用户名: 密码: 验证码:
5V锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_4的掺杂及包覆改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于能源、环境危机的日益加剧以及电子信息行业的高速发展,锂离子电池受到前所未有的关注。但相对于负极材料和电解质来说,锂离子电池正极材料依旧是制约其发展和应用的关键因素。具有尖晶石结构的5V正极材料LiNi_(0.5)Mn_(1.5)O_4由于其结构稳定、放电电压高等优点,成为锂离子电池正极材料的研究热点之一,但循环容量衰减的弊端制约了其商业化。本文采用溶胶凝胶法合成尖晶石型LiNi_(0.5)Mn_(1.5)O_4,并分别采用双掺杂和表面包覆改性的方法提升材料的循环性能。
     首先,采用Cr~(3+)和F-双掺杂的方法提高LiNi_(0.5)Mn_(1.5)O_4正极材料的循环稳定性,考察了Cr~(3+)取代不同过渡金属元素以及Cr~(3+)含量的影响。研究发现Cr~(3+)和F-双掺杂未改变材料的结构,可显著提升材料的循环稳定性以及倍率性能。综合比较,LiNi_(0.5)Mn_(1.4)Cr_(0.1)O_(3.95)F_(0.05)性能最佳,其具有较高的4.7 V平台容量,循环100次后,容量保持率为93.8%。提出引入阳离子空位的方法提高双掺杂材料的倍率性能,合成了LiNi0.325Mn1.5Cr0.1O3.95F0.05,该材料具有十分优越的倍率和循环性能。在5C和10C倍率下的放电容量分别为123.89 mAh g-1、104.44 mAh g~(-1);0.2C倍率下循环50次,容量保持率为97.5%。CV和EIS测试表明倍率性能提升的原因在于空位的存在减少锂离子脱嵌阻力,提高固相扩散系数和电化学活性。
     其次,分别在LiNi_(0.5)Mn_(1.5)O_4的表面包覆AlF_3和TiO_2,并考察AlF_3与TiO_2包覆量对循环性能的影响。发现AlF_3包覆层能有效的抑制电解液对正极材料的腐蚀以及活性物质的溶解,随着包覆量的增加效果更加显著。当AlF_3的包覆量为3 mol%时,LiNi_(0.5)Mn_(1.5)O_4/AlF_3的循环性能最佳,室温下循环50次后,容量为119.23 mAh·g~(-1),容量保持率为94.5%;55℃时放电容量为116.29 mAh·g~(-1),循环50次后,容量保持率为84.0%。包覆的TiO_2起到了HF收集体的作用,当包覆量为3 mol%时,循环性能最佳,室温下循环100次后,容量保持率为92.5%;55℃下循环50次后,容量保持率为77.9%。
]
     In recent years, due to the increasing crisis of energy and environment and the rapid development of electronic information industry, more and more attentions have been paid to the lithium-ion batteries. Comparision with the anode and electrolyte, the cathode materials of lithium ion batteries have been crucial factors that restrict their development and application. 5V cathode material spinel LiNi_(0.5)Mn_(1.5)O_4 is proved to be one of the studying hotspots of lithium ion cathode materials since its stable structure and high discharge voltage. However, the disadvantage of capacity fade limits its commodification. In this paper, spinel LiNi_(0.5)Mn_(1.5)O_4 was synthesized by sol-gel method, and co-doping and surface coating modifications have been adopted to enhance the cycling performance, respectively.
     Firstly, the method of Cr~(3+) and F- co-doping was used to improve the cycling stability of LiNi_(0.5)Mn_(1.5)O_4 cathode material, and the effects of substitution of different transition metal elements by Cr~(3+)and Cr3 + content were investigated. The studies showed that Cr~(3+) and F- co-doping did not change the structure of material, and significantly improved the cycling stability and rate capability. By the comprehensive comparison, LiNi_(0.5)Mn_(1.4)Cr_(0.1)O_(3.95)F_(0.05) showed the best performance. It expressed higher capacity at 4.7 V platform, and the capacity retention was 93.8% after 100 cycles.
