含Si镁合金的组织与力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高镁合金的耐热性能,本文在Mg-5%Sn合金中加入Si、Sr、Ca合金化元素,设计了Mg-Sn-Si-Sr系和Mg-Sn-Si-Sr-Ca系合金。采用X射线衍射仪(XRD)、光学显微镜(OM)、扫描电镜(SEM)分别研究了合金的相组成及显微组织,采用万能试验机和布氏硬度计测定了合金的力学性能,并采用SEM分析合金的断口形貌,主要结论如下:
     铸态Mg-5Sn-xSi-0.5Sr(x=1, 2)合金组织由α-Mg晶界析出的共晶Mg2Sn、Mg2Si相和α-Mg晶内初生MgSnSr相所组成。铸态Mg-5Sn-xSi-2Sr(x=1, 2)合金组织同样由Mg2Sn、Mg2Si和MgSnSr相所组成,与Mg-5Sn-xSi-0.5Sr(x=1, 2)合金相比,当Sr含量由0.5%增加到2%时会促进MgSnSr相形成,而抑制晶界上Mg2Sn相的析出,同时能够细化Mg2Si相。Mg2Si相含量随Si元素的增加而增加,但MgSnSr相含量随Si元素的增加而减少。在这四种铸态合金中Mg-5Sn-2Si-2Sr合金具有最好的力学性能,铸态Mg-5Sn-2Si-2Sr合金的抗拉强度、屈服强度和延伸率分别为156MPa、120MPa和5%。
     对于Mg-5Sn-xSi-0.5Sr-0.5Ca(x=1, 2)铸态合金,与Mg-5Sn-xSi-0.5Sr(x=1, 2)合金相比,加入Ca元素显著促进(Ca, Sr)MgSn相的形成,而抑制晶界上Mg2Sn相的析出,并能细化Mg2Si相。对于铸态Mg-5Sn-2Si-2Sr-0.5Ca合金,与Mg-5Sn-2Si-0.5Sr-0.5Ca合金相比,Sr含量由0.5%提高到2%后,Mg2Si相得到进一步细化,并在晶内析出大量的MgSn(Sr, Ca)相。铸态Mg-5Sn-1Si-0.5Sr-2Ca合金则由层片状Mg2Ca相和针状CaMgSn相所组成。在这四种铸态合金中Mg-5Sn-2Si-2Sr-0.5Ca合金具有最好的力学性能,铸态Mg-5Sn-2Si-2Sr-0.5Ca合金的抗拉强度、屈服强度和延伸率分别为153MPa、111MPa和4.3%。
     热处理后,合金的性能得到显著提升。Mg-5Sn-2Si-2Sr合金的最佳热处理工艺为在500℃固溶24h,200℃时效6h,热处理后Mg-5Sn-2Si-2Sr合金的抗拉强度、屈服强度、延伸率、布氏硬度分别为182MPa、151MPa、4.1%、50HB。Mg-5Sn-2Si-2Sr-0.5Ca合金的最佳热处理工艺为在500℃固溶24h,200℃时效12h,热处理后Mg-5Sn-2Si-2Sr-0.5Ca合金的抗拉强度、屈服强度、延伸率和布氏硬度分别为178MPa、142MPa、3.7%和49HB。
In order to improve the heat resistant properties of Mg alloys, Mg-Sn-Si-Sr and Mg-Sn-Si-Sr-Ca alloys were designed by adding Si, Sr and Ca alloying elements to the Mg-5%Sn alloy in this paper. The phase constituent and microstructure of the as-cast resultant alloys were analyzed by using x-ray diffractometer (XRD), optical microscopy (OM) and scanning electron microscopy (SEM), respectively. The mechanical properties of the alloys were tested by universal electronic testing machine and brinell hardness tester. The fracture surfaces were analyzed by using SEM. The important results are summaried as follows:
     The Mg2Sn and Mg2Si phases were precipitated on theα-Mg grain boundary during eutectic reactions and MgSnSr precipitated in the grains of as a primary phase for as-cast Mg-5Sn-xSi-0.5Sr (x=1, 2) alloys. The microstructure of the as-cast Mg-5Sn-xSi-2Sr (x=1, 2) alloys are also composed of Mg2Sn, Mg2Si and MgSnSr phases. Compared with the Mg-5Sn-xSi-0.5Sr (x=1, 2) alloys, when the Sr content is increased from 0.5wt% to 2wt%, which promotes the formation of MgSnSr phase, inhibits the precipitation of Mg2Sn phase on the grain boundary, and refines the Mg2Si phase at the same time. The volume fractions of Mg2Si phase increases whereas the MgSnSr phase decreases with the addition of silicon element. The tensile strength, yield strength and elongation of the as-cast Mg-5Sn-2Si-2Sr alloy are 156MPa, 120MPa and 5.0%, respectively. Which is the best one among the four the as-cast alloys.
