微型桩结构加固边坡受力机制和设计计算理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国基础设施建设步伐的加快,公路、铁路、水电、矿山开采等建设过程中都遇到了大量的边坡问题。在各类边坡问题中,病害边坡的雨季抢险及滑坡变形引起的路基面保通等存在工期紧、施工场地受限等特点,采用传统的治理措施抗滑桩、预应力锚索框架等无法满足快速治理和应急抢险的要求,故往往成为治理工程的难点;尤其是“5.12”汶川大地震后,诸多边坡病害需要进行快速治理,使边坡病害的快速治理问题成为焦点问题,故在优化既有边坡加固技术的基础上研究施工快捷、机械化程度高的边坡加固新技术迫在眉睫。
     微型桩施工快捷且组合灵活,施工场地小且完全避免了过多的开挖对环境造成的破坏,较适宜于应急抢险工程。自20世纪50年代微型桩技术首次应用以来,尤其是80年代以后,随着钻孔设备的不断改进以及钻孔工艺的提高,微型桩在边坡工程中显示出了较好的应用前景,然而目前关于微型桩加固边坡的受力机制和设计计算理论研究很少且不成熟。基于此,本文在国内外相关研究的基础上,通过现场调查、理论分析、数值模拟、室内试验及现场试验等方法,对微型桩结构加固边坡的受力机制和设计计算理论等进行了系统研究,弥补了国内外相关研究的空白,对滑坡与边坡病害治理技术向轻型化、快速化以及机械化方向的发展起到了推动作用。
     (1)本文将微型桩按照注浆工艺的不同进行了分类。此外,系统总结了实践中常用的微型桩结构类型,并研究提出了一种以微型桩和预应力锚索为载体的边坡加固新形式—锚管构架。
     (2)基于弹塑性地基系数法中p-y曲线方法并考虑轴向力的影响,推导了微型桩加固边坡时计算内力和变位的有限差分公式。此外,基于梁柱理论,提出了微型桩截面抗弯承载力的确定方法。
     (3)通过对微型桩轴向和横向的抗力分析,建立了微型桩结构加固边坡的设计计算新方法。内容主要包括微型桩结构布设位置的选取、设计抗滑力的计算、加固边坡的局部稳定性计算、微型桩的选型、微型桩长的选取、微型桩间距的选取以及顶梁的结构设计方法等。
     (4)运用FLAC3D及抗剪强度折减技术对微型桩—边坡体系的稳定性进行了耦合分析。同时,采用FLAC3D对6种微型桩结构的抗滑机理和受力机制,以及微型桩结构中各排微型桩受力的不均匀性进行了数值模拟研究。
     (5)通过室内试验,对微型桩结构与普通抗滑桩的抗滑特性进行了对比分析,系统探讨了二者受力机制的差异性以及采用微型桩结构代替普通抗滑桩的可行性。研究表明,微型桩结构与普通抗滑桩的受力机制具有较大的差异性。此外,试验中微型桩结构的承载力略小于普通抗滑桩,故在一定条件下可以代替普通抗滑桩进行边坡加固。
     (6)基于青海省省道S101线龙穆尔沟段DH1滑坡治理工程,对框架微型桩结构进行了现场试验研究,并将试验结果与基于p-y分析的理论解进行了对比分析。结果表明,尽管工点滑坡的运动形态较为复杂,但微型桩结构均起到了较好的临时加固作用。实测桩身弯矩与解析解对比分析的结果印证了本文所建立微型桩结构设计计算理论的合理性。
     (7)进行了工程应用研究,将研究成果应用于扎哈路、燕官路等沿线的的边坡加固工程中,取得了良好的经济效益和社会效益,可供类似工程借鉴、参考。
With the development of infrastructure construction, a large number of slope diseases are met in the railway, highway, dam and mine construction. Some slope diseases need to be cured hurry up, just as slope failure induced by rain, the road being cut off by landslide and especially so many slope failures caused by earthquake in Wenchuan on May 12th. These Slope failures are significant hazards to public and private infrastructure, and their maintenance and repair is difficult because the conventional stabilizing methods are too limited to use. Stabilization through the installation of micropiles may solve these problems much easily, which is a relatively new technique for stabilizing slope that has been used successfully in several instances in China and abroad. Micropile technology was evolved continuously since its introduction by Fernando Lizzi in the 1950s. Over the past 20 years, advances in drilling equipment and techniques have extended the applicability of micropiles techniques to slope reinforcement. However, designs for existing applications are immature and have, thus, generally been very conservative out of necessity.
