草鱼Aminopeptidase N基因的克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是水产动物营养的重要组成部分,而氨肽酶N在蛋白质的消化和代谢平衡方面起着重要作用。本实验采用RACE技术克隆草鱼氨肽酶NcDNA全序列,对其结构与功能进行分析。并利用实时荧光定量PCR方法对氨肽酶N基因在草鱼发育过程中表达量的变化、在不同组织的表达差异及肠道氨肽酶N昼夜表达变化进行了研究分析。此外,研究了不同蛋白水平和蛋白源对APN基因在前肠的表达影响的特征。本研究将为氨肽酶N基因功能与结构的关系和揭示水产动物对蛋白质消化代谢的分子机理研究奠定基础。本实验的主要研究内容及结果如下:
     1、对水产动物营养代谢相关基因进行分子克隆,是开展水产动物分子营养学研究的前提。本实验采用RT-PCR和RACE等技术克隆草鱼氨肽酶NcDNA全序列,并对其进行了生物信息学分析。结果发现,APN cDNA全长为3258bp,包含2679bp的开放阅读框,编码892个氨基酸;草鱼与斑马鱼基因同源性和编码氨基酸同源性分别为81.5%和75.4%,与其他动物同源性分别为58.8%-61.2%和54.3%-60.2%。系统进化分析表明,草鱼APN基因与斑马鱼(Danio rerio)的亲缘关系最近。应用生物信息学分析,发现APN基因编码蛋白的分子量为100.61ku,等电点为5.18;该蛋白无信号肽,而具有与哺乳动物十分相似的1个螺旋跨膜结构,但跨膜区氨基酸同源性较低。
     2、为了进一步深入了解氨肽酶N与草鱼蛋白质消化代谢生理各方面存在着怎样的相互关系。本实验采用Real time PCR技术在基因表达水平上对氨肽酶N基因在草鱼发育过程中表达量的变化、在不同组织的表达差异及肠道氨肽酶N昼夜表达变化进行了研究分析。基因的发育表达,结果显示:草鱼胚胎发育时期,APN mRNA表达量相对较低,在原肠期最高;胚后发育时期,从出膜期到出膜第7d,总体上呈现递增的趋势;而从出膜第14d到35d基因表达变化有波动,总体上低于第7d的表达丰度;组织差异表达,结果显示APN基因在草鱼前肠、中肠和后肠均有较高的表达量,以前肠组织表达量最高;昼夜节律研究发现,肠道APN基因06:00-18:00的表达量较18:00-06:00高。
     3、为了研究不同蛋白水平和蛋白种类饲料对草鱼肠道APN基因表达的影响的特征。本研究利用草鱼生长实验,设计2种蛋白源和5种蛋白水平饲料饲养草鱼鱼种,实时定量PCR检测草鱼前肠APN mRNA相对表达量。不同蛋白源对草鱼前肠APN mRNA表达影响结果表明,豆粕组除第7d草鱼前肠APN mRNA相对表达丰度与鱼粉组无显著差异外,其他时间都有显著差异(p<0.05),且都比鱼粉组要低。不同蛋白水平对草鱼肠道组织APN mRNA表达影响实验结果显示总体上,不同时间段不同蛋白水平从22.3%CP到27.3%CP前肠APN mRNA相对表达丰度有升高趋势,而从27.3%CP到42.1%CP相对表达丰度呈现一种降低趋势。因此认为,草鱼氨肽酶N表达量与草鱼生长发育密切相关,具有组织差异性,且呈现昼夜节律。草鱼肠道氨肽酶N基因表达对饲料蛋白营养存在一定的适应反应。
Protein is an important part of aquatic animal nutrition,and aminopeptidase N plays an important role in the digestion of protein and the metabolic balance.In this study, aminopeptidase N cDNA's full-length sequences has been cloned,and its structure and functions has been analyzed.The changes of APN gene expression in the grass carp development process and the APN gene expression differences of the different tissues, and the changes of APN gene expression of the circadian in the intestinal have been studied by a real-time PCR technology.In this study,also,the different protein level and protein source influencing on the APN gene expression in the foregut has been studied.Therefore, this study could lay the foundation for the reserch of the relationship between gene function and structure of aminopeptidase N and revealing the molecular mechanism of protein digestion and metabolism in aquatic animals.The major results are as follows:
     1.The means of RT-PCR、RACE techniques were used to clone the APN full-length cDNA gene sequence. The bioinformatic analysis of APN gene was carried out.The results showed that:the full length of cDNA sequence of APN had3258nucleotides, including27nucleotides at5'UTR and552nucleotides at3'UTR; its open reading frame had2679nucleotides encoding a892-amino-acid peptide;the deduced amino acid sequences of APN gene from C. idellus displayed the highest similarity with Danio rerio (75.4%), but varied to other animals from61.2%to58.8%;the encoded protein molecular weight was predicted at100.61ku with p1at5.18; phylogenetic analysis showed that the sequence of APN gene was clustered with D. rerio as its closest neighbor, which shared a sequence similarity of81.5%, and had lower similarity with other animals from60.2%to54.3%;the APN protein had no signal peptide and one helix trans-membrane region, but its amino acid sequence of the region demonstrated a low homology relationship to other vertebrates.
