新型尖晶石结构锂离子电池材料的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石型的锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_4具有4.7V的高电压放电平台,充放电比容量高,表现出了优良的电化学性能,逐渐成为当今正极材料研究的一个热点。本论文采用复合碳酸盐共沉淀法制备出了比容量高、循环性能优良的尖晶石型LiNi_(0.5)Mn_(1.5)O_4,并研究了Mg、Fe、Al掺杂对其物理性能、晶体结构及电化学性能的影响。尖晶石型的Li_4Ti_5O_(12)是一种零应变锂离子电池负极材料,具有优良的结构稳定性和安全性能。Li_4Ti_5O_(12)理论比容量为175mAh·g~(-1)并且集中在平台区域;循环性能好,有很好的充放电平台。本论文采用溶胶-凝胶法合成了Li_4Ti_5O_(12)并对其物理性能和电化学性能进行了研究。
     采用液相共沉淀法制备镍锰复合碳酸盐前驱体,650℃焙烧后生成的镍锰复合氧化物与Li_2CO_3混合,在空气中于750℃-900℃下焙烧10h,600℃退火10h得到LiNi_(0.5)Mn_(1.5)O_4。采用XRD,SEM和恒电流充放电测试等对样品进行了表征。SEM结果表明:合成温度对LiNi_(0.5)Mn_(1.5)O_4的表面形貌及粒径有较大影响;XRD结果表明:合成的样品均为纯的立方尖晶石结构。电化学测试结果表明,800℃合成的样品在室温下具有较好的电化学性能:0.1C、1C、2C、4C首次放电容量分别130.24mAh·g~(-1)、129.47mAh·g~(-1)、115.5mAh·g~(-1)、108.05mAh·g~(-1),且大倍率下具有较好的循环性能。
     分别采用Mg、Fe、Al掺杂,研究了掺杂量对LiM_xNi_(0.5-x)Mn_(1.5)O_4性能的影响。SEM表明Mg、Fe、Al掺杂对材料的表面形貌有很大影响;XRD表明当Mg、Fe、Al达到一定量时晶体结构发生变化。电化学测试结果表明Mg、Fe掺杂使得电化学性能变差,Al能过改善电化学性能,LiAl_(0.05)Ni_(0.45)Mn_(1.5)O_4在1C的倍率下充电,10C倍率下放电,循环测试表明其具有非常好的大电流特性。
     本文还研究了一种制备锂离子电池负极材料的Li_4Ti_5O_(12)新工艺。以醋酸锂和钛酸丁酯为原料,异丙醇为溶剂,采用溶胶-凝胶法制备前驱体,再通过一定的热处理后制备了锂离子电池负极材料Li_4Ti_5O_(12)。采用XRD、SEM及电化学性能测试等分析手段考察了不同热处理温度对产品性能的影响。结果发现,经过850℃热处理24h后得到的产品粒径分布均匀、结晶度好;并且表现出较好的电化学性能,在1-2.5V之间充放电,0.1C、1.0C和2.0C首次放电比容量分别达到158.5mAh·g~(-1)、137.8mAh·g~(-1)、124.3mAh·g~(-1),并且大电流充放电时具有较好的循环性能。研究表明该方法是适合制备高活性的Li_4Ti_5O_(12)工艺方法。本文还利用LiAl_(0.05)Ni_(0.45)Mn_(1.5)O_4为正极,Li_4Ti_5O_(12)为负极组装成全电池进行研究,在2.0-3.5V范围内充放电,LiAl_(0.05)Ni_(0.45)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池在3.1V左右有一个放电平台。
As the cathode material of lithium ion batteries, cubic spinel LiNi_(0.5)Mn_(1.5)O_4 shows excellent electrochemical performance, such as high discharge plateau at 4.7V and high energy density, and it is emerging as an active research topic. In this paper, the spinel LiNi_(0.5)Mn_(1.5)O_4 with high energy density and excellent cycle performance were synthesized by coprecipitation composite carbonate process methods. The effects of synthesizing conditions on the physical properties and electrochemical performances of LiNi_(0.5)Mn_(1.5)O_4 were investigated. Spinel Li_4Ti_5O_(12), an attractive negative electrode regarded as a "zero strain" material with better safety and excellent structure stability, has been studied extensively . Its theoretical specific capacity is 175mAh·g~(-1). The sample also exhibit excellent cycle performance and plateau voltage.In this paper, the spinel Li_4Ti_5O_(12) was synthesized by Sol-Gel method. The effects of synthesizing conditions on the physical properties and electrochemical performances of Li_4Ti_5O_(12) were investigated.
