夏季风背景下中尺度涡旋的诊断分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先使用卫星资料对东亚地区夏季的降水、风向变化以及海温特征作诊断分析;同时对经典螺旋度作改进提出第三类热成风螺旋度用以讨论夏季风的爆发进程。两者共同研究结果显示孟加拉湾、中南半岛、南海这三个地区中,夏季风最先于第24候在孟加拉湾东南部爆发,之后在第25-26候于孟加拉湾西北和中南半岛地区爆发,南海地区夏季风在第28候爆发。海温的上升比降水和风向变化略早,说明海表温度上升引起对流活动的加强,对夏季风的爆发有重要影响。通过对研究区域SGV’的诊断分析,发现夏季风背景下区域内潜在对流活动呈增加的趋势。卫星资料提供了高水平分辨率的实测资料,能够更直接有效的测量各气象要素,得到更精确的结果。
     在夏季风爆发之后,对中国东部和西太平洋地区MCS中的两类天气系统MCV和MAV作统计分析,发现MCV和MAV都存在于MCS中。对比两者多年年平均空间分布可知,它们的空间分布非常类似,但MCV发生的概率比MAV高。在研究区域内MCV的月变化特征明显,其中以6月份分布范围最广。由于从5月到10月,受到南亚夏季风、副热带高压、和太阳辐射等大尺度背景场的影响,MCV空间分布存在一个明显的加强减弱的过程。通过对MCV日变化特征的分析,匹配5月-10月的降水率。总结出研究区域内局地MCV发生的日变化特征。同时分析发现海洋上MCV发生的频率高于陆地。日本海附近洋面以及南海北部洋面属于全天候MCV。靠近陆地的洋面如琉球群岛附近属于清晨活跃型MCV。中国东南丘陵地区属于夜发型MCV。而陆地上如华北平原、长白山附近以及京津唐地区由于受到地形、城市热岛效应等作用,属于午后活跃型MCV。需要注意的是,即使在同一类MCV中,不同的地区由于具体的地理环境等因素,使得MCV的持续时间和活跃程度也各不相同。另外,这种分类是相对的,只能说某地区的MCV是以某一类为主,而不能说某地区就只有某一类的MCV。各区域内对背景系统的响应主要以重力模式为主。洋面上的MCV半径总体看来大于陆地上。平原地区的MCV半径大于山地丘陵地区。说明MCV在平坦的局地环境下容易发展到较大的尺度。
     由于热带气旋是夏季造成各类强对流天气的重要系统之一,因此对多年来热带气旋中的MCV和MAV发生情况进行普查,发现热带气旋中的MCV和MAV同时出现的概率最高。据此选取2012年11号热带气旋“海葵”,具体分析它在登陆前后内部的涡旋演变过程。考虑到热带气旋中MCV的重要影响,对2001年至2010年在江苏地区受热带气旋影响造成的各类强对流天气进行天气分析。发现各类强对流天气中,短时强降水天气发生的频率最高;其次是雷雨大风天气;一般雷暴天气很少发生;龙卷和冰雹天气从未发生。地理位置越往南的区域越容易受到热带气旋的影响,这种影响主要以热带气旋前部外围云系为主。统计结果表明在研究年份内共有21个热带气旋影响江苏地区,其中13个热带气旋造成的短时强降水天气事件多于三次,且多数影响热带气旋都处于向热低压减弱的阶段。在这个阶段热带气旋中心气压逐渐升高、中心风速偏弱,但由于移速较慢以及地面摩擦作用仍会造成相关区域各种强对流天气的发生。短时强降水天气发生时,热带气旋离相关区域多数都在400km范围以上,这是因为强对流天气的发生不仅需要水汽和不稳定条件,还受到局地环境等因素的影响。所以强对流天气的发生与热带气旋和影响区域之间的距离并没有必然的联系。使用强对流指数分析了受热带气旋影响下短时强降水天气的发生情况,归纳出热带气旋影响下对流指数阈值。总体来看,各类指数的阈值在热带气旋影响下都偏低,即由于热带气旋的作用更容易造成对流不稳定、能量堆积最终导致各类强对流天气现象发生。
By using satellite data, the precipitation、the variation of wind direction and the feature of sea surface temperature over East Asia in summer were mainly analyzed. Started with the two characteristics of the seasonal inversion of monsoon direction and the seasonal alternation of dry-wet period, the following conclusions were obtained. In comparison of the three regions of Bay of Bengal, Indo-China Peninsula and the South China sea, Indo-China Peninsula is the area of earliest summer monsoon which in northwest-central was exploded on the24th pentad, but on the26th-28th pentad in southeast. Then is Bay of Bengal where the summer monsoon was occurred on24th pentad in southeast, and on the26th-28th pentad in northwest. The summer monsoon in the South China sea came finally on the28th pentad. The sea surface temperature rise earlier than the precipitation and the variation of wind direction, which means the rising sea surface temperature strengthened the convective activities and having a great influence on the occurrence of the summer monsoon. Satellite proved the measured data with high resolution, so that we can get the more accurate result by more effective measurement of meteorological elements.
     There are two of synoptic systems in MCS of eastern China and Western Pacific region:MCV and MAV. They were found both existed in MCS from the statistic analysis after the occurrence of the summer monsoon. Their spatial distribution were extremely similar in comparing both of the annual average ones, but the probability of MCV happening was higher than MAV. MCVs had an obvious monthly variation to the areas studied that with most widely distributed in June. Influenced by large-scale backgrounds like South Asian summer monsoon subtropical high、solar radiation,etc from May to October, the spatial distribution of MCVs developed first and then decreased. From the research of MCVs diurnal variation matching with the precipitation rate from May to October, the conclusion that MCVs on the ocean were more frequent than on land was drawn, and the emergence period of local MCVs in survey region were summarized as well. MCVs near the surface of the Sea of Japan and the northern South China was all-weather; on the ocean near land like around the Ryukyu Islands was active on morning; and on hilly area of southeast China preferred to occur at night. Whereas on land like North China Plain、around Changbai Mountains and Beijing-Tianjin-Tangshan(BTT) region MCVs were active on afternoon because of the effects of terrain、urban heat island, and so on. Noted that due to the specific geographical conditions or other factors, even in the same sort of MCVs, their duration and elevated levels were different from one another in different regions. Besides, this relative classification can only mean MCVs in one region were one type based, but not one type alone. The response to background system was primarily gravity model. The radius of MCVs on the ocean were greater than on land in general, while on Plains were greater than among mountainous and hilly areas, which illustrated that MCVs developed lager scale in the flat regional environment.