     Based on case stories, the loaded mechanism of micropile structures and the design method of micropile structures in slope stabilizing are studied in detail by multiple method including site investigation, analytic solution, numerical analysis, modeling test, in-situ experiment and so on.
     (1) Based on the method of grouting, the micropile classification system is developed. The paper classifies the foundamental types of micropile structure in practice.
     (2) It presents the method for getting the internal force of single micropile and its bearing capacity.
     (3) Based on the p-y method, it presents a rational method for the analysis of micropile structure assuming the limit state is failure of the micropile in bending.
     (4) By numerical analysis, the soil-micropile interaction is silulated based on the explicit-finite-difference code, FLAC3D. The stabilizing mechanism of micropile, the bearing capacity of micropile structure and its effect factors, differential loading among different rows of micropile are analyzed.
     (5) Based on the model experiments, the bearing capacity and failure model under sliding force between common anti-sliding piles and micropile groups was compared. It was shown that, the micropile group had good anti-sliding ability. Taking 2 mm as the acceptable displacement value of structure in model experiment, the bearing capacity of micropile group was somewhat less than the common anti-sliding pile.
     (6) Based on the stabilization of DH1 landslide project, in-situ testing study on the mechanical behavior of micropile structure and displacement characteristics of landslide was carried out. The results were compared to a solution for micropile using p-y method. Based on the comprehensive study, it was shown that the stabilizing effect of micropile structure was active and use of analysis method in this paper in design of micropile structure is reasonable.
     (7) Some micropile structures were adopted in the practice engineering, and the design of the micropile structure was performed using the design approach described in this paper. Several case histories of micropile engineering were presented.
引文
1. Cantoni R., Collotta T, Ghionna V N, et al..A design method for reticulated micropiles structure in sliding slopes [J]. Ground Engineering,1989,22(1):41-47.
    2. Cadden A., Gomez J, Bruce D,et al. Micropiles:Recent Advances and Future Trends[J]. Current Practices and Future Trends in Deep Foundations,2004, 142(9):140-165.
    3. Varnes D J, Schuster R L, Krizek R J. Slope movement types and processes [A]. Landslides:Analysis and Control[C]. Washington:Transportation Research Board,1978:11-13.
    4.王思敬.地下工程岩体稳定分析[M].北京:科学出版社,1984.
    5.金德濂.水利水电工程边坡的工程地质分类(上)[J].西北水电,2000(1):10-15.
    6.陈志坚.层状岩质边坡工程安全监控建模理论及关键技术研究[D].南京:河海大学[博士论文],2001.
    7.徐卫亚,徐瑞春.清江隔河岩坝基工程岩体质量评价研究[J].工程地质学报,1999,7(2):105-111.
    8.顾宝和,高大钊,朱小利.岩土工程勘察规范(GB50021-2001)[M].北京:中国建筑工业出版社,2002.
    9.水利部.水利水电工程地质勘察规范(GB50287-99)[M].北京:中国计划出版社,1999.
    10.张倬元.工程地质分析原理[M].北京:地质出版社,1981.
    11. Sharpe C F S. Landslides and related phenomena [M]. New York:Cooper Square,1968.
    12. Zaruba Q, Mencl V. Landslides and their control [M]. New York:Springer Verlag,1982.
    13.山田刚二,渡正亮,小桥澄治.滑坡和斜坡崩塌及其防治[M].北京:科学出版社,1980.
    14.王恭先,徐峻龄,刘光代.滑坡学与滑坡防治技术[M].北京:中国铁道出版 社,2004.
    15. Fellenius W. Erdstatische Berechnungen mit Reibung und Kohasion[M]. Ernst, Berlin:Ernst,1927.
    16. Bishop A W. The use of the slip circle in the stability analysis of slopes[J]. Geotechnique,1955,5(1):7-17.
    17. Janbu N. Earth pressure and bearing capacity calculations by generalized procedure of slices[A].Proc.4th Int. Conf. Soil Mechs.&Foundn. Engng., London:1957:207-212.
    18. Morgenstern N R, Price V E.The analysis of the stability of general slip surfaces[J]. Geotechnique,1965,15(1):79-93.
    19. Spencer E. A method of analysis of the stability of embankments assuming parallel inter-slice forces[J]. Geotechnique,1967,17(1):11-26.
    20.Janbu N. Slope stability computations[A].Embankment-dam engineering[C]. New York:John Wiley and Sons,1973:47-86.