     The LiNi_(0.5)Mn_(1.5)O_4 spinel has been prepared by a composite carbonate process, and the effects of calcination temperature on the physical properties and electrochemical performance of the samples have been investigated. The results of XRD and scanning electron microscopy (SEM) showed that as calcination temperature increases , the grain sizes of the samples is obviously increase. It was found that the samples calcined at 800℃present good electrochemical performance. Between 3.5-4.9V versus Li, it delivered 130.24mAh·g~(-1), 129.47mAh·g~(-1), 115.5 mAh·g~(-1), 108.05mAh·g~(-1) at 0.1C, 1C, 2C, 4C rates respectively. And it showed good cycle performance under high current density .
     The effect of doping elements and doping amount into LiMxNi_(0.5-x)Mn_(1.5)O_4(x: Mg, Fe, Al) on its electrochemical properites was studied. The SEM analysis indicates that the particles Surface Morphology have great affected by the doping elements. Further more, XRD characterization of the products revealed that the when the doping element reaching certain content the crystal structure of the compound was changed. Electrochemical measurements showed that the doping Of Mg and Al can not improve the electrochemical. But Al doping can improve the electrochemical. In addition, high-rate test indicated that the LiAl_(0.05)Ni_(0.45)Mn_(1.5)O_4 powers has excellent electrochemical performance when charged and discharge at 1C and 10C, respectively.
     A novel technique was developed to prepare Li_4Ti_5O_(12) anode material for lithium secondary batteries in this paper. The precursor was prepared by sol-gel method using terbutyl titanate, lithium acetate and isopropanol as starting materials. Then the precursor was calcined for 24 hours in air to obtain Li_4Ti_5O_(12). The influence of temperature on performance of product was studied. The investigation of XRD, SEM and the determination of the eldctromical properties show that the Li_4Ti_5O_(12) powers prepared by this method are narrowly distributed, well crystallized. The Li_4Ti_5O_(12) powers also have excellent electrochemical performance.Between 1.0-2.5V versus Li, it delivered 158.5mAh·g~(-1), 137.8mAh·g~(-1) and 124.3mAh·g~(-1) at 0.1C, 1.0Cand 2.0C respectively. And it showed good cycle performance under high current density. Study shows that this method is appropriate for preparing Li_4Ti_5O_(12) with high electrochemical performance. The LiAl_(0.05)Ni_(0.45)Mn_(1.5)O_4/Li_4Ti_5O_(12) full cell system was investigated also. The LiAl_(0.05)Ni_(0.45)Mn_(1.5)O_4/Li_4Ti_5O_(12) cell system charge and discharge between 2.0V to 3.5V. And it show a voltage plateau at 3.1V.