     Severe convective weather caused by the influence of tropical cyclone (TC) occurred in Jiangsu province was analyzed by various types of severe convective indices during10years (2001-2010). It was found, in such long time series, among all types of the severe convective weather accompanying with TC activities, the events of heavy precipitation typically occurred most frequently, followed by the severe thunderstorm weather. However, the thundered weather without rainfall is rarely happened, and no hail and tornadoes occurred actually. The statistical results also showed that there were21landing TCs basically influencing Jiangsu province during 10years and most of them were on the stage from TC to tropical depression (TD). The threshold of effectively convective indices of severe convective weather was lower than normal in general, which means that under the influence of TCs, it is more likely to cause convective instability, and the accumulation of instable energy ultimately lead severe convective weather.
引文
Anderson, C. J., and R. W. Arritt,1998:Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev.,126,578-599.
    Barnes S L,1964:A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor.,3,396-409.
    Carbone, R.E., J.D. Tuttle, D. Ahijevych, and S.B. Trier,2002:Inferences of Predictability Associated with Warm Season Precipitation Episodes, J. Atmos. Sci.,59,2033-2056.
    Augustine, J. A.,1985:An automated method for the documentation of cloud-top characteristics of mesoscale convective systems. NOAA Tech. Memo. ERL ESG-10, Dept. of Commerce, Boulder, CO,121.
    Bluestein, H. B., G. T. Marx, and M. H. Jain,1987:Formation of mesoscale lines of precipitation:Nonsevere squall lines in Oklahoma during the spring. Mon. Wea. Rev.,115,2719-2727.
    Augustine, J. A., K. W. Howard,1991:Mesoscale convective complexes over United States during 1986 and 1987. Mon Wea Rev,119:1575-1589.
    Barnes, S.L.,1973:Mesoscale objective map analysis using weighted. time-series observations. NOAA Teeh. Memo.62, NSSL,60.
    Augustine, J. A., K. W. Howard,1988:Mesoscale convective complexes over United States during 1985. Mon Wea Rev,116:686-701.
    Bluestein, H. B., and M. H. Jain,1985:Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci.,42,1711-1732.
    Bartels D L, and R A Maddox,1991:Midlevel Cyclonic Vortices Generated by Mesoseale Convective Systems. Mon. Wea. Rev.,119,104-118.
    Bartels, D. L., J. M. Brown, and E. I. Tollerud,1997:Structure of a midtropospheric vortex induced by a mesoscale convective system. Mon. Wea. Rev.,125, 193-211.
    Chen M and Zheng Y.-G,2004:Vorticity Budget Investigation of a Simulated Long-Lived Mesoscale Vortex in South China. Advances in Atmospheric Sciences,21,928-940.
    Chen, S.S., and W.M. Frank,1993:A numerical study of the genesis of extratropical convective mesovortices. Part I:Evolution and Dynamics. J. Atmos. Sci.,50, 2401-2426.
    Cotton, W. R., and R. A. Anthes,1989:Storm and Cloud Dynamics. Academic Press, 883.
    Coniglio M. C, J.Y. Hwang, and D. J. Stensrud,2010:Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses.
    Cheng Lingshen, and Kuo Yinhua,1992:Mesoscale numerical simulation of the influence of PBL parameterization and moist process on development of a sheer line vortex, C. J. Atmos. Sci.,16,90-100.
    Conzemius, R. J., R. W. Moore, M. T. Montgomery, et al.,2007:Mesoscale convective vortex formation in a weakly sheared moist neutral environment. Journal of Atmospheric Sciences,64,1443-1466.
    Corfidi, S. F., J. H. Merritt, and J. M. Fritsch,1996:Predicting the movement of mesoscale convective complexes. Weather and Forecasting,11,41-46.
    Cotton, W. R., M. S. Lin, R. L. McAnelly, C. J. Tremback,1989:A composite model of mesoscale convective complexes. Mon. Wea. Rev.,117,765-783.
    Cotton, W. R., G D. Alexander, R. Hertenstein, R. L. Walko, R. L. McAnelly, and M. Nicholls,1995:Cloud venting-A review and some new global annual estimates. Earth-Sci. Rev.,39,169-206.
    Davis, C. A., D. A. Ahijevych, and S. B. Trier,2002:Detection and prediction of warm season midtropospheric vortices by the Rapid Update Cycle. Mon. Wea. Rev.,130,24-42
    Chen, S.-J., and L. Dell'Osso,1984:Numerical prediction of the heavy rainfall vortex over eastern Asia monsoon region. J. Meteor. Soc. Japan,62,730-747.
    Davis C, Atkins N, Bartels D, Bosart L, Coniglio M, et al.,2004:The bow echo and MCV experiment:Observations and. opportunities. Bull. Ameri Meteor. Soc.,85, 1075-1093
    Doswell C A,1996:Flash flood forecasting:an ingredients-based methodology. Wea Forecasting,11,560-581.
    Davis, C. A., and T. J. Galarneau JR.,2009:The vertical structure of mesoscale convective vortices. Journal of Atmospheric Sciences,66,686-704.
    Dudia, J.,1989:Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci.,46, 3077-3107.
    Dyer, A. J., and B. B. Hicks,1970:Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc.,96,715-721.
    Durran D R., and J B Klemp,1982:On the effects of moisture on. the Brunt-Vaisala frequency. J. Atmos. Sci.,39,2152-2158.
    Frank, W. M.,1983:The cumulus parameterization problem. Mon. Wea. Rev., 11l, 1859-1871.
    Hertenstein, R. F. A., and W. H. Schubert,1991:Potential vorticity anomalies associated with squall lines. Mon. Wea. Rev.,119,1663-1672.
    Galarneau JR. T. J., L. F. Bosart, C. A. Davis, et al.,2009:Baroclinic transition of a long-lived mesoscale convective vortex. Mon. Wea. Rev.,137,562-584.
    Hong, S.-Y., H.-M. H. Juang, and Q. Zhao,1998:Implementation of prognostic cloud scheme for a regional spectral model, Mon. Wea. Rev.,126,2621-2639.
    Houze, R. A., Jr.,1977:Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev.,105,1540-1567.
    Hong, S.-Y., and H.-L. Pan,1996:Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev.,124,2322-2339.
    Houze, R. A., Jr.,2004:Mesoscale convective systems, Rev. Geophys.,42, RG4003, doi:10.1029/2004RG000150
    James, E. P., and R. H. Johnson,2010:Patterns of precipitation and mesolow evolution in midlatitude mesoscale convective vortices. Mon. Wea. Rev.,138
    Houze, R. A., B. F. Smull, and P. Dodge,1990:Mesoscale organization of springtime rainstorm in Oklahoma. Mon. Wea. Rev.,118,613-654.