     For the Mg-5Sn-xSi-0.5Sr-0.5Ca (x=1, 2) as-cast alloys, compared with the Mg-5Sn-xSi-0.5Sr (x=1, 2) alloys, furthermore, the addition of Ca element can promote significantly the formation of primary (Ca, Sr)MgSn phase, inhibit the precipitation of Mg2Sn phase on the grain boundary, and refine the Mg2Si phase. Compared with the Mg-5Sn-2Si-0.5Sr-0.5Ca alloy, when the Sr content is increased from 0.5wt% to 2wt% for as-cast Mg-5Sn-2Si-2Sr-0.5Ca alloy, the Mg2Si phase has been significantly refined, and a large number of MgSn(Sr, Ca) phases are precipitated in intragranular. As-cast Mg-5Sn-1Si-0.5Sr-2Ca alloy are composed of Mg2Ca phase with lamellar-type and CaMgSn phase with needle-like. The tensile strength, yield strength and elongation of the as-cast Mg-5Sn-2Si-2Sr-0.5Ca alloy are 153MPa, 111MPa and 4.3%, respectively. Which is the best one among the four the as-cast alloys.
     The mechanical properties of the alloys have been significantly improved after heat treatment. The most suitable heat treatment process for Mg-5Sn-2Si-2Sr alloy is solution 24h at 500℃and then aging 6h at 200℃. The tensile strength, yield strength, elongation and brinell hardness of Mg-5Sn-2Si-2Sr alloy are 182MPa, 151MPa, 4.1% and 50HB respectively after heat treatment. While the most suitable heat treatment process for Mg-5Sn-2Si-2Sr-0.5Ca alloy is solution 24h at 500℃and then aging 12h at 200℃. The tensile strength, yield strength, elongation and brinell hardness of Mg-5Sn-2Si-2Sr-0.5Ca alloy are 178MPa, 142MPa, 3.7% and 49HB respectively after heat treatment.
引文
[1]陈振华.耐热镁合金.北京:化学工业出版社,2007.
    [2] Bakke P, Pettersen K, Albright D. The influence of Sb, Si and Sn on the mechanical properties of Mg-Al alloys. TMS Annual Meeting, Charlotte. North Carolina, 2004: 289~296.
    [3] Pekguleryuz M O. Development of creep resistant magnesium diecasting alloys. Materials Science Forum, 2000, 350~351: 131~140.
    [4] Humble P. Towards a cheap resistant magnesium alloy. Magnesium Forum, 1997, 21: 45~56.
    [5]孙扬善,翁坤忠,袁广银.Sn对镁合金显微组织和力学性能的影响.中国有色金属学报,1999,9(1):55~60.
    [6]袁广银,曾小勤,吕宜振等.锑合金化对镁铝基合金力学性能的改善作用.材料工程,2001,(4):10~15.
    [7]杜文博,吴玉锋,聂祚仁等.稀(碱)土在镁合金中的作用及应用现状.稀有金属材料与工程,2006,35(9):1345~1348.
    [8] Pekgularyuz M O, Renand J. Creep resistance in Mg-Al-Ca casting alloys. TMS Annual Meeting, Nashville. Tennessee, 2000: 279~284.
    [9]杨明波,潘复生,张静.Mg-Al系耐热镁合金的开发及应用.铸造技术,2005,26(4):331~335.
    [10]王渠东,曾小勤,吕宜振等.高温铸造镁合金的研究与应用.材料导报,2000,14(3):21~23.
    [11]丁文江.镁合金科学与技术.北京:科学出版社,2007.
    [12] Yang M B, Cheng L, Pan F S. Effects of calcium addition on as-cast microstructure and mechanical properties of Mg-5Zn-5Sn alloy. Transactions of Nonferrous Metals Society of China, 2010, 20(5): 769~775.
    [13]张静,潘复生,李忠盛.耐热镁合金材料的研究和应用现状.铸造,2004,53(10):770~774.
    [14] Zhang Z, Couture A, Luo A. An investigation of the properties of Mg-Zn-Al alloys. Scripta Materialia, 1998, 39(1): 45~53.