    21. Chen Z Y, Shao C M. Evaluation of minimum factor of safety in slope stability analysis[J]. Canadian Geotechnical Journal,1988,25(4):735-748.
    22.祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993.
    23.冯夏庭,刁心宏.智能岩石力学(1)—导论[J].岩石力学与工程学报,1999,18(2):222-226.
    24.夏元友,李新平.基于人工神经网络的边坡稳定性工程地质评价方法[J].岩土力学,1996,17(3):27-33.
    25.谢全敏,夏元友.基于神经网络的岩体边坡稳定性的灰色聚类空间预测法及其应用[J].灾害学,2001,16(2):1-6.
    26.张德政,高谦.用神经网络评价边坡稳定性[J].水文地质工程地质,1997,24(1):11-13.
    27.肖专文,张奇志.遗传进化算法在边坡稳定性分析中应用[J].岩土工程学报,1998,20(1):44-46.
    28.李彰明.模糊分析在边坡稳定性评价中的应用[J].岩石力学与工程学报,1997,16(005):490-495.
    29.张小辉,王辉.基于关系矩阵和模糊集权的斜坡稳定性综合评价[J].岩石力学与工程学报,2000,19(3):346-351.
    30.夏元友,朱瑞赓.岩质边坡稳定性多人多层次模糊综合评价系统研究[J].工程地质学报,1999,7(1):46-53.
    31.陈新民,罗国煜.基于经验的边坡稳定性灰色系统分析与评价[J].岩土工程学报,1999,21(5):638-641.
    32.许传华,朱绳武.边坡稳定性的ISODATA模糊聚类分析[J].金属矿山,2000,(12):24-26.
    33.李亮,迟世春,林皋.禁忌模拟退火复合形法及其在边坡稳定性分析中的应用[J].岩石力学与工程学报,2005,24(18):3342-3349.
    34.庞作会,葛修润.无网格伽辽金法(EFGM)在边坡开挖问题中的应用[J].岩土力学,1999,20(1):61-64.
    35. Franx C, Boonstra G C. Horizontal pressures on pile foundations[A]. Proc of 2nd ICSMFE[C]. Rotterdam:Balkema AA,1948.4:131-135.
    36. Heyman L, Boersma F. Bending moments in piles due to lateral earth pressure. Proc of 5th ICSMFE[C].Paris:Balkema AA,1961:425-429.
    37. Wenz K P. Large Scale Tests for Determination of Lateral Loads on Piles in Soft Cohesive Soils[A]. Proc of 8th ICSMFE[C].Moscow:1973,(2).247-255.
    38. Heyman L. Measurement of the Influence of Lateral Earth Pressure on Pile Foundations[A]. Proc of 8th ICSMFE[C]. Montreal:1965:257-260.
    39. Nicu N D, Antes D R, Kessler R S. Field meaaurements on instrumented piles under an overpass abutment[R]. Highway Research Board,1971,354:90-99.
    40. Oteo C S. Discussion of "Analysis of Piles in Soil Undergoing Lateral Movement"[J]. Journal of the Geotechnical Engineering Division,1974,100(4): 464-467.
    41. S Stewart D P, Jewel R J, Randolph M F. Design of piled bridge abutments on soft clay for loading from lateral soil movements[J]. Geotechnique,1994,44(2): 277-296.
    42.励国良.锚索抗滑桩与滑坡相互作用的计算[A].滑坡文集(第八集)[c].北京:中国铁道出版社,1991:
    43.工传甲.浅谈复合档土结构防治滑坡[J].安徽建筑,1999(4):80-80.
    44.邹越强,李彬.树根桩防治滑坡的研究[J].合肥工业大学学报:自然科学版,1994,17(1):120-124.
    45.黄晓华.公路边坡病害治理的轻型支挡结构[J].重庆交通学院学报,1999,18(3):90-94.
    46.葛子辉.树根桩锚固技术在滑坡治理工程中的应用[J].西部探矿工程,2001,(s1):90-91.
    47.姬深堂,乔来军.树根桩与土钉墙联合支护在边坡加固中的应用[J].施工技术(北京),2002,31(1):21-22.
    48.丁光文,王新.微型桩复合结构在滑坡整治中的应用[J].岩土工程技术,2004,18(1):47-50.
    49. Bruce D A., Cadden A W, Sabatini P J. Practical Advice for Foundation Design-Micropiles for Structural Support[A]. Proceedings of the Geo-Frontiers 2005 Congress. Austin, Texas:2005.