    Jirak, I. L., W. R. Cotton, R. L. Mcanelly,2003:Satellite and radar survey of mesoscale convective system development. Monthly Weather Review,131(10): 2428-2449.
    Jorgensen, D.P., and B.F. Smull,1993:Mesovortex circulations seen by airborne Doppler radar within a bow-echo mesoscale convective system. Bulletin of the American Meteorological Society,74,2146-2157.
    Johnston, E. C.,1981:Mesoscale vorticity centers induced by mesoscale convective complexes. M. S. Thesis, Dept. of Meteorology, University of Wisconsin-Madison,54.
    Kain, J. S., and J. M. Fritsch,1990:A one-dimensional entraining/ detraining plume model and its application in convective parameterization. J. Atmos. Sci.,47, 2784-2802.
    Kane, R. J., Jr., C. R. Chelius, and J. M. Fritsch,1987:Precipitation characteristics of mesoscale convective weather systems. J.Climate Appl. Meteor.,26,1345-1357.
    Kain, J. S., and J. M. Fritsch,1993:Convective parameterization for mesoscale models:The Kain-Fritcsh scheme. The representation of cumulus convection in numerical models, K. A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc., 246.
    King, R.,1996:Mid-level vorticity in mesoscale convective systems. Colorado State University Atmospheric Science Paper,606,92.
    Kirk, J. R.,2007:A phased-plot method for diagnosing vorticity concentration mechanisms in mesoscale convective vortices. Mon. Wea. Rev.,135,801-820.
    Knievel J C,2002:A comparison of convectively generated mesoscale vortices in the United States and in China.21st Conference on Severe Local Storms.
    Kirk, J. R.,2003:Comparing the dynamical development of two mesoscale convective vortices. Mon. Wea. Rev.,131,862-890.
    Knievel J C, and R H Johnson,2003:A Scale-Discriminating Vorticity Budget for a Mesoscale Vortex in a Midlatitude, Continental Mesoscale Convective System. J. Atmos. Sci.,60,781-794.
    Kuo, Y. H., and R. A. Anthes,1982:Numerical Simulation of a Mei-Yu system over Southeastern Asia, Papers Meteor. Res.,5,15-36.
    Kuo, C.-K., and C.-H. Horng,1994:A study of finite amplitude barotropic instability. TAO,5,199-243.
    Kuo, Y.-H., L. Cheng, and R. A. Anthes,1986:Mesoscale analysis of the Sichuan flood catastrophe,11-15 July 1981. Mon.Wea. Rev.,114,1984-2003.
    Laing, A., J, M. Fritsch,1993:Mesoscale convective complexes in Africa. Mon Wea Rev,121,2254-2263.
    Maddox, R. A.,1980:Mesoscale convective complexes. Bull Amer Meteor Soc, 61(11):1374-1387.
    Laing, A., and J. M. Fritsch,1993:Mesoscale convective complexes over the Indiamonsoon region. J Climate,6:911-919.
    Maddox, R. A.,1980:An objective technique for separating, macroscale and mesoscale features in meteorological data. Mon. Wea. Rev.,.108,1108-1121.
    Maddox R A.,1983:Large scale meteorological conditions associated with midlatitude mesoscale convective complexes. Mon. Wea. Rev.,111:1475-1493.
    Maddox, R. A., D. M. Rogers, and K. W. Howard,1982:Mesoscale convective complexes over the United States during 1981 -An annual summary. Mon. Wea. Rev.,110,1501-1514.
    McAnelly, R. L., and W. R. Cotton,1986:Meso-(3 scale characteristics of an episode of meso-ascale convective complexes. Mon. Wea. Rev.,114,1740-1770.
    Miller, D., and J. M. Fritsch,1991:Mesoscale convective complexes in the western Pacific region. Mon Wea Rev,119:2978-2992.
    Menard, R. D., and J. M. Fritsch,1989:A mesoscale convective. complex-generated inertially stable warm core vortex. Mon. Wea. Rev.,117,1237-1260.
    Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough,1997: Radiative trans-fer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res.,102 (D14), 16663-16682.
    Parker, M. D., and R. H. Johnson,2000:Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev.,128,3413-3436.
    Orlanski, L. A.,1975:A rational subdivision of scales for atmospheric processes. Bull Amer Meteor Soc,56(5):527-530.
    Paulson, C. A.,1970:The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor.,9,857-861.
    Raymond, D. J., and H. Jiang,1990:A theory for long-lived mesoscale convective systems. J. Atmos. Sci.,47,3067--3077.
    Pielke, R.A, Sr.,2002:Mesoscale meteorological modeling.2nd Edition, Academic Press, San Diego, CA,676.
    Romatschke, U., and R. A. Houze:Characteristics of precipitating convective systems in the premonsoon season of South Asia. Journal of Hydrometeorol, in press.
    Showalter, A. K.,1947:A stability index for forecasting thunderstorms. Bull. Amer. Meteor. Soc.,34,250-252.
    Schubert, W. H., and J. J. Hack,1982:Inertial Stability and Tropical Cyclone. Development. J. Atmos Sci.,39,1687-1697.
    Skamarock W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers,2005:A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR,88.
    Schumacher, R. S., and R. H. Johnson,2008:Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev.,136, 3964-3986.
    Schumacher, R. S., and R. H. Johnson,2009:Quasi-stationary extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Weather and Forecasting,24,555-574.
    Smith, R. K.,1997:Thermodynamics of Moist and Cloudy Air. R. K. Smith(ed), The Physics and Parameterization of Moist Atmospheric Convection. Kluwer Academic Publishers. Printed in the Netherlands, pp 29-58.
    Tao, S. Y., and Y. H. Ding,1981:Observational evidence of the influenceof the Qinghai-Xizang (Tibet) Plateau and the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc.,62,23-30.
    Tao, Z. Y., H. Q. Wang, J. Bai, et al.,1995:A case of mesoscale convective complexes evolving into a vortex. Acta Meteor Sinica,9(2):184-189.
    Tao,S.,and L.Chen,1987:A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology,C.P. Chang and T. N. Krishnamurti, Eds.. Oxford University Press,60-92.
    Trier, S. B., C. A. Davis, and J. D. Tuttle,2000a:Long-lived mesoconvective vortices and their environment. Part I:Observations from the central United States during the 1998 warm season. Mon. Wea. Rev.,128,3376-3395.
    Trier, S. B., and Davis, C. A.,2002:Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex. Mon. Wea. Rev., 130,877-899.
    Trier, S. B., and Davis, C. A.,2007:Mesoscale convective vortices observed during BAMEX. Part II:Influences on secondary deep convection. Mon. Wea. Rev., 135,2051-2075.
