基于无轴传动技术的凹版包装印刷机套印控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以基于无轴传动技术的凹版包装印刷机的套印控制为课题,做高速无色差的无轴套印系统的套印控制研究。深入分析了无轴凹版包装印刷技术特点和控制要求,并针对这些分析对色差消除和同步协调控制等难题作了探索性的研究,创新性的引入偏差耦合思想来构建系统控制策略,同时通过仿真验证取得了一定的效果。
     无轴印刷机控制难度较大,其重要的原因是无轴印刷系统的研究是一个综合性的课题,涉及多个方面的协调控制。由于无轴印刷系统不同与传统印刷,需要综合考虑同步协调与色差消除,这就决定了其控制的复杂性。
     详细分析无轴印刷特点和无轴套准方式之后,选用基于相对位置的套印调整方法,并相应的将色差转化为位置轨迹作用与印辊。考虑到张力和纸张形变的影响,将检测到的色差进行优化处理,并结合印刷系统特点和伺服电机的运行方式,采用比较成熟的三角函数加减速曲线对得到的色差模型进行轨迹规划,得到平滑的位置、速度、加速度曲线,避免了系统在套准过程中产生较大的冲击和震荡。
     同步协调控制方面,针对无轴凹版印刷系统中各个轴之间互相制约、相互影响、耦合性的特点,引入耦合同步控制方法中偏差耦合同步控制的思想,创新性地采用多级色差耦合的偏差给定方式,并与色差消除策略相结合作为系统控制策略,提升了同步效率,并增强了系统对电气和色差扰动的抑制能力。在色差消除方面,根据控制需要选用跟踪性能较好的Backstepping控制方法和直接自适应模糊控制方法,与偏差耦合思想相结合,形成基于偏差耦合思想的Backstepping控制策略和直接自适应模糊控制策略对系统进行控制。通过仿真证明,所提策略不但能够实现多色套印系统的全局同步,而且能够有效地抑制系统参数变化和色差扰动等因素对系统性能的影响,使同步系统具有一定的鲁棒性,实现了色差调节与位置同步综合协调控制的设计目的。
In the paper, the subject of Research on Gravure Package Printing's Chromatography Control based on Shaftless Transmission Technology is selected as the thesis, which researches in shaftless system's isochronous and coordination control with high speed. The paper analyses profoundly in the feather of shaftless gravure package printing. According to the system's characters, the paper makes exploratory study in aberration elimination and synchronization coordination, and puts forward innovatively a new control method based on the thought of deviation-coupled control; meanwhile paper gets good results according to simulation.
     Design of shaftelss chromatography system is a complex topic; the main reason is that the research on shaftless printing system is a comprehensive topic, which is corcern with some aspects'coordination. As shaftelss printing system is different with traditional system, which should coordinate aberration elimination and synchronization coordination control, so it is a complex topic.
     The paper chooses a new registering processing method based on positioning mode with analysis in features of shaftless printing system and registering control, and it transforms the aberration into position track adding to the axes. Taking into account of the tension and printing material's change on the impact of aberration, the paper makes the detecting aberration optimum model. According to the feather of printing system and the servo motor's operation, the paper makes use of trigonometric function acceleration and deceleration curve to making the detecting aberration into track, then the system gets the smooth position, speed and acceleration curve, avoiding the affect of collision to the system in the calibration process.
     As for system of synchronization and coordination control, according to the feather of all axes'mutual constraints and interaction and strong coupling, the paper introducts the thought of deviation-coupled control in coupled synchronization control methods, and approaches innovatively multi-grade coupling aberration as aberration given. And then, the paper combinates the given and aberration elimination strategy as the system's strategy, which enhances the efficiency of synchronization and strengthens the ability of inhibition to electrical disturbances and aberration changes. In the aspect of aberration processing, the paper uses the control methods having good performance of tracking control-Backstepping control and Directive adaptive-fuzzy control, then combines them to the thought of deviation-coupled control. It formats the strategy that is Backstepping control and Directive adaptive-fuzzy control based on the the thought of deviation-coupled control. Through simulation proving, it can not only realize the global synchronization but also inhibits the disturbance of load and parameters change on the whole synchronization system. And the designes controller makes the system owns the character of robust, which realizes integrated design object of aberration registering and synchronization control at meantime.
引文
1.孙敬忠,成西良.快速发展的凹版印刷机制造技术——无轴(电子轴)传动[J],今日印刷,2005.4:10-12.
    2.孔毅,鲁旭.凹印——任重而道远[J],今日印刷,2005.4:25-26
    3.谭学伦.“无轴”胜有轴——浅谈无轴传动技术[J],PRINTING FIELD,2006.3:3-6.
    4. Utkin V I. Variable structure systems with sliding modes [J], IEEE Transactions on Automatic Control,1977,22:210-218.
    5.张建国.基于滑模变结构控制的多轴协调运动控制策略研究[D],济南山东大学,2007
    6.黄刚,张昌凡.印刷机数字化无轴传动技术研究综述[J],湖南工业大学学报,2007年11月,第21卷第6期:45-56.