     Cation vacancy was introduced into the co-doping materials to enhance the rate capacity. The prepared LiNi0.325Mn1.5Cr0.1O3.95F0.05 showed the excellent rate capability and stable cycle performance. Its discharge capacities were 123.89 mAh·g~(-1) and 104.44 mAh·g~(-1) at 5C and 10C discharge rate, respectively, and the capacity retention was 97.5% after 50 cycles at 0.2C charge-discharge current. CV and EIS measurements showed that the enhancement of rate performance was due to the existence of vacancies, which reduced the resistance of lithium ion deintercalation and improved solid diffusion coefficient and the electrochemical activity.
     Secondly, AlF_3 and TiO_2 were coated on the surface of LiNi_(0.5)Mn_(1.5)O_4, and the influence on the cycling performance caused by the coating content of AlF_3 and TiO_2 was researched. It was found that the coating AlF_3 can effectively restrict the corrosion of the cathode materials and the dissolution of active substances, and the effect was getting more outstanding with the increase of coating amounts. The electrochemical performance of LiNi_(0.5)Mn_(1.5)O_4 with 3 mol% coating AlF_3 was the best, the capacity was 119.23 mAh·g~(-1) with capacity retention of 94.5% mAh·g~(-1) at room temperature after 50 cycles, while it was 116.29 mAh·g~(-1) with capacity retention of 84.0% after 50 cycles at 55℃. The coating TiO_2 played a role of HF collectors. When the coating amount was 3 mol%, it showed the best cycling performance. The capacity retention was 92.5% after 100 cycles at room temperature, and 77.9% after 50 cycles at 55℃.
引文
1 B. Scrosati. Recent Advance in Lithium Ion Battery Material. Electrochimica Acta. 2000, (45): 2461~2466
    2郭炳焜,徐徽,王先有等.锂离子电池.中南大学出版社. 2002: 1~2, 13
    3闫时建,田文怀,其鲁.锂离子电池正极材料钴酸锂近期研制进展.兵器材料科学与工程. 2005, 28(6):56~62
    4 T. Nagaura and K. Tozawa. Progress in Materials Application for New-generation Secondary Battteries. Batteries Solar Cells. 1991, (10): 209~226
    5李玉展,任慢慢,吴青端等.锂离子蓄电池钒系正极材料的研究进展.电源技术. 2005, 29(2): 124~127
    6安晓雨,谭铃生.空间飞行器用锂离子蓄电池储能电源的研究进展.电源技术. 2006, 30: 70~73
    7 K.Mizushima, P. C. Jones, P. J. Wiseman,et a1. Li_xCoO_2(0    8 M. Wakihara, Rcent Development in Lithium Ion Batteries. Materials. Science. Engineering. Recourses. 2001, 33(4):109~134
    9高虹.锂离子电池正极材料的结构和性能研究方法.电池. 2001, 31(3): 126~127
    10 Y. J. Kim, J. Cho, T. J. Kim, et al. Suppession of Cobalt Dissolution from the LiCoO2 Cathodes with Various Metai-Oxide Coatings. Journal of The Electrochemical Society. 2003, 150(12):1723~1725
    11 T. Ohzuku, A. Veda, M. Nagayama. Electrochemistry and Structure Chemistry of LiNiO_2 (R3m). Journal of Power Sources. 1997, 68(2): 316~319
    12 M. R. Palacin, D. Larcher, A. Audemer, et al. Low Temperatrue Synthesis of LiNiO_2 Reaction Mechanism, Stability and Electrochemical Properties. Journal of The Electrochemical Society. 1997, 144(12):4226~4236
    13刘汉三,杨勇,张忠如等.锂离子电池正极材料锂镍氧化物研究新进展.电化学. 2001, 7(2):145~155