    [15] Zhang Z, Tremblay R, Dube D et al. Solidification microstructure of ZA102, ZA104 and ZA106 magnesium alloys and its effect on creep deformation. Canadian Metallurgical Quarterly, 2000, 39(4): 503~512.
    [16] Zhang Z, Tremblay R, Dube D. The Mg-Zn-Al alloys and influence of calcium on their creep properties. TMS Annual Meeting, New Orleans. Louisiana, 2001: 147~151.
    [17]王渠东,吕宜振,曾小勤等.稀土在铸造镁合金中的应用.特种铸造及有色合金,1999,(1):40~44.
    [18] Pettersen G, Wdstengen H, Hoier R, et al. Microstructure of a pressure die cast magnesium-4wt.% aluminum alloy modified with rare earth additions. Materials Science and Engineering A, 1996, 207(1): 115~120.
    [19] Kim J M, Kim K T, Jung W J. Thixoforming of Mg-9 percent Al-alloys with and without RE. Materials Science Forum, 2003, 419~422(1): 465~471.
    [20] Lee S, Lee S H, Kirn D H. Effect of Y, Sr and Nd additions on the microstructure andmicrofracture mechanism of squeeze-cast AZ91-X magnesium alloys. Metallurgical and Meterials Trandactions A, 1998, 29(4): 1221~1235.
    [21]赵志远.稀土金属在铸造镁合金中的应用.材料工程,1993,11(12):31~34.
    [22]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002.
    [23]李海东,彭晓东.碱土镁合金的研究及开发.轻金属,2006,(6):39~44.
    [24]白晶,孙扬善,强立峰等.锶和钙在镁-铝系合金中的应用及研究进展.铸造,2006,55(1):1~5.
    [25]宋海宁,袁广银,王渠东等.耐热Mg-Zn-Si-Ca合金的显微组织和力学性能.中国有色金属学报,2002,12(5):956~960.
    [26]白晶,孙扬善,薛烽等.高性能碱土耐热镁合金的显微组织和蠕变性能.北京科技大学学报,2007,29(2):198~204.
    [27] Brick R M, Pense A W, Gordon R B著.王健安译.工程材料的组织与性能.北京:机械工业出版社,1983.
    [28]宋佩维.往复挤压Mg-Al-Si合金的组织、性能及强化机制:(博士学位论文).西安:西安理工大学,2007.
    [29]王慧敏,陈振华,严红革等.镁合金的热处理.金属热处理,2005,30(11):49~54.
    [30]张大华,王瑞权,刘二勇等.镁合金的强韧化研究.上海有色金属,2009,30(4):182~186.
    [31]段红玲,张丁非,戴庆伟等.镁合金强化研究的发展现状.材料导报,2007,21(5A):310~312.
    [32] Hu X S, Wu K, Zheng M Y, et al. Low frequency damping capacities and mechanical properties of Mg-Si alloys. Materials Science and Engineering A, 2007, 452~453(1~2): 374~379.
    [33] Dargusch M S, Bowles A L, Pettersen K, et al. The effect of silicon content on the microstructure and creep behavior in die-cast magnesium AS alloys. Metallurgical and Meterials Trandactions A, 2004, 35A(6): 1905~1909.
    [34]张赞龙,刘六法,卫中山等.压铸Mg-5Al-xSi合金的组织与性能研究.稀有金属材料与工程,2006,35(11):1813~1816.
    [35]王连登,傅高升,陈晓等.硅对Mg2Si/ZM5复合材料组织和性能的影响.特种铸造及有色合金,2003,(2):7~10.
    [36]张春香,关绍康,陈海军等.硅对Mg-8Zn-4Al-0.3Mn合金显微组织和性能的影响.机械工程材料,2004,28(9):19~22.
    [37]杨明波,潘复生,白亮等.合金元素对Mg-Al-Si系镁合金中Mg2Si相形貌影响的研究进展.热加工工艺,2007,36(14):71~78.
    [38]艾延龄,罗承萍,刘江文等.含Ca,Si镁合金的铸态组织及其形成机制.金属学报,2005,41(1):49~54.
    [39]王改芳,王锦程,万迪庆等.Ca对Mg-Si合金显微组织和阻尼性能的影响.铸造技术,2008,29(12):1640~1643.
    [40]陈晓,傅高升,钱匡武等.Ca对原位自生Mg2Si/ZM5复合材料组织与性能的影响.中国有色金属学报,2005,15(3):410~414.
    [41] Carbonneau Y, Couture A, Van neste A, et al. On the observation of a new ternary MgSiCa phase in Mg-Si alloys. Metallurgiccal and Materials Transactions A, 1998, 29(6): 1759~1763.