    Trier, S. B., C. A. Davis, and W. C. Skamarock,2000b:Long-lived mesoconvective vortices and their environment. Part II:Induced thermodynamic destabilization in idealized simulations. Mon. Wea. Rev.,128,3396-3412.
    Velasco, L. and J. M. Fritsch,1987:Mesoscale convective complexes in Americas. J Geophys Res,192:9591-9613.
    Wang, B.,1987:The development mechanism for Tibetan Plateau warm vortices. J. Atmos. Sci.,44,2978-2994.
    Verlinde, J., and W. R. Cotton,1990:A mesoscale vortex couplet observed in the trailing anvil of a multicellular convective complex. Mon. Wea. Rev.,118, 993-1010.
    Wang, B., and I. Orlanski,1987:Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau. Mon. Wea. Rev.,115,1370-1393.
    Webb, E. K.,1970:Profile relationships:The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc.,96,67-90.
    Wang, W., Y.-H. Kuo, and T. T. Warner,1993:A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau. Mon. Wea. Rev.,121,2542-2561.
    Weisman, M. L., and C. A. Davis,1998:Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci.,55,2603-2622.
    Wicker, L. J. and W. C. Skamarock,2002:Time splitting methods for elastic models using forward time schemes, Mon. Wea. Rev.,130,2088-2097.
    Weisman, M. L., and J. B. Klemp,1982:The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev.,110, 504-520.
    Wu, G.-X., and S.-J. Chen,1985:The effect of mechanical forcing on the formation of a mesoscale vortex. Quart. J. Roy. Meteor. Soc.,111,1049-1070.
    Zhang, D.-L., and J.M. Fritsch,1988:A numerical investigation of a convectively generated, inertially stable, extratropical warm-core mesovortex over land. Part Ⅰ: Structure and evolution. Mon. Wea. Rev.,116,2660-2687.
    Ye, D.,1981:Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62,14-19.
    Zhang, D.-L., and J.M. Fritsch,1988:Numerical sensitivity experiments of varying model physics on the structure, evolution and dynamics of two mesoscale convective systems. J. Atmos. Sci.,45,261-293.
    Zheng, Y. G., Z. Y. Tao, H. Q. Wang, et al.,1999:Enviroment of meso-a-scale convective system development in Yellow Sea region. Progress in Natural Science,9(7):842-848.
    Zhang, D.-L.,1992:The formation of a cooling-induced mesovortex in the trailing stratiform region of a midlatitude squall line. Monthly Weather Review,120, 2763-2785.
    陈廷标,夏良正,1990:数字图象处理.人民邮电出版社,173-176.
    陈丽芳,高坤,徐亚梅,2004:梅雨锋演变与低涡发展的联系.浙江大学学报(理学版),31,103-109.
    程麟生,彭新东,马艳,1995:“91.7”江淮暴雨低涡发展结构和演变的中尺度数值模拟.高原气象,14,270-280.
    陈渭民,2005:卫星气象学(第二版).气象出版社.
    程麟生.KUO Ying-hua,李小莉,等,1993:中国暴雨中尺度系统发生与发展的诊断分析和数值模拟(Ⅰ):诊断分析.应用气象学报,4,257-268.
    丁一汇,1993:1991年江淮流域持续性大暴雨的研究.北京:气象出版社,255.
    方宗义,1985:夏季长江流域中尺度云团的研究.大气科学进展,2(3):334-340.
    段旭,张秀年,许美玲,2004:云南及其周边地区中尺度对流系统时空分布特征.气象学报,26(2):243-249.
    方宗义,项续康,方翔等,2005:2003年7月3日梅雨锋切变线上的p-中尺度暴雨云团分析.应用气象学报,16,569-575.
    费增坪,郑永光,王洪庆,2005:2003年淮河大水期间MCS的普查分析.气象,31(13):18-22.
    方宗义,覃丹宇,2006:暴雨云团的卫星监测和研究进展.应用气象学报,17(5),583-593.
    费增坪,郑永光,张焱等,2008:基于静止卫星红外云图的MCS普查研究进展及标准修订.应用气象学报,19(1):82-90.
    何明元,石汉青,2003:静止气象卫星资料处理.解放军理工大学学报(自然科学版),3(1):75-78.
    高坤,徐亚梅,2001:1999年6月下旬长江中下游梅雨锋低涡扰动的结构研究.大气科学,25,740-756.
    洪毅,李玉柱,陈智源等,2008:FY-2卫星数字云图的细网格定量处理.浙江气象,29(1):3-7.
    江吉喜,项续康,范梅珠,1996:青藏高原夏季中尺度强对流系统的时空分布.应用气象学报,7(4):474-478.
    胡伯威,潘鄂芬,1996:梅雨期长江流域两类气旋性扰动和暴雨.应用气象学报,7,138-144.
    蒋尚程,2006:应用卫星气象学.北京大学出版社.
    李凤昌,1992:数字展宽地球同步卫星扫描云图的定位.气象,18(6):53-55.
    李毓芳,黄安丽,高坤,1986.对流加热在梅雨暴雨系统中的作用.中国科学(B辑),7,765-775.
    李玉兰,王婧熔,郑新江等,1989:我国西南-华南地区中尺度对流复合体(MCC)的研究.大气科学,13(4):417-422.
    廖捷,谈哲敏,2005:一次梅雨锋特大暴雨过程的数值模拟研究:不同尺度天气系统的影响作用.气象学报,63,771-789.
    林锦祥,邓玉娇,2006:FY2-C静止气象卫星资料处理方法.新疆气象,29(5):42-43.
    廖胜石,寿绍文,2004:一次江淮暴雨中中尺度低涡的数值模拟及分析.南京气象学院学报,27,753-759
    马禹,王旭,陶祖钰,1997:中国及其邻近地区中尺度对流系统的普查和时空分布特征.自然科学进展,7(6):701-706.
    靳冰凌,王辛方,孙仲毅等,2010:2009年8月17日河南北部区域性暴雨诊断分析.气象与环境科学,33,121-125.
    马禹,王旭,陶祖钰,1998:新疆特大暴雨过程中的中尺度对流系统特征.新疆气象,21(6):3-7.
    石定朴,朱文琴,王洪庆等,1995:中尺度对流系统云图云顶黑体温度的分析.气 象学报,54(5):600-611.
    施曙,赵思雄,1994:梅雨锋上与强暴雨有关的中低压及其三维环境流场诊断研究,大气科学,18,476-484.
    宋敬平,杜冠惠,张湘建,1991:日本静止气象卫星GMS图象的简单定位算法及其应用.海洋预报,8(4):35-40.
