochimica Acta, 48 (2002) 79-84
    [67]. A. Caballero, L. Hern′an, M. Melero, J. Morales, R. Moreno, B. Ferrari, LiNi_(0.5)Mn_(1.5)O_4 thick-film electrodes prepared by electrophoretic deposition for use in high voltage lithium-ion batteries, Journal of Power Sources, 158 (2006) 583-590
    [68]. H. Xia, S.B. Tang, L. Lua, Y.S. Meng, G. Ceder, The influence of preparation conditions on electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 thin film electrodes by PLD, Electrochimica Acta, 52 (2007) 2822-2828
    [69]. H. Xia, Y. S. Meng, L. Lu, G. Ceder, Electrochemical Properties of Nonstoichiometric LiNi_(0.5)Mn_(1.5)O_4 Thin-Film Electrodes Prepared by Pulsed Laser Deposition, Journal of The Electrochemical Society, 154 (2007) 737-743
    [70]. J. C. Arrebola, A′l. Caballero, L. Herna′n, M. Melero, J. Morales, E. R. Castell′on, Electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 films prepared by spin-coating deposition, Journal of Power Sources, 162 (2006) 606-613
    [71]. R. Singhal, S. R. Das, O. Oviedo, M. S. Tomar, R. S. Katiyar, Improved electrochemical properties of a coin cell using LiMn_(1.5)Ni_(0.5)O_4 as cathode in the 5V range, Journal of Power Sources, 160 (2006) 651-656
    [72]. T.A. Arunkumar, A. Manthiram, Influence of chromium doping on the electrochemical performance of the 5V spinel cathode LiNi_(0.5)Mn_(1.5)O_4, Electrochimica Acta, 50 (2005) 5568-5572
    [73]. S. B. Park, W. S. Eom, W. I. Cho, H. Jang, Electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 cathode after Cr doping, Journal of Power Sources, 159 (2006) 679-684
    [74]. B. León, J. M. Lloris, C. P. Vicente, J. L. Tirado, Structure and Lithium Extraction Mechanism inLiNi_(0.5)Mn_(1.5)O_4 after Double Substitution with Iron and Titanium, Electrochemical and Solid-State Letters, 9 (2006) 96-100
    [75]. J. Liu, A. Manthiram, Understanding the Improved Electrochemical Performances of Fe-Substituted 5 V Spinel Cathode LiNi_(0.5)Mn_(1.5)O_4, Journal of Physical Chemistry C, 113 (2009) 15073-15079
    [76]. C. Locati, U. Lafont, L. Simonin, F. Ooms, E.M. Kelder, Mg-doped LiNi_(0.5)Mn_(1.5)O_4 spinel for cathode materials, Journal of Power Sources, 174 (2007) 847-851
    [77]. U. Lafont, C. Locati, E.M. Kelder, Nanopowders of spinel-type electrode materials for Li-ion batteries, Solid State Ionics, 177 (2006) 3023-3029
    [78]. E. Zhecheva, R. Stoyanova, Effect of allied and alien ions on the EPR spectrum of Mn4C-containing lithium–manganese spinel oxides, Solid State Communications, 135 (2005) 405-410
    [79]. J.-H. Kim, S.-T. Myung, C. S. Yoon, I.-H. Oh and Y.-K. Sun, Effect of Effect of Ti Substitution for Mn on the Structure of LiNi_(0.5)Mn_(1.5)-xTixO_4 and Their Electrochemical Properties as Lithium Insertion Material, Journal of The Electrochemical Society, 151 (2004) 1911-1918
    [80]. R. Alca′ntara, M. Jaraba, P. Lavela, and J. L. Tirado, Ph. Biensan, A. de Guibert, C. Jordy, and J. P. Peres Structural and Electrochemical Study of New LiNi_(0.5)TixMn_(1.5)-xO_4 Spinel Oxides for 5V Cathode Materials, Chemistry of Materials, 15 (2003) 2376-2382