     2.The mRNA abundance of APN gene was assayed using real-time PCR.The results showed that:during embryonic development, the APN mRNA expression is relatively low,while the APN gene was expressed at highest level in the gastrula stage;during post-embryonic,the mRNA abundance of APN gene, in general, showed a consistent increasing trend from hatching stage to7d post-hatch; and.the APN gene expression changes with some range of fluctuation during14d post-hatch to35d post-hatch,but lower than he7d post-hatch, in general; the APN gene was differentially expressed at different tissues with a gradient from higher to lower among the tissues of fore-intestine, hind-intestine, liver, mid-intestine, kidney, muscle, spleen and heart, respectivelty.The effects of the circadian rhythms on APN expression of C. Idellus showed that there was a time-dependent pattern at higher rhythm during06:00-18:00and lower rhythm during18:00-06:00.
     3.The effects of the feeds containing different protein sources on the APN gene expression in the foregut showed that there were no significant differences on the APN mRNA expression in the foregut between the FM group and SM Group at7d; there were significant differences between the FM group and SM Group from14to56d(P<0.05);and the APN mRNA expression of the SM Group was lower than that of the FM group. The effects of the feeds containing different protein levels on the APN gene expression in the foregut showed that, in general, there was a consistent increasing trend from the22.3%CP to27.3%CP group; and there was a consistent downward trend from the27.3%CP to42.1%CP group at different time periods. The results indicated that the APN mRNA expression of Ctenopharyngodon idella correlates tightly to the developmental stage, and showed tissue variability and circadian rhythms.The APN mRNA expression of Ctenopharyngodon idella had adaptive reaction to protein nutrition.
引文
1.Nakanishi,K.,Yaoi,k.,Nagino,Y.,et al.Aminopeptidase N isoforms from the midgut of Bombyx mori and PluteUa xylostella-their classification and the factors that determine their binding specificity to Bacillus thuringiensis CrylA toxin[J].FEBS Lett.2002, 519:215-220.
    2.江米足,叶瑞云.小肠粘膜刷状缘肽酶与蛋白质的消化和吸收[J].实用儿童临床杂志,1996,11(3):173-174.
    3.Kilcawley N,Wilkinson G and Fox F.Determination of key enzyme activities in commercial peptidase and lipase preparations from microbial or animal sources[J]. Enzyme and Microbial Technology,2002,31(3):310-320.
    4.Antczak C,De Meester I,Bauvois B.Ectopeptidases in pathophysiology[J].Bioessays,2 001,23(3):251-260.
    5.Rawlings N D,Barrett A J.MEROPS:The peptidase database[J].Nucleic Acids Res,19 99,27(1):325-331.
    6.Tadanobu N,Seiichi N,Nobuyshi I.Purification and properties of leucine aminopeptidase I from Aspergillus oryzae[J]. Agriculture and Biology Chemistry,1973,37(4):757-765.
    7.Hua,G.,Tsukamoto,k.,Ikezawa,H..Cloning and sequence analysis of the aminopeptidase N isozyme(APN2) from Bombyx mori midgut[J].Camp.Biochem.Physiol.1998,121:213-222.
    8.Pfleiderer G,Celliers P G.Isolation of an aminopeptidase from Kidney particles[J]. Biochem Z,1963,339(12):186-189.
    9.李月廷,祝学光,许漫山,等.氨肽酶N在兔肝脏的表达及胆汁中活性的研究[J].中华实验外科杂志,2001,18(6):594.
    10.明晓波,尹鑫,张颖,等.氨肽酶N mRNA在雏鸡不同组织中的表达情况[J].中国兽医科学,2009,39(12):1089-1093.
    11.刘京国,赵晓萌,杨爱珍,等.棉铃虫氨肽酶N基因片段克隆、表达和内源蛋白检测[J].北京农学院学报,2010,25(1):20-23.
    12.涂向东,谢飞,吴玉水,等.人氨肽酶N基因克隆和原核表达[J].医学研究生学报,2004,17(8):691-693.
    13.赖庆安,刘树滔,卢菀华,等.鸡氨肽酶N在大肠杆菌中的表达、纯化与部分酶学性质分析[J].生物工程学报,2008,24(3):381-386.