    束宇,播益农,2010:红外云图上中尺度对流系统的自动识别.南京大学学报(自然科学),46(3),337-348.
    孙建华,周海光,赵思雄,2006:2003年7月4~5日淮河流域大暴雨中尺度对流系统的观测分析.大气科学,30,1103-1118
    陶诗言,1980:中国之暴雨,北京:科学出版社.
    孙淑清,杜长萱,1996:梅雨锋的维持与其上扰动的发展特征.应用气象学报,7,154-159.
    陶诗言,张小玲,张顺利,2004:长江流域梅雨锋暴雨灾害研究.北京:气象出版社,192.
    王元,2006:我国中尺度涡旋研究的若干进展和回顾.“第一次中尺度强对流天气系统综合分析研究”研讨会.北京.
    陶祖钰,王洪庆,王旭等,1998:1995年中国的中-α尺度对流系统.气象学报,56(2):166-177.
    吴国雄,蔡雅萍,唐晓菁,1995:湿位涡和倾斜涡度发展.气象学报,53,387-404.
    谢静芳,王晓明,1995:东北地区中尺度对流复合体的卫星云图特征.气象,21(5):41-44.
    项续康,江吉喜,1995:中国南方地区的中尺度对流复合体.应用气象学报,6(1):9-17.
    徐亚梅,高坤,2002:1998年7月22日长江中游中p低涡的数值模拟及初步分析.气象学报,60,85-95.
    杨本相,陶祖钰,2005:青藏高原东南部MCC的地域特点分析.气象学报,63(2):236-242.
    阎凤霞,寿绍文,张艳玲等,2005.一次江淮暴雨过程中干空气侵入的诊断分析.南京气象学院学报,28,117-124.
    杨大升,刘玉滨,刘式适,1980:动力气象学.北京:气象出版社,34-37.
    袁源,2004:基于频域双线性插值的数字水印算法.计算机应用,24(1):87-89.
    郁凡,陈渭民,1994:双光谱云图的云分类探讨.南京气象学院学报,17(1):117-124.
    赵思雄,陶祖钰,孙建华等,2004:长江流域梅雨锋暴雨机理的分析研究.北京:气象出版社,281 pp.
    郑永光,朱佩君,陈敏等,2004:1993-1996黄海及其周边地区MaCS的普查分析.北京大学学报(自然科学版),30(1):66-72.
    郑永光,朱佩君,白洁等,2003:Windows下静止卫星云图处理软件.气象,29(6):16-21.
    郑永光,陈炯,费增坪等,2007:2003淮河流域持续暴雨的云系特征及环境条件.北京大学学报(自然科学版),43(2):157-165.
    郑永光,张春喜,陈炯等,2007:用NCEP资料分析华北暖季对流性天气的气候背景.北京大学学报(自然科学版),43(5),600-608.
    郑永光,陈炯,朱佩君,2008:中国及周边地区夏季中尺度对流系统分布及其日变化特征.科学通报,53(4):471-481.
    钟晓平,1993:地球静止卫星云图象点定位方法之比较.高原气象,12(4): 392-399.
    朱乾根,林锦瑞,寿绍文,1981:天气学原理和方法.北京:气象出版社,649.
    朱爱军,潘益农,2007:中国东部地区一个中尺度对流涡旋的涡度收支分析.南京大学学报(自然科学),43,260-269.
    Tao Shiyan and Chen Longxun,A review of recent research on the East Asian summer monsoon in China,Monsoon Meteorology,Oxford University Press,1987,60-92.
    Lau KM, Yang S. Climatology and interannual variability of the southeast Asian summer monsoon. Adv Atmos Sci,1997,14:141-162
    Webster P J, Magana V O, Palmer T N, et al. Monsoon processes, predictability and the prospects for prediction. J GeophysRes (TOGA special issue), 1998,103:14451-14510
    Hsu KL, Gao X, Sorooshian S, et al. Precipitation estimation from remotely sensed information using artificial neural networks[J]. J App Meteor,1997,36 (9) 1176-1190.
    Wu G X, Zhang Y S, Tibetan Plateau forcing and monsoon onset in South Asia and Southern China Sea. Mon Wea Rev,1998,126:913-927
    Ding Y H,Liu Y J. Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX field experiment in 1998 [J]. J Meteor Soc Japan, 2001,79 (1B):255-276.
    Wu R,Wang B. Mulit2stage onset of the summermonsoon over the western North Pacific[J]. Climate Dyn,2001,17 (2):277-289.
    Ding Y H,Liu Y J. Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX field experiment in 1998 [J]. J Meteor Soc Japan, 2001,79 (IB):255-276.
    Islam M N,Uyeda H. TRMM observed vertical structure and diurnal variation of p recip itation in south Asia [R]//Porceedings in the IEEE International Geoscience and Remote Sensing Symposium (IGARSS06),2006.
    Houze R A J. Stratiform rain in the trop ics as seen by TRMM precipitation radar[J]. J Climate,2003,16 (12):1739-1756.
    GebremichaelM, KrajewskiW F,MorrisseyM L, et al. A detailed evaluation of GPCP 1 ° daily rainfall estimates over the MissippiRiver basin[J]. J App 1Meteor, 2005,44 (5):665-681.
    Awada J, Iguchi T,Okamoto K. Rain type classification algorithm for TRMM p recip itation radar[R]//Paper Presented at 1997 International Geoscience and Remote Sensing Symposium, Inst of Electr and Electron, Eng, Singapore,1997.
    Dai A, Giorgi F, Trenberth K E. Global p recip itation and thunderstorm frequencies. Part II:diurnal variations [J]. J Climate,2001,14 (6):1112-1128.
    Houze R A J. Stratiform p recip itation in regions of convection:A meteorological paradox [J]. Bull Amer Meteor Soc,1997,78 (10):2179-2196.
    Negri A J, Bell T L, Xu L. Samp ling of the diurnal cycle of precipitation using TRMM [J]. J Atmos Oceanic Technol,2002,19(9):1333-1344.
    Wolff D, FisherB. Comparison of TRMM satellite and ground validation rain estimates[J]. Geophysi Res Abstracts,2007,9 (10):11156.
    Xie S P, Xu H M, Saji N H, et al. Role of narrow mountains in large-scale organization of Asian monsoon convection [J]. J Climate,2006,19 (14): 3420-3429.
    O'Neill L W, Chelton D B, Esbensen S K. High2resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas return current [J]. J Climate,2005,18 (14):2706-2723.
    Chen S H. The impact of assimilating SSM / I and QuikSCAT satellite winds on hurricane isidore simulations[J]. Mon Wea Rev,2007,135 (2):549-566.