引文
[1]雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2002:1-143
    [2] Hsienu C C, Lee L C. The research and development of ecomaterials in Taiwan [J]. Materials and Design, 2001,22 (2): 129-132
    [3] Dell R M . Batteries:fifty years of materials development [J]. Solid state Ionics, 2000,134 (1-2): 139-158
    [4] Broussely M. Lithium batteries R & D acivities in Europe [J]. J. Power Sources , 1999, 81-82(1): 137-139
    [5] Irwin B. Wein S.. Recent advances in the US Department of Energy's energy storage technology research and development programs for hybrid electric and electric vehieles [J]. J. Power Sources , 2002, 110(1): 471-474
    [6] Broussely M. Recent developments on lithiumion batteries at SAFT [J] J. Power Sources, 1999, 81-82(1): 142-143
    [7] Taraseon J M, Armand M. Issues and challenges facing rechargeable lithiumbarteries [J]. nature, 2001,414(15): 35-367
    [8] Owens B.B., Sm yrl, W.H, et al. R&D on lithium batteries in the USA:high-energy electrode materials [J]. J. Power Sources, 1999, 81-82(1): 150-155
    [9]杨林.中、日韩三国锂离子蓄电池发展概况[J].电源技术,2004,28(2):101-103
    [10] Ritchie A. G . Recent developments and future prospects for lithium rechargeable Batteries [J]. J. Powre Sources, 2001, 96(1):1-4
    [11]Weinstock I.B. Recent advances in the US Department of Energy's energy storage technology research and development programs for hybrid electric and electric vehicles [J]. J. Powers Sources, 2002,110(2): 471-474
    [12]Tanaka T, Ohta K, Arai N. Year 2000 R&D status of large-scale lithium ion secondary batteries in the national project of Japan[J]. J. Power sources, 2001, 97-98(1):2-6
    [13]Iwahori T., Mitsuishi I., Shirage S., et al. Development of lithium ion and lithium polymer batteries for electric vehicle and home use load leveling system application [J]. Electrochim. Acta, 2000, 45(8-9):1509-1512
    [14]Wakihara M. Recent developments in lithium ion batteries [J]. Materials Science and Engineering, 2001, 33(4): 109-134
    [15] QinetiQ Ltd., Haslar, Gosport. Recent developments and likely advances in lithium rechargeable batteries [J]. J. Powre Sources, 2004,136(2): 285-289
    [16]Inzelt G., Inzelt G., Schultze J. W., et al. Electron and proton conducting polymers: recent developments and prospects[J]. J. Powers Sources,2000,45(15-16):2403-2421
    [17]Majima M, Tada T, Jiie S.U, et al. Design and characteristics of large-scale lithium ion battery[J]. J. Power Sources, 1999, 81(1): 877-881
    [18]Majima M, Jiie S.U,Yagasaki E, et al. Development of 1 kWh class lithium ion battery for power storage[J]. J. Power Sources, 2001, 92(1-2): 108-119
    [19]陈立泉.混合电动汽车及其电源[J].电池,2000,30(3):98-100
    [20]雷惊雷,张占军,吴立人,等.电动车,电动车用电源及发展战略[J].电源技术,2001,25(1):40-46
    [21]郝德利,冯熙康,王伯良,等.电动汽车用锂离子蓄电池的研究[J].电源技术,2003,27(增):160-162
    [22]胡广侠,解晶莹,李春香,等.锂离子蓄电池高倍率放电研究[J].电源技术,2003,27(增):201-204
    [23]Mizushima K, Jones P.C, Wiseman P.J, et al. Li_xCoO_2(0 less than x less than equivalent to 1): a new cathode material for batteries of high energy density [J]. Materials Research Bulletin, 1980,15(6): 783-789
    [24]Yao C.Y, Kao T.H, Cheng C.H, et al. Studies of electrochemical properties of lithium cobalt oxide [J]. J. Power Source, 1995, 54(2): 491-493