    H.Chiou T K, Matsui T,Konosu S.Purification and properties of an aminopeptidase from Alaska pollack,Theragra chalcogramma,roe[J]Journal of Biochemistry,1989,105(4):505-509.
    15.Hajjou M,Gal Y L.Purification and characterization of an aminopeptidase from tuna (Thunnus albacares) pyloric caeca[J].Biochim Biophys Acta,1994,1204(1):1-13.
    16.刘冰心,曹敏杰,蔡秋凤,等.草鱼肌肉亮氨酸氨肽酶的分离纯化与性质研究[J].集美大学学报:自然科学版,,2008,13(1):24-29.
    17.常洪雷.棉铃虫Bt毒素受体蛋白-氨肽酶N1基因克隆及其在昆虫细胞系的表达[D].北京:中国农业科学院,2006.
    18.涂国刚.1,3,4-噻二唑类氨肽酶N抑制剂的设计、合成及活性研究[D].山东:山东大学,2009.
    19.钱习军.氨肽酶N/CD13抑制剂乌苯美司增强全反式维甲酸诱导急性早幼[D].浙江:浙江大学,2006.
    20.陈茂营.L-赖氨酸类氨肽酶N抑制剂的设计、合成与初步活性研究[D].山东:山东大 学,2007.
    21.刘英姿.肉桂酰天冬氨酸类氨肽酶N抑制剂的设计、合成及其生物活性研究[D].山东:山东大学,2009.
    22.Rost N.D.,Barrett A.J.,MEROPS:the peptidase database[J].Nucl.Acida Res,2000,28 (1):323-325.
    23.Ito K,Nakajima Y,Onohara Y,et al.Crystal Structure of aminopeptidase N(proteobacteria alanyl aminopeptidase) from Eschcrichia coli and conformational change of methionine 260 involved in substrate recognition[J].J.Biol.Chem,2006,281(44):33664-33676.
    24.Hooper,N.M.Families of zine metallproteases [JJ.FEBS Lett,1994,354(1):1-6.
    25 Jiang W.,Bond J.S.Families of metalloendopeptidases and their relationships[J].FEBS Lett,1992,312:10-114.
    26.栾业鹏.以氨肽酶N和热休克蛋白90为靶点的抗肿瘤药物的设计,合成与活性研究[D].山东:山东大学,2010.
    27.明晓波,张颖,谭睿,等.不同日龄雏鸡各组织中氨肽酶N酶活性比较[A].中国畜牧兽医学会家畜传染病学分会第七届全国会员代表大会暨第十三次学术研讨会论文集,2011,1098-1101.
    28.Vlahovic P.,Stefanovic V.Kidney ectopeptidases.Structure,functions and clinical signifi-cance[J] Pathol Biol(Paris),1998,46(10):779-786.
    29.Riemarm D,Kehlen A,Langer J.CD13-Not just a marker in leukemia typing [J]. Immunol Today,1999,20(2):83-88.
    30.Nunez L.,Amigo L.,Mingrone G.,et al.Billiary aminopeptidase N and cholesterol crystallization defect in cholelithiasis[J].Gut,1995,37(3):422-426.
    31.Ansorge S.,Schon E.,Kunz D.Membrane-bound peptidases of lymphocytes:functional implications[J].Biomed Biochim Acta,1991,50(4-6):799-807.
    32.Firla B.,Amdt M.,Frank K.,et al.Extracellular Cysteines define ectopeptidase (APN,CD 13)expression and function[J].Free Radic.BioL Med.2002,32(7):584-595.
    33.Griffin K.J.,GierseJ.,Krivi G.,et al.Opioid peptides are substrates for the bifunctional enzyme LTA4 hydrolase/aminopeptidase[J].Prostaglandins,1992,44(3):251-257.
    34.Scomik O A,Botbol V.Bestatin as an experimental tool in mammals[J].Curt Drug Metab, 2001,2(1):67-85.
    35.Teruki S,Keuji T,Kaoyoko H,et al.CD13/Aminopepidase N-induced lymphocyte invol-vement in inflamed joints of patients with rheumatoid arthritis[J].Arthritis Rheum,2002, 46(9):2330-2338.
    36.Saho T,KisIlida T,Hirano H,et al.Induction of CDI3 on T-lymphocytes by adhesive interaction with gingivalfibroblasts[J] J Dent Res,2003,82(11):893-898.
    37.Baragi V.M.,Shaw B.J.,Renkiewicz R.R.,et al.A versatile assay for gelatinase using succinylated gelatin[J].Anal Biochem,2000,286(1):267-273.
    38.Alexander N.S.,Juergen Langner.Manfred Herrmann,et al.Aminopeptadase N/CD13 is directly linked to signal transduction pathways in monocytes[J].Cell Immunol,2000, 201(1):22-32.
    39.Shripad V,Bhagwat,Nenada P,et al.The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis[J].Blood, 2003,101(5):1818-1826.