    Houze R A J. Cloud dynamics[M]. New York:Academic Press,1993:573.
    钱维宏,朱亚芬.亚洲夏季风爆发的深对流特征[J].气象学报,2001,59(5):579-590
    何金海,朱乾根,Murakami M. TBB资料揭示的亚澳季风区季节转换及亚洲夏季风建立的特征[J].热带气象学报,1996,12(1):34-42
    陈隆勋,李薇,赵平,陶诗言,东亚地区夏季风爆发过程[J],气象与环境科学,2000.12 345-355
    吴国雄,张永生.青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅰ[J].爆发地点.大气科学,1998,22:825-838
    朱亚芬,李戈林,钱维宏,等.不同资料揭示南海夏季风爆发特征的比较[J].热带气象学报,2001,17(1):34-44.
    吴国雄,张永生.青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅱ[J].爆发时间.大气科学,1999,23:51-61
    钱永甫,江静,张艳,姚永红,徐忠峰.亚洲热带夏季风的首发地区和机理研究[J].气象学报.2000.4 130-139
    徐海明,何金海,谢尚平.卫星资料揭示的中尺度地形对南海夏季气候的影响[J].大气科学,2007,31(5):1021-1031.
    朱素行,徐海明,何金海.高分辨率卫星实测资料揭示的近年亚洲热带夏季风爆发进程[J].南京气象学院学报.2008.12(6):790-802.
    王鸽.1982--2000年中国区域地表反照率时空分布特征[J].高原气象,2010,29(1):146-151
    滕伟成,管磊.西北太平洋NOAA-AVHRR海表温度日变化校正研究[J].热带海洋学报,2012,31(4):1-7
    王黎娟.东亚热带—副热带季风活动特征及其与热力强迫的关系[D].南京:南京信息工程大学大气科学学院,2006:78
    MOREAU R D. Some developments in the theory of turbulence. J. Fluid Mech., 1961,106:27-47.
    BETCHOV R P, Burgers D and Foster M. Test of helicity as a tornado forcast parameter. Preprints,16th conf. Severe Local Storms, Kananaskis Park:AB, camda, Amer. Meteor. Soc.,1961:588-592.
    MOFFATT H K. On the knottedness of tangled vortex lines. J. Fluid. Mech.,1969,35: 117-128.
    伍荣生,方娟,韩瑛.热成风螺旋度及其在天气动力学中的应用.中国气象学会 2004年年会大会特邀报告汇编,2004,30-35.
    喻自凤.登陆热带气旋暴雨理论研究与数值模拟[C].2005
    喻自凤,余晖.第二类热成风螺旋度对登陆台风降水的诊断能力分析台风泰利个例研究[J].气象学报,2009,67(5):851-863.
    苏同华,薛峰.东亚夏季风环流和雨带的季节内变化[J].大气科学,2010,34(3):611-628.
    TANG Jie, YUAN Hui-ling and Yuan WANG (2012):The Use of Shear Gradient Vorticity in Tropical Cyclone Heavy Precipitation:A High-Resolution Numerical Case Study. J. of Tropical Meteor.18(4):403-411. (SCI)
    Maddox R A. Mesoscale convective complexes. Bull A mer Meteor Soc,1980, 61 (11):137421387.
    Zhang D L, J M Frit sch. A numerical investigation of a convectively generated, inertially stable,ext rat ropical warmcore mesovortex over land.Part I:Structure and evolution. Monthly Weather Review,1988,116 (12):2660-2687.
    Bartels D L, R A Maddox. Midlevel cyclonicvortices generated by mesoseale convective systems. Monthly Weather Review,1991,119 (1):104~118.
    Verlinde J, W R Cotton. A mesoscale vortexcouplet observed in the trailing anvil of a multicellular convective complex. Monthly Weather Review,1990,118 (5): 993-1010.
    Skamarock W C, M L Weisman, J B Klemp.Three2dimensional evolution of simulated longlived squall lines. Journal of the Atmospheric Sciences,1994,51 (17): 2563-2584.
    Davis C A, Weisman M L. Balanced dynamics ofmesoscale vortices produced in simulated convective systems. Journal of the Atmospheric Sciences,1994,51 (14): 2005-2030.
    Kirk J R. Comparing the dynamical develop2ment of two mesoscale convective vortices.Monthly Weather Review,2003,131(5):862~890.
    Augustine J A, Howard K W. Mesoscale convective complexesover the United States during 1986 and 1987. Mon Wea Rev,1991,119 (7):157521589
    马禹,王旭,陶祖钰.中国及其邻近地区中尺度对流系统的普查和时空分布特
    郑永光,朱佩君,陈敏,等.1993—1996黄海及其周边地区MaCS的普查分析.北京大学学报(自然科学版),2004,40:66272.
    费增坪,郑永光,王洪庆.2003年淮河大水期间MCS的普查分析.气象,2005,31(13):18222.
    Johnston E C.1981.Mesoscale vorticity centers induced by mesoscale convective complexes.Madison:Department of Meteorology, University of Wisconsin.
    项续康,江吉喜.我国南方地区的中尺度对流复合体.应用气象学报,1995,6(1):1-17
    廖捷,谈哲敏.一次梅雨锋特大暴雨过程的数值模拟研究:不同尺度天气系统的影响作用.气象学报,2005,10(5):771~788
    Anderson, C. J., and R. W. Arritt,1998:Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev.,126,578-599.
    Augustine, J. A.,1985:An automated method for the documentation of cloud-top characteristics of mesoscale convective systems. NOAA Tech. Memo. ERL ESG-10, Dept. of Commerce, Boulder, CO,121 pp.
    Augustine, J. A., K. W. Howard,1988:Mesoscale convective complexes over United States during 1985. Monthly Weather Review,116:686-701.
    Augustine, J. A., K. W. Howard,1991:Mesoscale convective complexes over United States during 1986 and 1987. Monthly Weather Review,119:1575-1589.
    Bluestein, H. B., and M. H. Jain,1985:Formation of mesoscale lines of precipitation:Severe squall lines in Oklahoma during the spring. J. Atmos. Sci.,42, 1711-1732.
    Bluestein, H. B., G. T. Marx, and M. H. Jain,1987:Formation of mesoscale lines of precipitation:Nonsevere squall lines in Oklahoma during the spring. Mon. Wea. Rev.,115,2719-2727.
    Coniglio M. C, J.Y. Hwang, and D. J. Stensrud,2010:Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses.
    Corfidi, S. F., J. H. Merritt, and J. M. Fritsch,1996:Predicting the movement of mesoscale convective complexes. Weather and Forecasting,11,41-46.