    50. Misra A, Chen C H. Analytical solution for micropile design under tension and compression[J]. Geotechnical and geological engineering,2004,22(2):199-225.
    51. Holloway D M, Moriwaki Y, Finno RJ, et al. Lateral load response of a pile group in sand[A]. Proc.2nd Int. Conf. on Numerical Methods in Offshore Piling, I.C.E.[C].London:1981:441-456.
    52. Brown D A., Morrison C, Reese L C, Lateral load behavior of pile group in sand[J]. Journal of Geotechnical Engineering,1988,114(11):1261-1276.
    53. Juran H, Benslimane A,Bruce DA. Slope stabilization by micropile reinforce-ment[J]. Landslides,1996,1715-1726.
    54. Berardi R. A design method for the'reticulated pile structure'for the stabilization of slopes and excavations[A]. Earth reinforcement:proceedings of the International Symposium on Earth Reinforcement[C]. Rotterdam:Balkema A A,1996:735-739.
    55. Bruce DA., Juran Ⅰ et al., Drilled and Grouted Micropiles:State-of-Practice Review[M]. U.S. Federal Highway Administration,1997.
    56.杨克己,李启新,王福元.水平力作用下群桩性状的研究[J].岩土工程学报,1990,12(3):42-52.
    57. Poulos H G.. Behavior of laterally loaded piles:II-pile groups[J]. Journal of the Soil Mechanics and Foundations Division,1971,97(5):733-751.
    58. Focht J A, Koch K J. Rational analysis of the lateral performance of offshore pile groups[A]. Proc.5th Offshore Tech. Conf.[C]. Dallas,1973:701-708.
    59. Bruce D A,DiMillio A F, Juran I. A primer on micropiles[J]. Civil Engineering Magazine,1995,65(12):51-54.
    60. Shields D R, Pe M. Buckling of Micropiles[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(3):334-337.
    61. Schaefer V R, Abramson L W., Drumheller J C, et al. Ground Improvement, Ground Reinforcement, Ground Treatment:Developments 1987-1997 (GSP 69) [C]. ASCE Geotech. Special Publication,1997.
    62. Armour T,Groneck P, Keeley J, et al. Micropile Design and Construction Guidelines Implementation Manual. Priority Technologies Program (PTP) Project[R]. Report No. FHWA-SA-97-070. Federal Highway Administration,2000:1-376.
    63.吕凡任,陈云敏,梅英宝.小桩研究现状和展望[J].工业建筑,2003,33(4):56-59.
    64.冯君,周德培,江南等,微型桩体系加固顺层岩质边坡的内力计算模式[J].岩石力学与工程学报,2006,25(002):284-288.
    65.孙书伟.顺层高边坡开挖松动区研究及微型桩加固边坡的内力计算[D].北京:铁道部科学研究院[硕士论文]:2006.
    66. Lizzi F. Special Patented Systems of Underpinning and more Generally, Subsoil Strengthening by Means Of Pali Radice (Root Piles) with Special Reference to Problems Arising from the Construction of Subways in Built-up Area[R]. Special Lecture given at university of Illinois at Urbana-Champaign.1971.
    67.孙书伟,朱本珍,郑波等.新型锚管构架在边坡加固中的应用[J].工程地质学报,2008,16(3):371-375.
    68. Misra A, Chen C H, Oberoi R, et al. Simplified analysis method for micropile pullout behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130:1024-1033.
    69. Ousta R, Shahrour I. Three-dimensional analysis of the seismic behaviour of micropiles used in the reinforcement of saturated soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(2):183-196.
    70. Misra A, Roberts LA,Oberoi R, et al. Uncertainty analysis of micropile pullout based upon load test results[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133:1017-1025.
    71. Lee S J. Behavior of a single micropile in sand under cyclic axial loads[M]. University of Illinois at Urbana-Champaign,2004.
    72. Traylor R P, Cadden A W, Bruce D A. High Capacity Micropiles in Karst: Challenges and Opportunities[J]. Geotechnical Special Publication,2002,(1): 743-759.
    73. Han J, Ye S L. A field study on the behavior of micropiles in clay under compression or tension[J]. Canadian Geotechnical Journal,2006,43(1):19-29.
    74. Han J,Ye S L. A field study on the behavior of a foundation underpinned by micropiles[J]. Canadian Geotechnical Journal,2006,43(1):30-42.
    75. Perlo S, Degny R F E, Estephan R. Analysis of laterally loaded micropile groups using a hybrid method[C]. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering.Rotterdam:Balkema A A,2005:267-280.