    40.Ikeda N.Nakajima Y.Tokuhara L.et al.Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma[J].J.Clin Cancer Res.2003,9(4):1503-1508.
    41.Sakane N.Asano Y, Kawamura T.et al.Aminoptidase N/CD13 regulates the fetal liver microenvironment of hematopoiesis[J].Biol Pharm Bull,2004.27(12):2014-2020.
    42.Lohn M,Mueller C,Langner J.Cell cycle retardation in monocytoid cells induced by aminopeptidase N(CD13)[J].Leuk Lymphoma,2002,43(2):407-413.
    43.Sawafuji K,Miyakawa Y,Weisberg E,et al.Aminopeptidase inhibitors inhibit proliferati-on and induce apoptosis of K562 and ST1571-resistant K562 celllines through the MAPK and GSK-3beta pathways.Leuk Lymphoma,2003,44(1 1):1987-1996.
    44.Hirano T,Kizaki M,Kato K.et al.Enhancement of sensitivity by bestatin of acute promyelocytic leukemia NB4 cells to all-trans retinoic acid.Leuk Res,2002,26 (12):1097-1103.
    45.Waksman G.,Bouboutou R.,Devin J.,et al.In vitro and in vivo effects of kelatorphan on enkephalin metabolism in rodent brain [J].Eur.J.Pharmacol.1985,117(2):233-243.
    46.Montiel J.L., Comille F,Roques B.P.,et al.Nociceptin/or phanin FQ metabolism:roie of aminopeptidase and endopeptidase 24.15[J].J.Neurochem,1997,68(1):354-361.
    47.Garber O G,Uni Z.Chicken Intestinal Aminopeptidase:Partial Sequence of the Gene, Expression and Activity[J]. Poultry Science,2000,79(1):41-45.
    48.Kramer W, Girbig F, Corsiero D, et al. Aminopeptidase N (CD13) is a molecular target of the cholesterol absorption inhibitor ezetimibe in the enterocyte brush border membrane[J] Journal of Biological Chemistry,2005,280(2):1306-1320.
    49.叶丽萍,龚四堂.正常大鼠小肠黏膜纹状缘氨基肽酶活性的研究[J].广东医学,2008,29(5):746-747.
    50.Soichiro Miura, In Sung Song,Akira Morita,et al.Distribution and biosynthesis of aminopeptidase n and dipeptidyl aminopeptidase Ⅳ in rat small intestine[J].1983,76 1:1266-1275.
    51.朱友芳,张其永.九龙江口潮间带大弹涂鱼食性及其消化管组织结构[J].台湾海峡,1993,12(3):225-232.
    52.吴仁协,洪万树,张其永,等.大弹涂鱼和中华乌塘鳢肠刷状缘膜消化酶活性的比较[J].动物学报,2006,52(6):1088-1095.
    53.Auricchio S,Stellato A,De V B.Development of brush border peptidases in human and rat small intestine during fetal and neonatal life[J].Pediatr Res,1981,15(7):991-995.
    54.Sihn G,Savary K,Michaud A,et al.Aminopeptidase N during the ontogeny of the chick [J].Differentiation,2006,74(2-3):119-128.
    55.Uni Z,Tako E, Gal-Garber O, et al. Morphological, molecular, and functional changes in the chicken small intestine of the late-term embryo[J]. Poultry Science,2003,82(11): 1747-1754.
    56.Gilbert E R,Li H,Emmerson D A, et al. Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers[J].Poultry Science, 2007,86(8):1739-1753.
    57.S.E. Douglas,J.W. Gallant,C.E. Bullerwell.Molecular investigation of aminopeptidase N expression in the winter flounder,Pleuronectes americanus[J].J.Appl.Ichthyol.1998, 15(1999):80-86.
    58.Cohen M. L.,Santiago N. A.,J.S. Zhu,et al.Differential regulation of intestinal amino-oligopeptidase gene expression in neonatal and adult rats[J].Am.J.Physioi.261,G 866-G871.
    59.吴仁协,洪万树,张其永,等.大弹涂鱼仔稚鱼和早期幼鱼的消化酶活性[J].水产学报,2006,30(6):733-739.
    60.陈杰.家畜生理学[M].北京:中国农业出版社.2003,186-194.
    61.叶元土,林仕梅,罗莉.饲料蛋白质的消化、吸收和利用及其影响因素分析[J].饲料广角,2002(20):10-12.
    62.Tobey N ALyn-Cook L E,Ulshen M H,et al.Intestinal brush border peptidases:activities in normal and abnormal peroral intestinal biopsy specimens.J Lab Clin Med,1986,107(3): 221-227.