    7.许国荣,宋立忠.双机并联系统离散变结构控制[J],电力自动化设备,2005,25(11):123-127.
    8. F Chen, M W Dunnigan. Sliding-mode torque and flux control of an induction machine [J], IEE Proceedings:Electric Power Applications,2003,150(2):227-236.
    9. Metin U Salamci, M Kemal Ozgoren, Stephen P Banks. Sliding Mode Control with Optimal Sliding Surfaces for Missile Autopilot Design [J], Journal of Guidance, Control and Dynamics,2000, Vol.23 (No.4):719-727.
    10. LIN F J, CHIU S L, SHYU K K. Novel sliding mode controller for synchronous motor drive [J], IEEE Transactions on Aerospace and Electronic Systems,1998,34(2):532-542.
    11. Chiu-Keng Lai, Kuo-Kai Shyu. A novel motor drive design for incremental motion system via sliding-mode control method [J], IEEE Transactions on Industrial Electronics,2005,52 (2):499-507.
    12.Narendra K S, Parthasarathy K. Identification and Control of Dynamic Systems Using Neural Networks [J], IEEE Transactions Neural Networks (S1045-9227),1990,1(1):4-27.
    13.Asriel U, Leein and KumPati S Narendra. Control of Nonlinear Dynamical Systems Neural Networks:Controllability and Stabilization [J], IEEE Trans on Neural Networks, 1993.3, VOL.4, NO.2:192-206.
    14.王秀丽.轧染机多单元同步控制系统的研究[D],天津工业大学,2007
    15.Paramasivam S, Arumugam R. Hybrid fuzzy controller for speed control of switched reluctance motor drives [J], Energy Conversion and Management,2005,46(9):1365-1378.
    16. Guney I, Oguz Y, Serteller F. Dynamic Behavior Model of Permanent Magnet Synchronous Motor Fed by PWM Inverter and Fuzzy Logic Controller for Stator Phase Current. Flux and Torque Control of PMSM [M], IEMDC,2001:479-485.
    17. Ortega R, Nicklasson P J, Espionsa, On Seed Control of Induction Motors, Automatica [M],1996,32(3):455-460.
    18.Tzann-shin Lee, Chih-hong Lin, Faa-jeng Lin. Aadaptive H∞ controller design for permanent synchronous motor drive[J].Control Engineering Practice,2005,13 (4): 425-439.
    19. Polycarpou M M, loannou P A. A robust adaptive nonlinear control design [J], Automatic, 1996,32(3):423-427.
    20.彭文华.凹版印刷机的工作原理与核心技术[J],轻工机械,2006年6月,第24卷第二期:23-34.
    21.王伟.无轴传动控制器的研究[D],西安理工大学,2007
    22.胡瑛,管力明.无轴印刷机结构原理[J],包装工程,2006,27(3):100-105.
    23.宋晓亮,康存锋,马春敏,黄旭东.软PLC和SERCOS技术在无轴印刷控制系统中的应用[J],制造业自动化,2007.8:33-35。
    24.陈福龙.基于DSP的永磁同步电动机伺服控制系统研究[D],武汉华中科技大学,2006
    25.王成元,夏价款,杨俊友,孙宜标.电机现代控制技术[M],北京:机械工业出版社,2006,56-69.
    26. Alien-Bradley Company Inc. ULTRA100 Series Drives Installation Manual [M], U.S.A, Publication,2001,1398-5.2:45-56.
    27.朱新连,张海燕,赵庆海.卷筒纸纸带跑偏检测与纠正系统[J],传感器技术,2005年,第24卷第7期:57-58.
    28.蒋恩松,肖辉军,孙刘杰,陈恩峰.胶印机自动套印控制方案及数学模型[J],包装工程,2007年12月:41-46.
    29.周荣.凹版印刷自动套印控制系统的研制[D],大连轻工业学院,2006
    30.赵珂,万光逵,周燕飞.BOPP膜8色凹版印刷自动套色控制系统的研究[J],包装工程,2005年3月:56-78.
    31.赵珂,周燕飞,万光逵.凹版印刷Mark线在线检测系统的研究[J],南昌航空工业学院学报(自然科学版),2004年12月,第18卷第4期:92-93.
    32.刘艳秋,陶学恒,孙宝元.凹版彩色印刷产品质量问题的研究[J],机电产品开发与创新,2007年1月,第20卷第1期:28-31.
    33.沈梅.凹版印刷机系统架构及控制策略的实现[J],中国科技信息,2007年,第13期:73-74.
    34.邱兆军.基于模型的凹版印刷机非线性控制研究与应用[D],济南:山东大学,2007
    35.陆莲仕.基于高性能数字运动控制器的控制算法研究——最具运动平滑性的轨迹规划算法[D],广西大学,2006
    36. D Constantinescu, E A Croft. Smooth and Time-Optimal Trajectory Planning for Industrial Manipulators along Specified Paths [J], Journal of Robotic Systems,2000,17(5):233-249.
    37.O Dahl, L Nielsen. Torque-Limited Path Following by On-Line Trajectory Time Scaling [J], IEEE Transactions Robotics and Automation,1990,6(5):658-669.