    Cotton, W. R., G. D. Alexander, R. Hertenstein, R. L. Walko, R. L. McAnelly, and M. Nicholls,1995:Cloud venting-A review and some new global annual estimates. Earth-Sci. Rev.,39,169-206.
    Cotton, W. R., M. S. Lin, R. L. McAnelly, C. J. Tremback,1989:A composite model of mesoscale convective complexes. Mon. Wea. Rev.,117,765-783.
    Houze, R. A., B. F. Smull, and P. Dodge,1990:Mesoscale organization of springtime rainstorm in Oklahoma. Mon. Wea. Rev.,118,613-654.
    谢静芳,王晓明,1995:东北地区中尺度对流复合体的卫星云图特征.气象,21(5):41-44.
    杨本相,陶祖钰,2005:青藏高原东南部MCC的地域特点分析.气象学报,63(2):236-242.
    郁凡,陈渭民,1994:双光谱云图的云分类探讨.南京气象学院学报,17(1):117-124.
    郑永光,陈炯,费增坪等,2007:2003淮河流域持续暴雨的云系特征及环境条件.北京大学学报(自然科学版),43(2):157-165.
    郑永光,朱佩君,陈敏等,2004:1993-1996黄海及其周边地区MαCS的普查分析.北京大学学报(自然科学版),30(1):66-72.
    郑永光,陈炯,朱佩君,2008:中国及周边地区夏季中尺度对流系统分布及其日变化特征.科学通报,53(4):471-481.
    郁凡,陈渭民,1994:双光谱云图的云分类探讨.南京气象学院学报,17(1):117-124.
    王微,潘益农,束宇,2011:中国东部夏季中尺度对流系统以及中尺度对流涡旋的特征.南京大学学报(自然科学版),47(6):692-702
    程麟生,彭新东,马艳,1995:“91.7”江淮暴雨低涡发展结构和演变的中尺度数值模拟.高原气象,14,270-280.
    程麟生.KUO Ying-hua,李小莉,等,1993:中国暴雨中尺度系统发生与发展的诊断分析和数值模拟(Ⅰ):诊断分析.应用气象学报,4,257-268.
    方宗义,项续康,方翔等,2005:2003年7月3日梅雨锋切变线上的β-中尺度暴雨云团分析.应用气象学报,16,569-575.
    丁一汇,1993:1991年江淮流域持续性大暴雨的研究.北京:气象出版社,255
    高坤,徐亚梅,2001:1999年6月下旬长江中下游梅雨锋低涡扰动的结构研究.大气科学,25,740-756.
    李毓芳,黄安丽,高坤,1986.对流加热在梅雨暴雨系统中的作用.中国科学(B辑),7,765-775.
    胡伯威,潘鄂芬,1996:梅雨期长江流域两类气旋性扰动和暴雨.应用气象学报,7,138-144.
    廖捷,谈哲敏,2005:一次梅雨锋特大暴雨过程的数值模拟研究:不同尺度天气系统的影响作用.气象学报,63,771-789.
    靳冰凌,王辛方,孙仲毅等,2010:2009年8月17日河南北部区域性暴雨诊断分析.气象与环境科学,33,121-125.
    廖胜石,寿绍文,2004:一次江淮暴雨中中尺度低涡的数值模拟及分析.南京气象学院学报,27,753-759
    施曙,赵思雄,1994:梅雨锋上与强暴雨有关的中低压及其三维环境流场诊断研究,大气科学,18,476-484.
    LIU Jian-wen, GU Hu, LI Yao-dong, et al. Physical Quantity of Weather Anaylsis and Prediction. [M]. Meteor. Pre.,2005(in Chinese).
    Chun-Chieh Wu, Kerry A. Emanuel. Interaction of a Baroclinic Vortex with Background Shear:Application to Hurricane Movement [J]. J. Atomos. Sci., 1993,50:62-76.
    Steven W. Lyons. Development of Mesoscale Vortices along a Subtropical Frontal Remnant [J]. Mon. Wea. Rev.,1988,116:485-488.
    Lars Wiegand, Arwen Twitchett, Cornelia Schwierz, Peter Knippertz. Heavy precipitation at the Alpine south side and Saharan dust over central Europe:A predictability study using TIGGE [J]. Wea. and Fore.,1998,19:45-55.
    Yi-Hsuan Huang, Chun-Chieh Wu, Yuqing Wang. The Influence of Island Topography on Typhoon Track Deflection Yi-Hsuan Huang, Chun-Chieh Wu, Yuqing Wang [J]. Mon.Wea. Rev.,2011,139:1708-1727.
    Mark R. Jury, Sen Chiao. Meso-Circulation Associated with Summer Convection over the Central Antilles [J]. Ear, Inter.,1997,34:347-382.
    Ma, X. Ji, J. D. Neelin, C. R. Mechanisms for Precipitation Variability of the Eastern Brazil/SACZ Convective Margin H.-Y [J]. Mecho. Jour, of Cli.,2011,24: 3445-3456.
    Micheld S. Mesquita, David E. Atkinson, Kevin I. Hodges. Characteristics and Variability of Storm Tracks in the North Pacific, Bering Sea, and Alaska [J]. Jour. of Cli.,2010,23:294-311.
    Carl J. Schreck, III, John Molinari. Tropical Cyclogenesis Associated with Kelvin Waves and the Madden-Julian Oscillation [J]. Mon. Wea. Rev.,2011,365-378.
    CHEN Lian-shou. MENG Zhi-yong. Recent Progress on Tropical Cyclone Research in China [C]. Adv. in Atmos. Sci.2002,19:103-110.
    CAI Ze-yi. XU Liang-yan. XU Yuan-tai. a Study on the Tropical Cyclone Disasters in China [J]. Sci. Atmos. Sin.1994,62:26-39.
    WANG Xiao-ling. REN Fu-min. Variations in frequency and intensity of landfall Tropical Cyclones over China during 1951-2004 [J]. Mari. Fore.,2008,25: 65-73.
    H. Huntrieser, H. H. Schiesser, W. Schmid, A. Waldvogel. Comparison of Traditional and Newly Developed Thunderstorm Indices for Switzerland [J]. Wea. and Fore., 1997,12:108-125.
    G. A. Mills, J. R. Colquhoun. Objective Prediction of Severe Thunderstorm Environments; Preliminary Results Linking a Decision Tree with an Operational Regional NWP Model [J]. Wea and Fore.,1998,13:1078-1092
    Koji Yamazaki. three Conditions of Convection and Heavy Rain Forecast Method by the index of KYI [J]. Res. Times.,1977,27:9-10(in Japanese).