    76.龚健,陈仁朋,陈云敏等.微型桩原型水平荷载试验研究[J].岩石力学与工程学报,2004,23(20):3541-3546.
    77. Richards T D, Rothbauer M J. Lateral Loads on Pin Piles (Micropiles)[J]. Geotechnical Special Publication,2004(7):158-174.
    78.朱宝龙,胡厚田,张玉芳.钢管压力注浆型抗滑挡墙在京珠高速公路K108滑坡治理中的应用[J].岩石力学与工程学报,2006,25(2):399-406.
    79. Ang E C. Numerical Investigation of Load Transfer Mechanisms in Slopes Reinforced with Piles[D]. University of Missouri-Columbia,2005.
    80.杨克己.实用桩基工程[M].北京:人民交通出版社,2004.
    81.刘金砺.桩基础设计与计算[M].中国建筑工业出版社,1990.
    82.吴鸣,赵明华.大变形条件下桩土共同工作及试验研究[J].岩土工程学报,2001,23(4):436-440.
    83. Reese,L C, Van Impe W F. Single piles and pile groups under lateral loading[M]. Rotterdam:A.A, Balkema,2001.
    84. McClelland B, Focht Jr J A. Soil modulus for laterally loaded piles[J]. Transactions of the American Society of Civil Engineers,1958,123 (2954):1049-1086.
    85. Stevens J B, Audibert J M E. Re-examination of p-y curve formulations[A]. Eleventh annual Offshore Technology Conference 1979 proceedings[C]. Dallas:Proc. Offshore Tech. Conf.,1979,1:397-403.
    86.王惠初,武冬青.粘土中横向静载桩P—Y曲线的一种新的统一法fJ]河海大学学报:自然科学版,1991,19(1):9-17.
    87.田平,王惠初.粘土中横向荷载桩的P—Y曲线法评述[J].河海大学学报:自然科学版,1994,22(2):72-76.
    88.章连洋,陈竹昌.粘性土中P—y曲线的计算新方法[J].港口工程,1991(2):29-35.
    89.张舒羽.水平承载桩静载PY曲线研究[D]:南京:河海大学(硕士论文),2001
    90. Skempton A W. The consolidation of clays by gravitational compaction[J]. Quarterly Journal of the Geological Society of London,1970,125(99):373-411.
    91. Matlock H. Correlations for design of laterally loaded piles in soft clay[A]. Proc. Annual Offshore Technology Conference[C]. Houston,Texas:1970:577-594.
    92. Reese L C, Welch R C. Lateral loading of deep foundations in stiff clay[J]. Journal of the Geotechnical Engineering Division,1975,101(7):633-649.
    93. Welch R C, Reese L C. Laterally loaded behavior of drilled shafts[R]. Research Report No.3-5-65-89, conducted for Texas Highway Department and U.S. Department of Transportation, Federal Highway Administration,Bureau of Public Roads, by Center for Highway Reasearch,The University of Texas at Austin,1972.
    94. Reese L C, Cox W R, Koop F D. Field testing and analysis of laterally loaded piles in stiff clay[A]. Proceedings of 7th Offshore Technology Conference[C], Houston,Texas:1975,2:671-690.
    95. Reese L C, Cox W R, Koop F D. Analysis of laterally loaded piles in sand[A]. Proceedings of 6th Offshore Technology Conference[C]. Houston, Texas: 1974,2:473-483.
    96.戴自航,彭振斌.抗滑桩全桩内力计算“m—k”法的有限差分法[J].岩土力学,2002,23(3):321-324.
    97.戴自航,沈蒲生,彭振斌.预应力锚固抗滑桩内力计算有限差分法研究[J].岩石力学与工程学报,2003,22(003):407-413.
    98.戴自航,沈蒲生,彭振斌.弹性抗滑桩内力计算新模式及其有限差分解法[J].土木工程学报,2003,36(004):99-104.
    99. Hognestad E. A Study of combined bending and axial load in reinforced concrete members[R].University of Illinois Engineering Experiment Station,1951.
    100. Rusch H. Researches toward a general flexural theory for structural concrete[J]. Journal Proceedings,1960,57(7):1-28.
    101. Lizzi F. " Reticulated Root Piles":To Correct Landslides[A]. ASCE Convention and Exposition[C], Chicago, Illinois:1978.
    102. Plumelle C. Improvement of the bearing capacity of soil by inserts of group and reticulated micro piles[A]. International Symposium on In-situ Reinforcement of Soils and Rocks[C].Paris:ENPC Presses,1984:83-89.