    [25]Barker J, Pynenburg R, Koksbang R, et al. An electrochemical investingation into the lithium insertion properties of Li_xCoO_2 [J]. Electrochim. Acta, 1996, 41(15):2481-2488
    [26]Wang H.F, Jang Y. I, Huang B.Y, et al. TEM study of electrochemical cycling-induced damage and disorder in LiCoO_2 cathodes for rechargeable lithium batteries [J]. J. Electrochem Society, 1992,146(2): 473-480
    [27]李晓干,仇卫华,赫广明等.锂离子电池正极材料LiCoO_2抗过充性能[J].电池,2002,32(1):19-21
    [28]Mladenov M, Stoyanova R, Zhecheva E, et al. Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO_2 electrodes [J]. Electrochemistry Communications, 2001, 3(1): 410-416
    [29]Iriyama Y, Kurita H, Yamada I, et al. Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode [J]. J. Power Sources, 2004,137(1): 111-116
    [30]Zhao H,Gao L,Qiu W, et al. Improvement of electrochemical stability of LiCoO_2 cathode by a nano-crystalline coating[J]. J. Power Sources, 2004, 132(1-2):195-200
    [31]Broussely M, Biensan P, Simon B. Lithium insertion into host materials:the key to success for Li ion batteries [J]. Electrochim. Acta,1999,45(1-2):3-22
    [32]Jeong E D, Won M S, Shim Y B. Cathode properties of a lithium-ion secondary battery using LiCoO_2 prepared by a complex formation reaction [J]. J. Power Sources, 1998, 70(1): 70-77
    [33]Thackery M. Structure considerations of layered and spinel lithium oxides for lithium ion battery [J]. J. Electrochem Soc., 1995,142(8): 2558-2563
    [34]Ara H, Okada S, Sakurai Y, et al. Reversibility of LiNiO_2 cathode [J]. Solid State Ion, 1997, 95 (3-4): 275-282
    [35]Dahn J R, Sacken U V, Juzkow M W, et al. Rechargeable LiNiO_2/Carbon cells [J]. Electrochem. Soc, 1991,138(8): 2207-2212
    [36]Koksbang R, Barker J, Shi H, et al.Cathode materals for lithium rocking chair batteries [J]. Solid State Ionics, 1996, 84(1-2):1-21
    
    [37] Kim J, Amine K. A comparative study on the substitution of divalent, trivalent and tetravalent metal ions in LiNi_(1-x)M_xO_2( M=Cu~(2+), Al~(3+) and Ti~(4+)) [J]. J. Power Sources, 2002,104(1):33-39
    
    [38]Pouillerie C, Croguennec L, Biensan P, et al. Synthesis and characterization of new LiNi_(1-y)Mg_yO_2 positive electrode material for lithium ion batteries [J]. Electrochem. Soc, 2000,147(6):2061-2069
    
    [39]Ohzuku T, Knakura K, Aoki T. Comparative study of solid-state redox reactions of LiCo_(1/4)Ni_(3/4)O_2 and Li Al_(1/4)Ni_(3/4)O_2 for lithium ion batteries [J]. Electrochimica Acta, 1999,45(1-2): 151-160
    
    [40]Pouillerie C, Croguennec L, Delmas C. The Li_xNi_(1_y)Mg_yO2( y=0.05, 0.10) system: structural modifications observed upon cycling [J]. Solid State Ionics, 1993, 66(1-2):143-149
    [41]Ara H, Okada S, Sakurai Y, et al. Electrochemical and thermal behavior of LiNi_(1-z)M_zO_2(M=Co, Mn, Ti) [J]. J. Electrochem Soc, 1997,144(10): 3117-3125
    [42]Zhecheva E, Stoyanova R. Stabilization of the layered crystal structure of LiNiO_2 by Co-substitution [J]. Solid State Ionics, 1993, 66(1-2): 143-149
    [43]Delmas C, Saadoune I, Rougier A. The cycling properties of the Li_xNi_(1-y)Co_yO_2 electrode [J]. J. Power Sources, 1993,44(12): 595-602