    14 A. R. Amrstorng, P. G. Bucre. Synthesis of layered LiMnO_2 as an electrode of rechargeable lithium batteries. Nature. 1996, (381):499~500
    15 J. M. Paulsen, D. Larcher, J. R. Dahn. A New Layed Cathode Material and Battery for Rechargeable Lithium Batteries. Journal of the Electrochemical Society. 2000, 147(8):2862~2867
    16 Y. Chen, G. X. Wang, K. Konstantinov, et al. Synthesis and Characterization of LiCo_xMn_yNi_(1-x-y)O_2 as a Cathode Material for Secondary Lithium Batteries. J.Power Sources. 2003, (119~121): 184~188
    17 M. Kageyama, D. Li, K. Kobayakawa, et al. Structural and Electrochemical Properties of LiNi_(1/3)Mn_(1/3)Co_(1/3)O_(2-x)F_x Prepared by Solid State Reaction. J. Power Sources. 2006, (157): 494~500
    18 J. M. Zheng, Z. R. Zhang, X. B. Wu, et al. The Effects of AlF_3 Coating on the Performance of Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2 Positive Electrode Material for Lithium-ion Battery. Journal of the Electrochemical Society. 2008, 155(10): 775~782
    19 A. K. Pdahi, K. S. Nanjundawamy, J. B. Goodenough. Phospho-olivine as Positive Electrode Materials of Rechargeable Lithium Batteries. Journal of the Electrochemical Society. 1997, 144(4):1188~1194
    20唐志远,焦延峰.磷酸铁锂里离子电池正极材料的研究.化工中间体. 2005(12):14~19
    21 C. H. Mi, G. S. Cao, X. B. Zhao. Low-Cost, One-Step Process for Synthesis of Carbon-Coated LiFePO_4 Cathode. Materials Letters. 2005, 59: 127~130
    22张宝,李新海,罗文斌等. LiFe_(1-x)Mg_xPO_4锂离子电池正极材料的电化学性能.中南大学学报. 2006, 37(6):1094~1098
    23唐红辉,戴曦,张传福等. Ni~(2+)掺杂LiFePO_4正极材料的合成及性能.粉末冶金材料科学与工程. 2006, 11(4): 244~249
    24 K. Amine, H. Yasuda and M. Yamachi. Olivine LiCoPO_4 as 4.8 V Electrode Material for Lithium Batteries. Electrochemical and Solid State Letters. 2000, 3(4): 178~179
    25朱先军,刘云霞,耿良梅等.锂离子电池正极材料Li_3V_2(PO_4)_3的研究进展. 2007, 37(5):390 ~393
    26 F. Croce, A. D. Epifanio, J. Hassoun, et al. A Novel Concept for the Synthesis of an Improved LiFePO_4 Lithium Battery Cathode. Electrochem. and Solid-State Lett. 2002, 5(3): 47~A53
    27 H. Huang, S. C. Yin, T. Kerr, et al. Nanostructured Composites: A High Capacity,Fast Rate Li_3V_2(PO_4)(3)/Carbon Cathode for Rechargeable Lithium Batteries Advanced Materiels. 2002, 14 (21): 1525 ~1528
    28刘素琴,李世彩,黄可龙,等. Ti~(4+)离子掺杂对Li_3V_2(PO_4)_3晶体结构与性能的影响.物理化学学报. 2007, 23(4): 537~542
    29 M. Sato, H. Ohkawa, K. Yoshida, et al. Enhancement of Discharge Capacity of Li_3V_2(PO_4)_3 by Stabilizing The Orthorhombic Phase at Room Temperature. Solid State Ionics. 2000, 135(1-4): 137~142
    30 K. Amine, H. Tukamato. Synthesis of an Efficient LiMn_2O_4 for Lithium Ion Batteries. Journal of the Electrochemical Society. 1996, 143(6):1607~1613
    31 R. J. Gummow, A. Dedock, M. M. Thackeray, et al. The Effect of Multivalent Cation Dopants on Lithiummanganese Spinal Cathodes. Journal of the Power Sources. 1998, 70(2): 247~252