    103. Korfiatis G.P, Schuring J R. Bearing Capacity of Shallow and Pile Foundations [J]. Civil Engineering Practice,1987.
    104. Loehr JE, Bowders JJ, OwenJW, et al. Stabilization of slopes using recycled plastic pins[J]. Journal of the Transportation Research Board,2000,1714: 1-8.
    105. Reese L C, Wang S T, Fouse J L, Use of drilled shafts in stabilizing a slope[J]. Geotechnical Special Publication,1993:1318-1332
    106. Poulos H G, Davis E H. Pile foundation analysis and design[M]. New York:John Wiley & Sons,1980.
    107. Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles[J]. Soils and Foundations,1975,15(4):43-59.
    108. Hassiotis S, Chameau L, Gunaratne M. Design method for stabilization of slopes with piles[J]. Journal of Geotechnical and Geoenvironmental engineering, 1997,123(4):314-323.
    109. Stark T D, Eid H T. Drained residual strength of cohesive soils[J]. Journal of Geotechnical Engineering,1994,120(5):856-871.
    110.谢涛,袁文忠,马庭林.水平承载下超大群桩受力变形特性的模型试验研究[J].岩石力学与工程学报,2005,24(009):1582-1587.
    111. 熊辉,尚守平.轴、横向力作用下土-群桩动力效应简化分析[J].岩土力学,2006,27(012):2163-2168.
    112. 韩英才,Novak M水平荷载作用下群桩动力特性的研究[J].土木工程学报,1992,25(5):24-33.
    113. 王成,邓安福.水平荷载桩桩土共同作用过程分析[J].岩土工程学报,2001,23(4):476-480.
    114.周常春,张明义.水平荷载下群桩前后土抗力分布的数值分析[J].地下空间,2003,23(1):17-21.
    115. 周洪波,杨敏,茜平一.水平荷载作用下群桩相互作用的弹塑性数值分析[J].水文地质工程地质,2003,30(3):29-35.
    116. 龚健,陈仁朋,陈云敏.微型桩原型水平荷载试验研究[J].岩石力学与工程学报,2004,23(20):3541-3546.
    117. Holloway D M., Moriwaki Y, Stevens JB. Response of a Pile Group to Combined Axial and Lateral Loading[A]. Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engieering[C].Stockholm Sweden:Boulimia Publishers,1981,2:731-734.
    118. Duncan J M. State of the art:limit equilibrium and finite-element analysis of slopes[J]. Journal of Geotechnical engineering,1996,122(7):577-596.
    119. Zienkiewicz O C. Humpheson C, Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Geotechnique, 1975,25(4):671-689.
    120. 林杭,曹平,李江腾.基于广义Hoek-Brown准则的边坡安全系数间接解法[J].煤炭学报,2008,33(010):1147-1151.
    121. Inc I C O. FLAC-3D (Fast Lagrangian Analysis of Continua in 3 Dimensions), Version 2.10, Users Manual (Volume V)[M].USA:Itasca Consulting Group Inc,1997.
    122. Won, J., et al., Coupled effects in stability analysis of pile-slope systems. Computers and Geotechnics,2005.32(4):p.304-315.
    123. Iai S. Similitude for shaking table test on soil-structure-fluid model in 1 g gravitational field[J]. Soils and foundations,1989,29(1):105-118.
    124. Wood D M. Geotechnical modelling[M]. Routledge,2004.
    125. Liang R Y. Instrumentation and Monitoring of Reticulated Micropile Slope Stabilization at SUM-271 Project.2000. Federal Highway Administration. Washington.
    126.沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    127.张明聚,郭忠贤.土钉支护工作性能的现场测试研究[J].岩土工程学报,2001,23(003):319-323.
    128. Alsaleh H, Shahrour I. Three-Dimensional Nonlinear Finite-Difference Analysis for Seismic Soil-Micropile-Structure Interaction:Effects of Nonlinearity of Soil and Micropile-Soil Interface[A]. GeoCongress 2006:Geotechnical Engineering in the Information Technology Age [C],2006,1-6
    129. Meyerhof G.G., Sastry V, Yalcin A S. Lateral resistance and deflection of flexible piles[J]. Canadian Geotechnical Journal,1988,25(3):511-522.
    130. Long J, Maniaci M, Menezes G, et al. Results of Lateral Load Tests on Micropiles[J]. Geotechnical Special Publication,2004,(4):122-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700