    63.James P S,Smith M W,Tivey D R,Wilson T J G.Epidermal growth factor selectively increases maltase and sucrase activities in neonatal piglet intestine[J].Journal of Physiology,1987,393:583-594.
    64.Jardinaud E,Banisadr G,Noble F,et al.Ontogenic and adult whole body distribution of aminopeptidase N in rat investigated by in vitro autoradiography[J].Biochimie (Paris),2004,86:105-113.
    65.常晓丽,吴青君,王少丽,等.昆虫氨肽酶N的研究进展[J].农药学学报,2011,13(3):213-220.
    66.郭娟.肠道微生态对大鼠小肠刷状缘酶活性影响的研究[D].武汉,华中农业大学,2009.
    67.江米足,叶瑞云.婴幼儿腹泻时空肠黏膜纹状缘肽酶和蛋白质代谢的研究[J].中华儿科杂志,1996,34(1):32-36.
    68.Detel D,Persic M,Varljen J.Serum and intestinal dipeptidyl peptidase IV (DPP IV/CD26) activity in children with celiac disease[J] J Pediatr Gastroenterol Nutr,2007,45(1):65-75.
    69.Andria G,Cucchiara S,De Vizia B,et al.Brush border and cytosol peptidase activities of human small intestine in normal subjects and celiac patients[J].Pediatr Res,1980,14(6): 812-818.
    70.叶丽萍,龚四堂,黄海,等.儿童十二指肠黏膜纹状缘肽酶活性的研究[J].临床儿科杂志,2008,28(10):922-924.
    71.应爱娟,舒小莉,顾伟忠,等.锌缺乏对生长期大鼠小肠黏膜形态和消化酶活性的影响[J].中华儿科杂志,2011,49(4):249-253.
    72.明晓波.鸡APN组织定量、表达及其作为IBV受体可能性评价[D].哈尔滨:东北农业大学,2009.
    73.施思,廖晓龙CD13/APN生物学功能的研究进展[J].国外医学(输血及血液学分册),2005,28(6):504-507.
    74.陈立桥,李二超.水产动物分子营养学的研究进展[J].饲料工业,2010,(z1):21-26.
    75.Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method [J].Proceedings of the National Academy of Sciences of the UnitedStates of America,2004,101(30):1 1030-11035.
    76.牛东红,商利新,王维娜,等.鱼类氨基酸营养的研究概况[J].饲料博览,2003,9:39-41.
    77.Sjostrom H,Noren O,Olsen J.Aminopeptidases:structure and function[J].Biomedical and Life Sciences,2002,477(1):25-34.
    78.Taylor A.Aminopeptidases:towards a mechanism of action[J].Trends Biochemical Science,1993,18(5):167-171.
    79.Gonzales T,Baudouy J R. Bacterial aminopeptidases:properties and functions[J].FEMS Microbiology Reviews,1996,18(4):319-344.
    80.刘博奇,李广兴,王衡,等.猪传染性胃肠炎病毒特异性受体APN功能区的初步鉴定[J].黑龙江畜牧兽医,2009,6:21-23.
    81.郭会灿.蛋白质翻译后修饰研究进展[J].生物技术通报,2011(7):18-21.
    82.Walsh G..蛋白质生物化学与生物技术[M].北京:化学工业出版社,2005,18-22.
    83.阮林.鼻咽癌表皮生长因子受体信号通路的磷酸化蛋白质组学研究[D].长沙,中南大学,2010.
    84.胡笳,郭燕婷,李艳梅.蛋白质翻译后修饰研究进展[J].科学通报,2005,50(11):1061-1072.
    85.尚鲁庆.1,2-二氨基-3-苯丙烷类氨肽酶N抑制剂的设计、合成及其活性研究[D].山东,山东大学,2009.
    86.常晓丽,吴青君,王少丽,等.昆虫氨肽酶N的研究进展[J].农药学学,2011,13(3):213-220.
    87.Rawlings N D, Morton F R, Barrett A J. MEROPS:the peptidase database[J].Nucleic Acids Research,2006,34(1):270-272.
    88.Kenneth J L,Thomas D S.Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods,2001,25(4):402-408.
    89.Chillaron J,Roca R,Valencia A, et al. Heteromeric amino acid transporters:biochemistry, genetics, and physiology[J]. American Physiological Society,2001,281(6):995-1018.
    90.Ginzinger D G. Gene quantification using real-time quantitative PCR:an emerging technology hits the mainstream[J].Experimental Hematology,2002,30(6):503-512.
    91.曹香林,郭蓓,彭墨,等.不同发育阶段草鱼消化酶活力的变化及其昼夜节律[J].河南农业科学,2009,7:120-123.
    92.Noy Y, Sklan D. Yolk and exogenous feed utilization in the posthatch chick[J]. Poultry science,2001,80(10):1490-1495.