    32 C.Sigala, D.Guyomard, A.Verbaere, et al. Positive Electrode Materials with High Operating Voltage for Lithium Batteries: LiCr_yMn_(2-y)O_4 (0    33 H.Kawai, M.Nagata, H.Tukamoto, et al. A Novel Cathode Li_2CoMn_3O_8 for Lithium Ion Batteries Operating Over 5 Volts. Journal of Materials Chemistry. 1998, 8(4): 837~839
    34 Q. M. Zhong, A. Bonakdarpour, M. J. Zhang, et al. Synthesis and Electrochemistry of LiNi_xMn_(2-x)O_4. Journal of the Electrochemical Society, 1997, 144(1): 205~213
    35 H. Kawai, M. Nagata, M. Tabuchi, et al. Novel 5 V Spinel Cathode Li_2FeMn_3O_8 for Lithium ion Batteries. Chemistry of Materials, 1998, 10(11): 3266~3268
    36 R. Alcántara, M. Jaraba, P. Lavela, et al. Comparative Study of LiNi_(0.5)Mn_(1.5)O_4-δand LiNi_(0.5)Mn_(1.5)O_4 Cathodes Having Two Crystallographic Structures: Fd3hm and P4332. Chem. Mater. 2004, (16):906~914
    37 G. Blasse. Erromagnetism and Ferrimagnetism of Oxygen Spinels Containing Tetravalent Manganese. Journal of Physics and Chemistry of Solids, 1966, 2(27): 383~389
    38 H. S. Fang, Z. X. Wang, X. H. Li, et al. Exploration of High Capacity LiNi_(0.5)Mn_(1.5)O_4 Synthesized by Solid-state Reaction. Journal of Power Sources. 2006, (153):174~176
    39 N. Andouni, K. Zaghib, F. Gendron, et al. Magnetic Properties of LiNi_(0.5)Mn_(1.5)O_4 Spinels Prepared by Wet Chemical Methods. Journal of Magnetism andMagnetic Materials. 2007, (309): 100~105
    40 Y. K. Fan, J. M. Wang, X. B. Ye, et al. Physical Properties and Electrochemical Performance of LiNi_(0.5)Mn_(1.5)O_4 Cathode Material Prepared by a Co-precipitation Method. Materials Chemistry and Physics. 2007, (103): 19~23
    41 G. Q. Liu, Y. J. Wang, L. Qi, et al. Synthesis and Electrochemical Performance of LiNi_(0.5)Mn_(1.5)O_4 Spinel Compound. Electrochimica Acta. 2005, (50): 1965~1968
    42 J. H. Kim, S. T. Myung, Y. K. Sun. Molten Salt Synthesis of LiNi_(0.5)Mn_(1.5)O_4 spinel for 5V Class Cathode Material of Li-ion Secondary Battery. Electrochimica Acta. 2004, (49): 219~227
    43 S. T. Myung, S. Komaba, N.Kumagai, et al. Nano-crystalline LiNi_(0.5)Mn_(1.5)O_4 Synthesized by Emulsion Drying Method. Electrochimica Acta. 2002, (47):2543~2549
    44 S. H. Park, Y. K. Sun Synthesis and Electrochemical Properties of 5V Spinel LiNi_(0.5)Mn_(1.5)O_4 Cathode Materials Prepared by Ultrasonic Spray Pyrolysis Method. Electrochimica Acta. 2004, (50): 431~434
    45 F. G. B. Ooms, E. M. Kelder, J. Schoonmann, et al. High-voltage LiMg_δNi_(0.5-δ)Mn_(1.5)O_4 Spinels for Li-ion Batteries. Solid State Ionics 2002, (152~153): 143~153
    46 T. A. Arunkumar, A. Manthiram. Influence of Lattice Parameter Differences on the Electrochemical Performance of the 5V Spinel LiMn_(1.5-y)Ni_(0.5-z)M_(y+z)O_4 (M = Li, Mg, Fe, Co, and Zn). Electrochemical and Solid-State Letters. 2005,8(8): 403~405
    47 Z. Y. Chen, H. L. Zhu, S. Ji et al. Performance of LiNi_(0.5)Mn_(1.5)O_4 Prepared by Solid-state Reaction. Journal of Power Sources. 2009, 189:507~510
    48范未峰,瞿美臻,彭工厂. 5 V正极材料LiNi_(0.5)Mn_(1.5)O_4的自蔓延燃烧合成及性能.无机化学学报. 2009, 25(1):0124~0129