    GAO Shou-ting, SUN Shu-qing. Determing the Instablity of Mesoscale Perturabtions with Richardson Number [J]. Chin. J. Atmos. Sci.,1986,10:171-182(in Chinese).
    CHEN Xiao-hong, HAO Ying, ZHOU Hou-fu. Using Convection Indices to analyze a Peculiar Hail Weather Process [J]. Sci. Meteor. Sin.,2007,27:335-341.
    ZHOU Hou-fu, QIU Ming-yan, ZHANG Ai-min. Analysis on Short-Time Forecast of Severe Convection Weather Based on Stability and Energy Indices [J]. Plat. Meteor.,2006,4:714-722.
    Lucy LIU. a Study of Severe Convective Indices and Their Potential Predictablity to Severe Convective Storms [J]. Meteor. And Tech.,2003,31:147-151.
    Ducrocq V., Tzanos D., Senesi S. Diagnostic tools using a mesoscale NWP Model for early warning of convection [J]. Meteor. Appl.,1998,5:329-349.
    ZHAO Pei-juan, WU Qin, ZHENG Shi-lin. Diagnostic Analysis and Forecasting System of the Severe Convective Weather in HeNan Province [J]. Meteor. Mon., 2010,36:33-38(in Chinese).
    Koji Yamazaki. three Conditions of Convection and Heavy Rain Forecast Method by the index of KYI [J]. Res. Times.,1977,27:9-10(in Japanese).
    REN Su-ling, LIU Yi-min, WU Guo-xiong. Interaction Between Typhoon and Western Pacific Subtropical Anticyclone:Data Analyses and Numerical Experments [J]. Acta Meteor. Sin.,2008,65:329-340.
    RUAN Jun-shi. an Analysis of the Movement, Growth and Structure of an Off-Shore Typhoon [J]. Jour, of Nanj. Ins. of Meteor.,13:348-358.
    Morris L. Weisman, Joseph B. Klemp. The Structure and Classification of Numerically Simulated Convective Stormsin Directionally Varying Wind Shears [J]. Mon. Wea. Rev.,1984,112:2479-2498.
    TANG Jie. Preliminary Analysis on the Track Error of Typhoon Operational Forecasts in the Western North Pacific [J]. Atmos. Sci. Rea. And App.,2009,2: 21-31.
    H. Huntrieser, H. H. Schiesser, W. Schmid, A. Waldvogel. Comparison of Traditional and Newly Developed Thunderstorm Indices for Switzerland [J]. Wea. and Fore., 1997,12:108-125.
    ZHANG Jian-hai, HUANG Han-zhong, HE Yong. Diagnosis and Simulation of Track of Typhoon Morakot [J]., Meteor. Sci. and Tech.,2011,39:182-189.
    Koji Yamazaki. three Conditions of Convection and Heavy Rain Forecast Method by the index of KYI [J]. Res. Times.,1977,27:9-10(in Japanese).
    GAO Shou-ting, SUN Shu-qing. Determing the Instablity of Mesoscale Perturabtions with Richardson Number [J]. Chin. J. Atmos. Sci.,1986,10:171-182.
    G. A. Mills, J. R. Colquhoun. Objective Prediction of Severe Thunderstorm Environments:Preliminary Results Linking a Decision Tree with an Operational Regional NWP Model [J]. Wea and Fore.,1998,13:1078-1092.
    CHEN Xiao-hong, HAO Ying, ZHOU Hou-fu. Using Convection Indices to analyze a Peculiar Hail Weather Process [J]. Sci. Meteor. Sin.,2007,27:335-341 (in Chinese).
    ZHOU Hou-fu, QIU Ming-yan, ZHANG Ai-min. Analysis on Short-Time Forecast of Severe Convection Weather Based on Stability and Energy Indices [J]. Plat. Meteor.,2006,4:714-722.
    Lucy LIU. a Study of Severe Convective Indices and Their Potential Predictablity to Severe Convective Storms [J]. Meteor. And Tech.,2003,31:147-151(in Chinese).
    Morris L. Weisman, Joseph B. Klemp. The Structure and Classification of Numerically Simulated Convective Stormsin Directionally Varying Wind Shears [J]. Mon. Wea. Rev.,1984,112:247
    ZHAO Pei-juan, WU Qin, ZHENG Shi-lin. Diagnostic Analysis and Forecasting System of the Severe Convective Weather in HeNan Province [J]. Meteor. Mon., 2010,36:33-38(in Chinese).
    Erik N. Rasmussen, David O. A Baseline Climatology of Sounding-Derived Supercell and Tornado Forecast Indices [J]. Wea. and Fore.,1998,13:1148-1164.
    Roger M. Wakimoto. Forecasting Dry Microburst Activity over the High Plains [J]. Mon. Wea. Rev.,1985,113:1131-1143.
    SHEN Shu-qin. The tronadoes in front of Tropical Cyclone. Beinjing, Meteor. Pub., 1999:109-111.
    Ducrocq V., Tzanos D., Senesi S. Diagnostic tools using a mesoscale NWP Model for early warning of convection [J]. Meteor. Appl.,1998,5:329-349.
    Editorial Committee of Atmospheric Science Dictionary. Atmospheric Science Dictionary. Meteor. Pre.,1994(in Chinese).
    Doswell C. A., Davies-Johns R., Keller D. L. On summary measures of skill in rare event forecasting based on contingency tables [J]. Wea. Fore.,1994,9:625-629.
    TANG Jie. Preliminary Analysis on the Track Error of Typhoon Operational Forecasts in the Western North Pacific [J]. Atmos. Sci. Rea. And App.,2009,2: 21-31 (in Chinese).
    REN Su-ling, LIU Yi-min, WU Guo-xiong. Interaction Between Typhoon and Western Pacific Subtropical Anticyclone:Data Analyses and Numerical Experments [J]. Acta Meteor. Sin.,2008,65:329-340.
    Smith R K. Thermodynamics of moist and cloudy [J]. Kluwer Acad. Pub.,1997:29-58.
    RUAN Jun-shi. an Analysis of the Movement, Growth and Structure of an Off-Shore Typhoon [J]. Jour. of Nanj. Ins. of Meteor.,13:348-358(in Chinese).
    高晓梅,江静,马守强,徐文正.影响山东的热带气旋年际和年代际变化[J].气象.2008,34:78-85.
    王雷,李晓丽,徐哲永.近50年影响舟山的热带气旋气候特征分析[J].海洋预报.2011,28:36-43
    蒋荣复,林永强,黄伟伟.福建沿海热带气旋与地形关系的初步分析[J].气象.2008,66:235-250
    项瑛,肖卉,陶玫.影响江苏的热带气旋气候特征分析[Z].青岛市防风暴潮预案

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700