    [44]Cho J, Jung H S, Park Y C, et al. Electrochemical properties and thermal stability of Li_aNi_(1-x)Co_xO_2 cathode materials [J]. Electrochem. Soc., 2000,147(1):15-20
    [45]Fey G T K, Shiu R F, Subramanian V, et al. LiNi_(0.8)Co_(0.2)O_2 cathode materals synthesized by the maleic acid assisted sol-gel method for lithium batteries [J]. J.Power Sources, 2002,103(2): 265-272
    [46]Fujita Y, Amine K, Maruta J. LiNi_(1-x)Co_xO_2 prepared at low temperature using β-Ni_(1-x)Co_xOOH and either LiNO_3 or LiOH [J]. J. Power Sources, 1997, 68(1): 126-130
    [47]Kweon H J, Kim S S, Kim G B, et al. Synthesis of LiMn_2O_4, LiCoO_2 and LiNi_(0.8)Co_(0.2)O_2 by the PVA & hyphen precursor method and their use as a cathode in the lithium & hyphen ion rechargeable battery [J]. Mater. Sci. Lett., 1998,17(20): 1697-1701
    [48]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践[M].北京:化学工业出版社,2004:163-164
    [49]吴智远,杨汉西,石中等.锂电化学嵌入尖晶石型二氧化锰研究[J].电池,1992,22(1):13-15
    [50]Kumagai N, Fukiwara T, Tamno K. Physical and eledtrochemical characterization of quaternary Li-Mn-V-O spimel as positive materials for rechargeablelithium batteries [J]. J. Electrochem Soc., 1996,142(3): 1007-1013
    [51]Liu Y, Fujiwara T, Yukawa H, et al. Electronic structures of lithium manganese oxides for rechargeable lithium battery electrodes [J]. Solid State Ionics, 1999, 126(3-4): 209-218
    [52]Gao Y, Dahn J. R.The high temperature phase diagram of Li_(1-x)Mn_(2-x)O_4 and its Implications [J]. J. Electrochem Soc, 1996, 143(6): 1783-1788
    [53]王要武.尖晶石锂锰氧材料作为锂离子二次电池正极材料的研究:[博士学位论文].长沙:湖南大学,1999
    [54]Ohzuku T, Kitagawa M, Hirai T. Electrochemistry of manganese dioxide in lithium nonaqueous cell [J]. J. Electrochem Soc, 1990,137(3): 769-775
    [55]Gao Y, Dahn J.R. Synthesis and characterization of Li_(1+x)Mn_(2-x)O_4 for Li-ion batteryapplications [J]. J. Electrochem Soc., 1996,143(1): 100-114
    [56]Robertson A.D, Lu S.H, Averill W.F, et al. M~(3+)-modified LiMn_2O_4 spinel intercalation cathodes [J]. J. Electrochem. Soc., 1997,144(10): 3500-3505
    [57] Amatucci G..G., Blyr A, Sigala C, et al. Surface treatments of Li_(1+x)Mn_(2-x)O_4 spinels for improved elevated temperature performance [J]. Solid State Ionics, 1997,104(1): 13-25
    [58]Zheng Z.S, Tang Z.L, Zhang Z.T, et al. Surface modification of Li_(1.03)Mn_(1.97)O_4 spinels for improved capacity retention [J]. Solid State Ionics, 2002, 148(3-4): 317-321
    [59]S.Patoux, M.Marca, Doeff. Direct synthesis of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 from nitrate precursors[J]. Electrochem.Commun., 2004, 6(8): 767-772
    [60] Jiang J,Dahn J.R. ARC studies of the thermal stability of three different cathode materials:LiCoO_02; Li[Ni_(0.1)Co_(0.8)Mn_(0.1)]O_2;and LiFePO_4,in LiPF_6 and LiBOB EC/DEC electrolytes[J]. Electrochem.Commun., 2004, 6(1): 39-43
    [61]Liu Z.L,Yu A, Lee J.Y. Synthesis and characterization of LiNi_(1-x-y)Co_xMn_yO_2 as the cathode materials of secondary lithium batteries [J]. J. Power Sources, 1999, 81-82(1): 416-419
    [62]Hwang B.J, Tsai Y.W, Carlier D, et al.A Combined Computational Experimental Study on LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 [J]. Chem.Mater, 2003,15(19): 3676-3682.