    93.Noy Y, Uni Z, Sklan D. Routes of yolk utilisation in the newly-hatched Chick[J]. British Poultry Science,1996,37(5):987-995.
    94.张虹.雌核发育草鱼群体的建立及其主要生物学特性研究[D].长沙:湖南师范大学,2011.
    95.龚启祥,杨文鸽,贾秀英.草鱼消化道发育的组织学观察[J].浙江水产学院学报,1990,9(2):85-94.
    96.Albiston A L, Ye S, Chai S Y. Membrane bound members of the M1 family:more than aminopeptidases[J]. Protein and Peptide Letters,2004,11(5):491-500.
    97.Angel V M, Uribe R M, Cisneros M, et al. Thyrotropin-releasing hormone regulates the diurnal variation of pyroglutamyl aminopeptidase Ⅱ activity in the male rat adeno-hypophysis[J]. European Journal of Endocrinology,2002,147(3):363-369.
    98.Kotlo K, Shuea S, Tawar U, et al. Aminopeptidase Nreduces basolateral Na+/K+-ATPa-se in proximal tubule cells[J]. American journal of physiology Renal physiology, 2007,293 (4):1047-1053.
    99.Saito H,Terada T,Okuda M,et al.Molecular cloning and tissue distribution of rat peptide transporter PepT2[J]. Biochimica et Biophysica Acta,1996,1280(2):173-177.
    100.Dunlap J C. Molecular bases for circadian clocks[J].Cell,1999,96(2):271-290.
    101.Tavakkolizadeh A, Berger U V, Shen K R, et al. Diurnal rhythmicity in intestinal SGLT-1 function, V(max), and mRNA expression topography [J].Gastrointestinal Liver Physiology,2001,280(2):209-215.
    102.Balakridhnsn A, Steams A T, Rounds J, et al. Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose cotransporter (SGLT1)[J]. Surgery,2008,143(6):813-818.
    103. Steamd A T, Balakrishnan A, Rhoads D B, et al. Diurnal rhythmicity in the transcripti-on of jejunal drug transporters[J]. Journal of Pharmacological Science,2008.108(1):144-148.
    104.Pan X, Terada T, Irie M, et al. Diurnal rhythm of H+-peptide cotransporter in rat small intestine[J].American Journal of Physiology:Gastrointestinal and Liver Physiology,2002, 283(1):57-64.
    106.Houghton S G,Duenes J A,Fatima J,et al.Coordinated,diurnal hexose transporter expre-ssion in rat small bowel:Implications for small bowel resection[J].Surgery,2008,143(1): 79-93.
    107.Pan X, Terada T, Okuda M, et al. The diurnal rhythm of the intestinal transporters SGLT1 and PEPT1 is regulated by the feeding conditions in rats[J]. Journal of Nutrition, 2004,134(9):2211-2215.
    108. Fatima J, Iqbal C W, Houghton S G, et al. Hexose transporter expression and function in mouse small intestine:Role of diurnal rhythm [J] Journal Gastrointestinal Surqery, 2009,13(4):634-641.
    109.江米足,叶瑞云.肠粘膜刷状缘肽酶与蛋白质的消化和吸收[J].实用儿科临床杂志,1996,11(8):173-174.
    109.黄耀桐,刘永坚.草鱼肠道肝胰脏蛋白酶活性初步研究[J].水生生物学报,1988,12(4):328-334.
    110.吕耀平,陈建明,叶金云,等.饲料蛋白质水平对刺鲃幼鱼的生长、胴体营养组成及消化酶活性的影响[J].农业生物技术学报,2009,17(2):276-281.
    111.陈鹏飞,何张萍,伍莉.饲料中不同比例的鱼粉比对丁鱥幼鱼生长和消化酶的影响[J].中国饲料,2011,(21):15-18,27.
    112.曹香林,郭蓓,彭墨,等.不同发育阶段草鱼消化酶活力的变化及其昼夜节律[J].河南农业科学,2009(7):120-123.
    113.牟佳佳.基于L-精氨酸骨架的氨肽酶N抑制剂的设计、合成及活性研究[D].山东:山东大学,2009.
    114.田宏杰,庄平,高露姣.生态因子对鱼类消化酶活力影响的研究进展[J].海洋渔业,2006,8(2):158-162.
    115.高攀,蒋明,文华,等.不同蛋白能量比饲料对草鱼幼鱼消化酶活性的影响[J].淡水渔业,2009,39(6):54-58.
    116.黎军胜,李建林,吴婷婷.外源酶和柠檬酸对奥尼罗非鱼内源消化酶活性的影响[J].南京农业大学学报,2005,28(3):97-101.
    117.刘小刚,周洪琪,华雪铭,等.微生态制剂对异育银鲫消化酶活性的影响[J].水产学报,2002,26(5):448-502.