    49 D. Guyomard, J. Tarascon. The Carbon Li_(1+x)MN_2O_4. System Solid State Ionics. 1994,69 (3-4): 222~237
    50 X. L. Wu, S. B. Kim. Improvement of Electrochemical Properties of LiNi_(0.5)Mn_(1.5)O_4 Spinel. Journal of Power Sources. 2002,109:53~57
    51 L. F. Xiao,Y. Q. Zhao,Y. Y. Yang et al. Electrochemical Properties of Nano-crystalline LiNi_(0.5)Mn_(1.5)O_4 Synthesized by Polymer-pyrolysis Method. Solid State Electrochem. 2008, 12:687~691
    52 J. C. Arrebola, A.Caballero, L. Hernan, et al. Polymer-mediated Growth of Highly Crystalline Nano- and Micro-sized LiNi_(0.5)Mn_(1.5)O_4 Spinels. European Journal of Inorganic Chemistry. 2008, (21): 3295~3302
    53 J. C. Arrebola, A. Caballero, M. Cruz, et al. Crystallinity Control of a Nanostructured LiNi_(0.5)Mn_(1.5)O_4 Spinet via Polymer-assisted Synthesis: A method for improving its rate capability and performance in 5 V lithium batteries. Advanced Functional Materials, 2006. 16(14): 1904~1912
    54 J. C. Arrebola, A. Caballero, L. Hernan, et al. PMMA-assisted Synthesis of Li_(1-x)Ni_(0.5)Mn_(1.5)O_(4-delta) for High-voltage Lithium Batteries With Expanded Rate Capability at High Cycling Temperatures. Journal of Power Sources, 2008. 180(2): 852~858
    55 U. Lafont, C. Locati, W. J. H. Borghols, et al. Nanosized High Voltage Cathode Material LiMg_(0.05)Ni_(0.45)Mn_(1.5)O_4: Structural, Electrochemical and in Situ Investigation. Journal of Power Sources. 2009, 189:179~184
    56 C. Locati, U. Lafont, L. Simonin. Mg-doped LiNi_(0.5)Mn_(1.5)O_4 Spinel for Cathode Materials. Journal of Power Sources. 2007, 174:847~851
    57 Ki-Joo Hong, Yang-Kook Sun. Synthesis and Electrochemical Characteristics of LiCr_xNi_(0.5-x)Mn_(1.5)O_4 Spinel as 5 V Cathode Materials for Lithium Secondary Batteries. Journal of Power Sources. 2002, 109:427~430
    58 S. B. Park, W. S. Eom, W. Cho, et al. Electrochemical Properties of LiNi_(0.5)Mn_(1.5)O_4 Cathode after Cr Doping. Journal of Power Sources. 2006, 159:679~684
    59 R. Alcantara, M. Jaraba, P. Lavela, et al. Structural and Electrochemical Study of New LiNi_(0.5)Ti_xMn_(1.5-x)O_4 Spinel Oxides for 5-V Cathode Materials. Chem. Mater. 2003, 15: 2376~2382
    60 Sung-Woo Oh, Sang-Ho Park, Jung-Hyun Kim ,et al. Improvement of Electrochemical Properties of LiNi_(0.5)Mn_(1.5)O_4 Spinel Material by Fluorine Substitution. Journal of Power Sources. 2006, 157: 464~470
    61 Guodong Du, Yanna NuLi, Jun Yang, et al. Fluorine-doped LiNi_(0.5)Mn_(1.5)O_4 for 5V Cathode Materials of Lithium-ion Battery. Materials Research Bulletin. 2008, (43):3607~3613
    62 T. Doi, J. Kageura, S. Okada, et al. Surface Modification of LiNi_(1/2)Mn_(3/2)O_4 Thin-films by Zirconium Alkoxide/PMMA Composites and Their Effects on Electrochemical Properties. Journal of Power Sources. 2008, (185): 473~479
    63 Y. K. Sun, K. J. Hong, JaiPrakash, et al. Electrochemical Performance of Nano-sized ZnO-coated. Electrochemistry Communications. 2002, (4):344~348