    [63]N.Yabuuchi, T.Ohzuku.Electrochemical behaviors of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 in lithium batteries at elevated temperatures [J]. J. Power Sources, 2005, 146 (1-2): 636-639
    [64]Todorov Y.M,Numata K.Effects of the Li:(Mn+Co+Ni)molar ratio on the electrochemical properties of LiMn_(1/3)Co_(1/3)Ni_(1/3)O_2 cathode material [J]. Electrochim. Acta, 2004, 50(2-3): 495-499
    [65]Padhi A K, Nanjundoswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J. Electrochem. Soc, 1997,144(4):1188-1194
    [66]Andersson A S, Thomas J O. The source of first cycle capacity loss in LiFePO_4 [J]. J. Power Soureces, 2001, 97-98(1): 498-502
    [67]Takahashi M, Tobishima S, Takei K, et al. Characterization of LiFePO_4 as cathode material for rechargeable lithium batteries[J]. J.Power Sources, 2001, 97-98(1): 508-511
    [68] Arnold G, Garche J, Hemmer R, et al. Fine-particle lithium iron phosphate LiFePO_4 synthesized by a new low-cost aqueous precipitation technique [J]. J. Power Souces, 2003,119-121(1): 247-251
    [69] Liao X Z, Ma Z F, He Y S, et al. Electrochemical performance of LiFePO_4/C cathode material for rechargeable lithium batteries [J]. J. Electrochem. Soc, 2005, 152(10): A1969-A1973
    [70]Liao X Z, Ma Z F, Wang L, et al. A novel synthesis route for LiFePO_4/C as cathode materials for lithium-ion batteries [J]. Electrochemical and Solid-State Letters, 2004, 7(12): A522-A525
    [71]Chung S Y,Blocking J T, Chiang Y M. Electronically conductive phosphor- olivines as lithium storage electrodes [J]. Nature Material, 2002,1(1): 123-128
    [72]Croce F, Scrosati B, Hassoun J, et al. A novel concept for the synthesis of an improved LiFePO_4 lithium battery cathode [J]. Electrochem. Solid-State Lett., 2002, 5(3): A47-A50
    [73]Wu S H , Su H J. Electrochemical eharacteristies of Partially cobalt-substituted LiMn_(z-y)Co_yO_4 Spinels synthesized by Pechini Proeess [J]. Materials Chemistry and Physies, 2002, 78(1): 189-192
    
    [74] Fey G T, Lu C Z, Kumar Tp. Solid-state synthesis and electro ehemical character rization of LiM_yCr_(0.5-y)Mn_(1.5)O_4(M=Fe or AI:0.0    
    [75] Taniguchi I. Powder Properties of Partially substituted LiM_xMn_(2-x)O_4(M=Al, Cr, Fe and Co)Synthesized by ultrasonies Pray Pyrolysis [J]. Materials Chemistry and Physies, 2005,92(1):172-179
    [76] Kumar G, Schlorb H, Rahner D . Synthesis and electrochemical characterization of 4V LiR_xMn_(2-x)O_4 spinels for rechargeable lithium batteries [J]. Materials Chemistry and Physies, 2001, 70(1): 117-121
    [77]Sigala C, Guyomard D, Verbaere A, et al. Positive electrode materials with high operating voltage for lithium batteries:LiCr_yMn_(2-y)O_4(0    [78]Kawai H, Nagagta M, KageyamaH, et al. 5V lithium cathodes based on spinel solid solutions Li_2Co_(1+x)Mn_(3-x)O_8:-1    [79]Kawai H, Nagata M, Tabuchi M, et al. Novel 5V spinel cathode Li_2FeMn_3O_8 for lithium ion batteries [J].Chem. Mater. 1998,10(5): 3266-3269
    
    [80]Shigemura H, Sakaebe H, Kageyama H, et al . Structure and electroehemieal properties of LiFe_xMn_(2-x)O_4(0    [81]Fang H S, Wang Z X, Zhang B, et al. High performance LiNi_(0.5)Mn_(1.5)O_4 cathode materials synthesized by a combinational annealing method [J]. Electrochemistry Communications, 2007,9(10): 1077-1082