    [81]. M-L-Phung Le, P Strobel, C V.Colin, T Pagnier, F Alloin, Spinel-type solid solutions involving Mn4+ and Ti4+:Crystal chemistry, magnetic and electrochemical properties, Journal of Physics and Chemistry of Solids, 72 (2011)124-135
    [82]. T. Noguchi., I. Yamazaki, T. Numata, M. Shirakata, Effect of Bi oxide surface treatment on 5V spinel LiNi_(0.5)Mn_(1.5-x)Ti_xO_4, Journal of Power Sources 174 (2007) 359-365
    [83].杜国栋,努丽燕娜,冯真真,王久林,杨军,LiNi_(0.5)Mn_(1.5)O_(4-x)F_x高电压电极高温保存下的电化学行为,物理化学学报, 24 (2008) 165-170
    [84]. H. Wang, T. A. Tan, P. Yang, M. O. Lai, L Lu, High-Rate Performances of the Ru-Doped Spinel LiNi_(0.5)Mn_(1.5)O_4: Effects of Doping and Particle Size, The Journal of Physical Chemistry C, 115 (2011) 6102-6110
    [85]. M-L-Phung Le, P Strobel, F Alloin, T Pagnier, Influence of the tetravalent cation on the high-voltage electrochemical activity of LiNi_(0.5)Mn_(1.5)O_4 spinel cathode materials, Electrochimica Acta, 56 (2010) 592-599
    [86]. H. Wang, H. Xia, M. O. Lai, L. Lu, Enhancements of rate capability and cyclic performance of spinel LiNi_(0.5)Mn_(1.5)O_4 by trace Ru-doping, Electrochemistry Communications, 11 (2009) 1539-1542
    [87]. Y-K Sun, S W Oh, C S Yoon, H J Bang, J Prakash, Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi_(0.5)Mn_(1.5)O_4?xSx spinel material in 3V region, Journal of Power Sources, 161 (2006) 19-26
    [88]. J. Liu, A. Manthiram, Understanding the Improvement in the Electrochemical Properties of Surface Modified 5 V LiMn_(1.42)Ni_(0.42)Co_(0.16)O_4 Spinel Cathodes in Lithium-ion Cells, Chemistry of Materials, 21 (2009) 1695-1707
    [89]. H.-B. Kang, S.-T. Myung, K. Amine, S.-M. Lee, Y.-K. Sun, Improved electrochemical properties of BiOF-coated 5V spinel Li[Ni_(0.5)Mn_(1.5)]O_4 for rechargeable lithium batteries, Journal of Power Sources, 195 (2010) 2023-2028
    [90]. J. Y. Shi, C.-W. Yi, K. Kim, Improved electrochemical performance of AlPO_4-coated LiNi_(0.5)Mn_(1.5)O_4 electrode for lithium-ion batteries, Journal of Power Sources, 195 (2010) 6860-6866
    [91]. J.C. Arrebola, A. Caballero, L. Hernán, J. Morales, Re-examining the effect of ZnO on nanosized 5V LiNi_(0.5)Mn_(1.5)O_4 spinel: An effective procedure for enhancing its rate capability at room and high Temperatures, Journal of Power Sources, 195 (2010) 4278-4284
    [92]. Y. E.-Eli, W. Wen, S. Mukerjee, Unexpected 5 V Behavior of Zn-Doped Mn Spinel Cathode Material, Electrochemical and Solid-State Letters, 8 (2005) 141-144
    [93]. Y. Fan, J. Wang, Z. Tang, W. He, J. Zhang, Effects of the nanostructured SiO_2 coating on the performance of LiNi_(0.5)Mn_(1.5)O_4 cathode materials for high-voltage Li-ion batteries, Electrochimica Acta, 52 (2007) 3870-3875
    [94]. H. M. Wu, I. Belharouak, A. Abouimrane, Y.-K. Sun, K. Amine, Surface modification of LiNi_(0.5)Mn_(1.5)O_4 by ZrP2O7 and ZrO_2 for lithium-ion batteries, Journal of Power Sources, 195 (2010) 2909-2913