    38.丛爽,尚伟伟.运动控制中点到点控制曲线的性能研究[J],机械与电子,2005,(7):16-19.
    39.杨亚辉.多轴系统同步控制技术[D],西安电子科技大学,2007
    40.李宏胜.轮廓运动的交叉耦合模糊自整定控制[J],工业仪表与自动化装置,2005年,第5期:18-21.
    41.Perez-Pinal F, Caladeron G, Araujo I. Relative Coupling Strategy [J], IEEE, IEMDC 03, Madison Wisconsin USA,2003,2(6):1162-1166.
    42. Valenzuela A, Lorenz R. Electronic Line-Shafting Control for Paper Machine Drives [J], IEEE Transaction on Industry Applications,2001,137(1):15-19.
    43. Anderson RG, Lorenz R. Web Machine Coordinated Motion Control via Electronic Line-Shafting [J], IEEE, IAS Annual Tech. Conf.,1999, (10):3-7.
    44. Ioannis Kanellakopoulos, Petar V Kokotovic, A Stephen Morse. Systematic design of adaptive controllers for feedback linearizable systems [J], IEEE Trans on Automatic Control,1991,36(11):1241-1253.
    45.Karsenti L, Lamnabhi-Lagarrigue F, Bastom G. Backstepping technique extends to nonlinear parameterization [J], System and Control Letters,1996,27(1):87-97.
    46. R Sepulchre, M Jankovic, P V Kokotovic. Constructive Nonlinear Control [M], London, Springer-Verlag London Ltd,1997:230-249.
    47. H Tan, J Chang. Adaptive backstepping control of induction motor with uncertainties [J], Proceedings of the 1999 American Control Conference, Piscataway, New Jersey, IEEE Press,1999:456-467.
    48. D. Karagiannis, A. Astolfi. Nonlinear adaptive control of systems in feedback foreman alternative to adaptive backstepping [J], IFAC Symposium on Large Scale Systems, Theory and Applications New York, Pergamon,2004:71-76.
    49. John W C, Robinson Ulrik Nilsson. Design of a Nonlinear Autopilot for Velocity and Attitude Control using Block Backstepping [J], AIAA Guidance, Navigation and Control Conference and Exhibit, San Francisco, California,15-18, August2005:39-42.
    50. Zhou J, Wang Y. Real-time nonlinear adaptive backstepping speed control for a PM synchronous motor [J], Control Engineering Practice,2005,13:1259-1269.
    51. TAN Yao-long, HU Jun, CHANG Jie, edal. Adaptive integral backstepping motion control and experiment implementation [J], Proc of the IEEE International Conference on Control Applica-tions, Anchorage, Alaska, USA.,2000:367-372.
    52. Baohua Lian, Hyochoong Bang. Adaptive Backstepping Control Based Autopilot Design for Reentry Vehicle [J], AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island,2004.8:16-19.
    53. W Hu, S Mei, Q Lu, et al. Nonlinear adaptive decentralized stabilizing control of multi-machine systems [J], Applied Mathematics and Computation,2002,133(2):519-532.
    54. Kristic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and adaptive control design [M], New York, Kluwer,2002:68-79.
    55. Manosa V, Ikhouaneb F, Rodellar J. Control of uncertain non-linear systems via adaptive backstepping [J], Journal of Sound and Vibration,2005,280(3-5):657-680.
    56.Narendra K S, Annaswamy A. M. Stable Adaptive Systems [M], U.S.A., Prentice Hall, 1989:78-90.
    57. Wang L X. Adaptive fuzzy systems and control-design and stability analysis [M], New Jersey, Practice Hall,1994:102-185.
    58. WANG L X. Stable adaptive fuzzy control of nonlinear systems [J], IEEE Trans on Fuzzy Systems,1993(1):146-155.
    59. L X Wang. Adaptive Fuzzy Systems and Control:Design and Stability Analysis [M], Englewood Cliffs, NJ, Prentice-Hall,1994:98-103.
    60. Ho H F, Wong Y K, Rad A B, et al. State observer based indirect adaptive fuzzy tracking control [J], Simulation Modeling Practices and Theory,2005.7(13):646-663.
    61. Dong Sun. Position synchronization of multiple motion axes with adaptive coupling control [J], Automatic,2003(39):997-1005.
    62. Tang Lixin, Rahman M F. A Direct Torque Controlled Interior Permanent Magnet Synchronous Machine Drive with a New Stator Resistance Estimator [J], Conference Record of the2003 IEEE, Industry Applications Conference,2003:632-639.
    63. Chen B S, Lee C H, Chang Y C. Tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach [J], IEEE Trans, Fuzzy Systems,1996,1(4):32-43.
    64. Tong S C, Wang T, Tang J T. Fuzzy adaptive output tracking control of nonlinear systems [J], Fuzzy Sets and Systems,2000,2(111):169-182.
    65.王晶菡,李铁才,杜坤梅.基于Matlab的永磁同步电机控制系统仿真研究[J],宁波职业技术学院学报,2007年4月,第11卷第2期:1-4.
    66.于尊龙.无轴套印系统设计及综合控制策略研究[D],沈阳东北大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700