    64 Y. K. Sun, C. S. Yoon and I. H. Oh. Surface Structural Change of ZnO-coated LiNi_(0.5)Mn_(1.5)O_4 Spinel as 5V. Electrochimica Acta. 2003, (48):503~506
    65 T. Noguchi, I. Yamazaki, T. Numata. Effect of Bi Oxide Surface Treatment on 5V Spinel LiNi_(0.5)Mn_(1.5-x)Ti_xO_4. Journal of Power Sources. 2007, (174): 359~365
    66 J. Liu and A. Manthiram. Understanding the Improvement in the Electrochemical Properties of Surface Modified 5V LiMn_(1.42)Ni_(0.42)Co_(0.16)O_4 Spinel Cathodes in Lithium-ion Cells. Chem. Mater. 2009, (21): 1695~1707
    67 H. M. Wu, I. Belharouak, A. Abouimranea, et al. Surface Modification of LiNi_(0.5)Mn_(1.5)O_4 by ZrP_2O_7 and ZrO_2 for Lithium-ion Batteries. Journal of Power Sources. 2010, (195): 2909~2913
    68 H. B. Kang, S. T. Myung, K. Amine, et al., Improved Electrochemical Properties of BiOF-coated 5 VSpinel Li[Ni_(0.5)Mn_(1.5)]O_4 for Rechargeable Lithium Batteries. Journal of Power Sources. 2010, 195(7): 2023~2028
    69 J. M. Zheng, J. Li, Z. R. Zhang, et al. The Effects of TiO_2 Coating on the Electrochemical Performance of Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2 Cathode Material for Lithium-ion Battery. Solid State Ionics. 2008, (179): 1794~1799
    70 J. Liu, and A. Manthiram. Understanding the Improved Electrochemical Performances of Fe-Substituted 5 V Spinel Cathode LiMn_(1.5)Ni_(0.5)O_4. Journal of Physical Chemistry C. 2009, 113(33): 15073~15079
    71 C. Wu, F. Wu, L. Q. Chen, et al. X-ray Diffraction and X-ray Photoelectron Spectroscopy Analysis Cr-doped Spinel LiMn_2O_4 for Lithium Ion Batteries. Solid State Ionics. 2002, (152): 335~339
    72 H. L. Wang, H. Xia, M. O. Lai, et al. Enhancements of Rate Capability and Cyclic Performance of Spinel LiNi_(0.5)Mn_(1.5)O_4 by Trace Ru-doping. Electrochemistry Communications. 2009, 11(7): 1539~1542
    73 X. X. Xu, J. Yang, Y. Q. Wang, et al. LiNi_(0.5)Mn_(1.5)O_(3.975)F_(0.05) as Novel 5V Cathode Material. Journal of Power Sources. 2007, 174(2): 1113~1116
    74 T. F. Yi, J. Shu, Y. R. Zhu et al. Advanced Electrochemical Performance of LiMn_(1.4)Cr_(0.2)Ni_(0.4)O_4 as 5V Cathode Material by Citric-acid-assisted Method. Journal of Physics and Chemistry of Solids. 2009, 70:153~158
    75 G. Q. Liu, L. Wen, G. Y. Liu, et al. Rate Capability of spinel LiCr_(0.1)Ni_(0.4)Mn_(1.5)O_4. Journal of Alloys and Compounds. 2010, 501(2): 233~235
    76 Y. K. Sun, J. M. Han, S. T. Myung, et al. Significant Improvement of High Voltage Cycling Behavior AlF_3-coated LiCoO_2 Cathode. Electrochemistry Communications. 2006, 8(5): 821~826
    77 B. C. Park, H. B. Kim, S. T. Myung, et al. Improvement of Structural and Electrochemical Properties of AlF3-coated Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 Cathode Materials on High Voltage Region. Journal of Power Sources. 2008, 178(2): 826~831

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700