    118.刘荣臻,韩晓冬.草鱼卵及胚胎发育时期水溶性氨基酸的变化[J].水产学报,1987,11(3):254-257.
    119.王瑞霞.青鱼的原始器官原基的形成和消化系统呼吸系统的发生[J].水产学报,1982,6(1):77-83.
    120.王敏,杨秀萍,孔令杰,等.草鱼仔、稚鱼消化器官与味蕾发育的研究[J].华中农业大学学报,1993,12(1):64-68.
    121.杨瑞斌.黄颡鱼仔稚鱼消化系统发育及摄食特性的研究[D].武汉,华中农业大学,2010.
    122.Sanchez-Amaya M.I.,Ortiz-Delgado J.B.,Garcia-Lopez A.,Cardenas S.,Sarasquete C. Larval ontogeny of redbanded seabream Pagrus auriga Valenciennes,1843 with special reference to the digestive system.A histological and histochemical approach[J]. Aquaculture,2007,263(1-4):259-279.
    123.关海红,潘伟志,陈军,等.怀头鲇、鲇及其杂交F1肝、胰脏胚后发育及卵黄吸收方式[J].中国水产科学,2006,13(3):460-464.
    124.陈真然.草魚(鲩)仔、稚焦期发育的形态生态特征[J].动物学杂志,1963,(1):23-29.
    125.倪达书,洪雪峰.草鱼消化道组织学的研究[J].水生生物学报,1963,(3):1-25.
    126.叶元土,曾瑞,林仕梅,罗莉.草鱼肠道粘膜扫描电镜观察[J].动物学杂志,1999,34(6):8-10.
    127.涂永锋,叶元土,蔡春芳.草鱼肠道对几种蛋白饲料氨基酸消化和吸收效率的离体研 究[J].江西饲料,2004,(3):15-18.
    128.Panserat S.,Hortopan G.A.,Plagnes-Juan E.,et al.Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver[J].Aquaculture,2009,(294):123-131.
    129.陈慕雁,张秀梅,连建华.大菱鲆仔稚鱼期消化酶及碱性磷酸酶活性的变化[J].中国海洋大学学报,2005,35(3):483-486.
    130.蔡克瑕,王重刚,陈品健,等.花尾胡椒鲷仔稚鱼期消化酶海性的变化[J].台湾海峡,2000,19(2):201-204.
    131.Ribeiro L.Sarasquete C,Dinis M T,Histological and histochemical development of the digestive system of Solea senegalensis larvae[J].Aquaculture,1999,191:293-308.
    132.Tanaka M,Kawai S,Seikai T,et al.Development uf the digestive organ system in Japanese flounder in relation to metamorphosis and settlement[J].Mar Fresh Behav Physiol,1996,28:19-31.
    133.李军,吴天星.鱼类消化酶活性的影响因素[J].水利渔业,2006,26(6):30-31.
    134.庆均,苏小凤,许梓荣.饲料蛋白水平对宝石鲈增重和胃肠消化酶活性影响[J].浙江大学学报,2004,30(5):553—556.
    135.Kawai S.Ikeda S.Studies on digestive enzymes of fish II. Effect of dietary change on the activities of digestive enzymes in carp intestine[J].Bulletin of Japanese of Scientific Fisheries,1972,38(3):265-270.
    136.赵东海.饲料蛋白水平对鳜鱼实验种群胃肠道消化酶活性的影响[J].河北渔业,2004,(134):10-11.
    137.田丽霞,林鼎.草鱼摄食两种蛋白质饲料后消化酶活性变动比较[J].水生生物学报,1993,17(1):58-65.
    138.Lilleeng, E., Froystad, M.K., Veterud, K., Valen, E.C., Krogdahl, A..Comparison of intestinal expression in Atlantic cod (Gadus morhua) fed standard fish meal or soybean meal by means of suppression subtractive hybridization and real-time PCR[J]. Aquaculture,2007,(267):269-283.
    139.Kushak R I.,Winter H S..Regulation of intestinal peptidases by nutrients in human fetuses and children[J],Comparative Biochemistry and Physiology Part A,1999,124:191-198.
    140.Michael D.E..Post-translational Suppression of Expression of Intestinal Brush Border Enzymes by Fructose[J]. J.Biological Chemistry,1989,264(23):13726-13729.
    141.Sanderink G.J.,Artur Y, Siest G. Human Aminopeptidases:A Review of the Literature [J].J Clin Chem Clin Biochem,1988,26(12):795-807.
    142.田丽霞,林鼎.草鱼摄食两种蛋白质饲料后消化酶活性变动比较[J].水生生物学报,1993,17(]):58-65.
    143.吴莉芳,秦贵信,赵元,等.饲料中去皮豆粕替代鱼粉比例对草鱼消化酶活力的影响[J].中国畜牧杂志,2010,46(1):23-27.