    [95]. J. Arrebola, A. Caballero, L. Hernán, J. Morales, E. Rodríguez Castellón, J. R. Ramos Barrado, Effects of Coating with Gold on the Performance of Nanosized LiNi_(0.5)Mn_(1.5)O_4 for Lithium Batteries, Journal of The Electrochemical Society, 154 (2007) 178-184
    [96]. T. Yang, N. Zhang, Y. Lang, K. Sun, Enhanced rate performance of carbon-coated LiNi_(0.5)Mn_(1.5)O_4 cathode material for lithium ion batteries, Electrochimica Acta, 56 (2011) 4058-4064
    [97]. T. Noguchi, I. Yamazaki, T. Numata, M. Shirakata, Effect of Bi oxide surface treatment on 5V spinel LiNi_(0.5)Mn_(1.5)?xTixO_4, Journal of Power Sources, 174 (2007) 359-365
    [98]. J. Arrebola, A. Caballero, L. Hernán, J. Morales, E. Rodríguez Castellónb, Adverse Effect of Ag Treatment on the Electrochemical Performance of the 5 V Nanometric Spinel LiNi_(0.5)Mn_(1.5)O_4 in Lithium Cells, Electrochemical and Solid-State Letters, 8 (2005) 303-307
    [99]. T. Ohzuku, M. Kitagawa, and T. Hirai, Electrochemistry of Manganese dioxide in lithium nonaqueous cell, Journal of The Electrochemical Society, 137 (1990) 769-775
    [100]. X. Q. Yang, X. Sun, S. J. Lee, J. McBreen, S. Mukerjee, M. L. Daroux, and X. K. Xing, In Situ Synchrotron X-Ray Diffraction Studies of the Phase Transitions in LixMn2O_4 Cathode Materials,Electrochemical and Solid-State Letters, 2 (1999) 157-160
    [101]. X.Q.Yang, X. Sun, and J. McBreen, Structural changes and thermal stability: in situ X-ray diffraction studies of a new cathode material LiMg0.125Ti0.125Ni0.75O2, Electrochemistry Communications, 2 (1999) 733-737
    [102]. S. Mukerjee, X.Q. Yang, X. Sun, S.J. Lee, J. McBreen, Y. Ein-Eli, In situ synchrotron X-ray studies on copper–nickel 5 V Mn oxide spinel cathodes for Li-ion batteries, Electrochimica Acta, 49 (2004) 3373-3382
    [103]. W. Wen, B. Kumarasamy, S. Mukerjee, M. Auinat, and Y. Ein-Eli, Origin of 5 V Electrochemical Activity Observed in Non-Redox Reactive Divalent Cation Doped LiM_(0.5)?xMn_(1.5)+xO_4 (0〈x〈_(0.5)〉Cathode Materials,In Situ XRD and XANES Spectroscopy Studies, Journal of The Electrochemical Society, 152 (2005) 1902-1911
    [104]. Y. Terada, K. Yasaka, F. Nishikawa, T. Konishi, M. Yoshio, I. Nakai, In Situ XAFS Analysis of Li(Mn,M)2O_4 (M=Cr, Co, Ni) 5V Cathode Materials for Lithium-Ion Secondary Batteries, Journal of Solid State Chemistry 156 (2001) 286-291
    [105]. M.-C. Yang, B. Xu, J.-H. Cheng, C.-J. Pan, B.-J. Hwang, Y. S. Meng, Electronic, Structural, and Electrochemical Properties of LiNi_xCu_yMn_(2-x-y)O_4 (0    [106]. R. Alca′ntara, M. Jaraba, P. Lavela, and J. L. Tirado, Changes in the Local Structure of LiMg_yNi_(0.5)-yMn_(1.5)O_4 Electrode Materials during Lithium Extraction, Chemistry of Materials, 16 (2004) 1573-1579
    [107]. M Kundurac, G G. Amatucci, Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn_(2-x)Ni_xO_4 (_(0.5)0≥x≥0.36) spinels, Journal of Power Sources, 165 (2007) 359-367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700