    [82]Molenda J, Marzec J, Swierczek K, et al. The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel [J]. Solid State Ionics, 2004,171(3-4): 215-227
    [83]Ohzuku T, Takeda S, Iwanaga M. Solid-state redox potentials for Li[Me(1/2)Mn_(3/2)]O_4 (Me:3d-transition metal)having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries [J]. J. Power Sources, 1999, 81-82(1): 90-94
    [84]Ohzuku T, Ariyoshi K, Takeda S, et al. Synthesis and characterization of 5V insertion material of Li[Fe_yMn_(2-y)]O_4 for lithium-ion batteries [J]. Electrochimica Acta, 2001, 46(11): 2327-2336
    [85]Bonino F, Panero S, Satolli D, et al. Synthesis and characterization of Li_2M_xMn_(4-x)O_8 (M=Co, Fe) as positive active materials for lithium-ion cells [J]. J. Power Sources, 2001, 97-98(1):389-392
    [86]Terada Y, Yasaka K, Nishikawa F, et al. In situ XAFS analysis of Li(Mn, M)_2O_4 (M=Cr, Co, Ni) 5V cathode materials for lithium-ion secondary batteries [J]. Journal of Solid State Chemistry, 2001, 156(2): 286-291
    [87]Liu G Q, Wang Y J, Qi L, et al. Synthesis and electrochemical performance of LiNi_(0.5)Mn_(1.5)O_4 spinel compound [J]. Electrochimica Acta, 2005, 50(8):1965-1968
    [88]Fang H S, Li L P, Li G S. A low-temperature reaction route to high rate and high capacity LiNi_(0.5)Mn_(1.5)O_4 [J]. J. Power Sources 2007, 167(1):223-227
    [89]刘国强,其鲁,闻雷.锂离子电池正极材料LiNi_xMn_(2-x)O_4的制备和电化学性能研究[J].稀有金属材料与工程,2006,35(2):299-302
    [90]Idemoto Y, Narai H, Koura N. Crystal structure and cathode performance dependence on oxygen content of LiMn_(1.5)Ni_(0.5)O_4 as cathode material for secondary lithium batteries [J]. J. Power Sources, 2003, 119-121(1): 125-129
    [91]Kim J H, Myung S T, Yoon C S, et al. Comparative Study of LiNi_(0.5)Mn_(1.5)O_(4-δ) and LiNi_(0.5)Mn_(1.5)O_4 Cathodes Having Two Crystallographic Structures: Fd3m and P4_332 [J]. Chem. Mater., 2004, 16(5): 906-914
    [92]Wu X, Kim S B. Improvement of electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 spinel [J]. J. Power Sources, 2002,109(1): 53-57
    [93]Kunduraci M, Amatucci G G.. Synthesis and characterization of nanosturctured 4.7V Li_xMn_(1.5)Ni_(0.5)O_4 spindls for high-power lithium-ion batteries [J]. J. Electrochem. Soc.,2006, 153(7): A1345-A1352
    [94]Kunduraci M, Al-sharab J F, Amatucci G G.. High-power nanostructural LiMn_(2-x)Ni_xO_4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology [J]. Chem. Mater., 2006, 18(7): 3585-3589
    [95]Idemoto Y, Sekine H, Ui K, et al. Crystal structural change during charge-discharge process of LiMn_(1.5)Ni_(0.5)O_4 as cathode material for 5V class lithium secondary battery [J]. Solid State Ionics, 2005,176(2): 299-306
    [96] Kunduraci M, Amatucci G G.. Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn_(2-x)Ni_xO_4(0.36≤x≤0.5) spinels [J]. J. Power Sources, 2007,165(1): 359-367
    [97]方海升,王志兴,李新海,等.Li_2CO_3、NiO和电解MnO_2合成高容量LiNi_(0.5)Mn_(1.5)O_4及其表征[J].无机化学学报,2006,22(2):311-315
    [98]季勇,王志兴,尹周澜等.正极材料LiNi_(0.5)Mn_(1.5)O_4的合成及性能[J].无机化学学报,2007,23(4):597-601
    [99]何则强、熊利芝、吴显明等.流变相法制备LiNi_(0.5)Mn_(1.5)O_4锂离子电池正极材料及其电化学性质[J] 无机化学学报.2007,23(5):875-878
    [100] Xianglan Wu,Seung Bin Kim. Improvement of electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 spinel [J]. J. Power Sources, 2002,109(1): 53-57