    144.Krogdahl A,Bakke-Mckellep A.M,Baeverfjord G.Effects of graded levels of standard soybean meal on intestinal structure.mucosal enzyme activities.and pancreatic response in Atlantic salmon(Salmo salar L.)[J].Aquaculture Nutrition,2003,(9):361-371.
    145.刘勇.黑鲷、奥尼罗非鱼饲料中不同蛋白源替代鱼粉的研究[J].上海,上海海洋大学,2009.
    146.吴莉芳,秦贵信,孙泽威,等.饲料中去皮豆粕替代鱼粉对埃及胡子鲇消化酶活力和肠道组织的影响[J].中山大学学报(自然科学版),2010,49(4):99-105.
    147.钱曦,王桂芹,周洪琪,等.饲料蛋白水平及豆粕替代鱼粉比例对翘嘴红鲌消化酶活性 的影响[J].动物营养学报,2007,19(2):182-187.
    148.孙翰昌,徐敬明,庞敏.饲料蛋白水平对瓦氏黄颡鱼消化酶活性的影响[J].水生态学杂志,2010,3(2):84-88.
    149.陈亮.不同棉籽粕水平饲料对中华绒螯蟹幼蟹生长和相关生理生化指标的影响[D].上海,华东师范大学,2011.
    150.杨奇慧,谭北平,董晓慧,等.凡纳滨对虾饲料中用花生粕替代鱼粉的研究[J].动物营养学报,2011,23(10):1733-1744.
    151.Krogdahl A,Bakke-Mckellep A.M,Baeverfjord G.Effects of graded levels of standard soybean meal on intestinal structure,mucosal enzyme activities,and pancreatic response in Atlantic salmon(Salmo salar L.)[J].Aquaculture Nutrition,2003,(9):361-371.
    152.Bakke-McKellep A.M,Press C.M,Baeverfjord G,et al.Changes in immune and enzyme histochemical phenotypes of cells in the intestinal mucosa of Atlantic salmon,Salmo salar L.,with soybean meal-induced enteritis.[J].Fish Dis,2000,23:115-127.
    153.周凡,邵庆均.不同蛋白源替代鱼粉的研究进展[J].饲料研究,2007,(6):9-11.
    154.Alarcon F L,Garcia-carreno,Navarrete del torom A.Effect of plant protease inhibitors on digestive proteases in two fish species,Lutjanus argentiventris and L.novem fasciatus [J].Fish Physiology and Biochmistry,2001,(24):179-189.
    155.姜光丽,周小秋.大豆分离蛋白对幼建鲤肝胰脏发育及消化道蛋白酶活力的影响[J].大连水产学院学报,2005,20(3):198-201.
    156.石英,冷向军,李小勤,等.饲料蛋白水平对血鹞鹉鱼种生长、体组成和肠道蛋白消化酶活性的影响[J].水生生物学报,2009,33(5):874-880.
    157.Munilla-Moran R,Saboril-Rey F.Digestive enzyme in marine species:I.Proteinases activities in gut from red fishf(Sibastes mentsella),seabream(Sparus aurata)[J].Comp Biochem Physiol B,1996,113(2):395-402.
    158.叶元土,蔡春芳,蒋蓉,等.鱼粉、豆粕、菜粕、棉粕、花生粕对草鱼生长和生理机能的影响[J].饲料工业,2005,26(12):17-21.
    159.米海峰.不同蛋白源和大豆抗营养因子对牙鲆蛋白消化酶的活性与基因表达的影响[D].青岛,中国海洋大学,2008.
    160.倪寿文,桂远明,刘焕亮.草鱼、鲤、鲢、鳙和尼罗罗非鱼肝胰脏和肠道蛋白酶活性的初步探讨[J].动物学报,1993,39(2):160-168.
    161.米海峰.不同蛋白源和大豆抗营养因子对牙鲆蛋白消化酶的活性与基因表达的影响[D].青岛,中国海洋大学,2008.
    162.姜巨峰,张殿昌,林黑着,等.同蛋白水平对鲮消化酶活性的影响[J].安徽农业科学,2006,36(16)L6784-6786.
    163.王洋,徐奇友,许红,等.温度和蛋白质水平对德国镜鲤消化酶活性的影响[J].吉林农业大学学报,2011,33(3):337-343.
    164.Murraya H M., Lalla S P., Rajesh Rajaselvam.et al.A nutrigenomic analysis of intestinal response to partial soybean meal replacement in diets for juvenile Atlantic halibut, Hippoglossus hippoglossus, L.[J].Aquaculture,2010,(298):82-293.
    165.马道远,于道德,肖永双,等.条石鲷消化道发育的组织学观察[J].海洋科学,2011,35(12):28-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700