    [101]Zhong Q , Banakdarpour A, Zhang M, GaoY, et al . Synthesis and electrochemistry of LiNi_xMn_(2-x)O_4 [J]. Eleetroehem. Soc.,1997,144: 205
    [102]Arora P, Popv B N, White R E . Electrochemical investigations of cobalt-doped LiMn_2O_4 as cathode material for lithium-ion batteries [J]. Electrochimiea Soc.,1998,145(205): 807-811
    [103]Decheng L, Atsushi I, Koichi K et al. Electrochemical characteristics of LiNi_(0.5)Mn_(1.5)O_4 prepared by spray drying and post-annealing[J]. Electrochimica Acta. 2006, 52(5):1919-1924
    [104]Kim J H, Myung S T, Sun Y K. Molten salt synthesis of LiNi_(0.5)Mn_(1.5)O_4 spinel for 5V class cathode material of Li-ion secondary battery [J]. Electrochimica Acta, 2004,49(2): 219-227
    [105]Hong Ki-Joo, Sun Yang-Kook. Synthesis and electrochemical characteristics of LiCr_xNi_(0.5-x)Mn_(1.5)O_4 spinel as 5 V cathode materials for lithium secondary batteries [J]. J. Power Sources, 2002,109(2): 427-430
    [106]Locati C, Lafont U, Simonin L, et al. Mg-doped LiNi_(0.5)Mn_(1.5)O_4 Spinel for Cathode Materials [J]. J. Power Sources, 2007, 172(6):847-851
    [107]Sun Y.K, Yoon C.S, Oh I H . Surface structural change of ZnO-coated LiNi_(0.5)Mn_(1.5)O_4 spinel as 5 V cathode materials at elevated temperatures [J]. Electrochimica Acta, 2003,48(5): 503-506
    [108]Flandrois S, Simon B. Carbon materials for lithium-ion rechargeable batteries [J]. Carbon., 1999,37(1): 165-180
    [109]Endo M, Kim C, Nishimura K et al.Recent development of carbon materials for Li ion batteries [J]. Carbon2000, 38,(1): 183-197
    [110]Molenda J,Palubiak D,Marzec.Transport and electrochemical properties of the Li_yCr_xMn_(2-x)O_4 (0     [111]Branci C, Benjelloun N, Sarradin J.et al.Vitreous tin Oxide-based thin film electrodes for Li-ion micro-batteries[J].Solid State Ionics, 2000, 135(1-4): 169-174
    [112]李明,赵海雷,仇卫华,等.二次锂离子电池负极材料的研究进展[J].硅酸盐通报,2007,26(1):92-96
    [113]Scharner S, Weppner W, Schmid-Beurmann P. Evidence of two-phase formation up on lithium insertion into the Li_(1.33)Ti_(1.67)O_4 spinel [J]. J. Electrochem. Soc., 1999,146 (3): 857-861
    [114] K. Nakahara, R. Nakajima, T. Matsushima.et al. Preparation of particulate Li_4Ti_5O_(12) having excellent characteristics as an electrode active material for power storage cells [J]. J. Power Sources, 2003, 117(1-2): 131-136
    [115]Shen C.M, Zhang X.G, Zhou Y.K, et al. Preparation and characterization of nanocrystalline Li_4Ti_5O_(12) by sol-gel method [J]. Materials Chemistry and Physics, 2002,78(2): 437-441
    [116]Ohzuku T, Ueda A, Yamamoto N. et al. Zero-strain insertion material of Li[Li_(1/3)Ti_(5/3)]O_4 or rechargrable lithium cells [J]. J. Electrochem. Soc., 1995, 142(5): 1431-1435
    [117]Ariyoshi K,Yamato R,Ohzuku T. Lithium Aluminum Manganese Oxides (LAMO) for Long-Life Lithium-Ion Batteries [J] . Electrochim. Acta , 2005,9(12):A557-A560
    [118]Ouyang C.Y, Zhong Z.Y, Lei M.S. Ab initio studies of structural and electronic properties of Li_4Ti_5O_(12) spinel [J]. Electrochem. Commun, 2007, 9(5): 1107- 1112
    [119]Ooms F.G.B., Kelder E.M., Schoonman J., et al. High-voltage LiMg_δNi_(0.5-δ)Mn_(1.5)O_4 spinels for Li-ion batteries[J]. Solid State Ionics, 2002, 152-153(1):143-153
    [120]李建保,李敬锋.新能源材料及应用技术[M].北京:清华大学出版社,2005:1-174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700