    [42] Srinivasan A, Pillai U T S, Swaminathan J, et al. Observations of microstructural re?nement in Mg-Al-Si alloys containing strontium. Journal of Materials Science, 2006, 41(18): 6087~6089.
    [43] Nam K Y, Song D H, Lee C W, et al. Modification of Mg2Si morphology in as-cast Mg-Al-Si alloys with strontium and antimony. Materials Science Forum, 2006, 510~511: 238~241.
    [44]杨明波,潘复生,程仁菊等.Sr和Sb变质AZ61-0.7Si合金的铸态组织和力学性能.稀有金属材料与工程,2008,37(10):1737~1741.
    [45]艾秀兰,李英民.磷元素对Al-Mg2Si合金显微组织的影响.大连铁道学院学报,2005,26(1):80~82.
    [46]张金山,高义斌,裴利霞等.P变质对Si合金化AZ91镁合金显微组织和力学性能的影响.中国有色金属学报,2006,16(8):1361~1367.
    [47] Quimby P D, Lu S Z, Plichta M R, et al. Effects of minor addition and cooling rate on the microstructure of cast magnesium-silicon alloys. TMS Annual Meeting, San Antonio. Texas, 2006: 535~537.
    [48]张春香,关绍康,石广新等.Mg-8Zn-4Al-1Si-0.3Mn-xAlP合金的显微组织及性能.中国有色金属学报,2004,14(8):1353~1359.
    [49]杨明波,潘复生,李忠盛等.Mg-Al系耐热镁合金中的合金元素及其作用.材料导报,2005,19(4):46~49.
    [50]杨明波,潘复生,陈健等.Sb变质Mg-6Al-1Zn-0.7Si镁合金的组织和性能.铸造,2007,56(12):1303~1306.
    [51]孙丰泉,王小东,严有为.Sb对原位Mg2Si/Mg复合材料组织的影响.特种铸造及有色金属,2005,25(1):18~20.
    [52]马莹,张忠明,徐春杰等.Mg-15%Al-5%Si-0.5%Sb合金制备及其组织研究.铸造技术,2006,27(4):357~359.
    [53]郭小宏,杜军,李文芳等.Sb对过共晶Mg-4.8%Si合金中Mg2Si初晶变质的影响.中国有色金属学报,2010,20(1):24~29.
    [54] Jiang Q C, Wang H Y, Wang Y, et al. Modi?cation of Mg2Si in Mg-Si alloys with yttrium. Materials Science and Engineering A, 2005, 393(1~2): 130~135.
    [55]黄晓峰,毛祖莉,阎峰云等.钇对Mg-9Al-1Si合金蠕变抗力和微观组织的影响.中国稀土学报,2006,24(4):480~483.
    [56]黄晓峰,王渠东,曾小勤等.钕对Mg-5Al-1Si高温蠕变及组织性能的影响.中国稀土学报,2004,22(3):361~364.
    [57]马宝霞,王丽萍,郭二军.镧对Mg-Si合金中Mg2Si相变质的影响.中国稀土学报,2008,26(1):87~91.
    [58]张忠明,徐春杰,郭学锋等.Ce、Y、Sb对Mg-9Al-6Si合金中Mg2Si相形貌的影响.铸造技术,2009,30(9):1157~1160.
    [59] Zhang E L, Wei X S, Yang L, et al. Effect of Zn on the microstructure and mechanical properties of Mg-Si alloy. Materials Science and Engineering A, 2010, 527(13~14): 3195~3199.
    [60] Lee S W, Kim B H, Nam K Y, et al. Effect of silver additions on the ageing behavior and mechanical properties of Mg-Al-Si-Sn-Sr alloy. Solid State Phenomena, 2007, 124~126(2): 1469~1472.
    [61]陈可,李子全,刘劲松等.Ba对原位自生Mg2Si/Mg-Zn-Si复合材料组织与力学性能的影响.材料工程,2010,(4):63~68.
    [62] Du J, Iwai K, Li W F, et al. Effects of alternating current imposition and alkaline earth elements on modification of primary Mg2Si crystals in hypereutectic Mg-Si alloy. Transactions of Nonferrous Metals Society of China, 2009, 19(5): 1051~1056.
    [63] Li X L, Chen Y B, Wang X, et al. Effect of cooling rates on as-cast microstructures of Mg-9Al-xSi (x=1, 3) alloys. Transactions of Nonferrous Metals Society of China, 2010, 20(S2): 393~396.
    [64]宋佩维,郭学锋,井晓天等.Mg-4Al-2Si合金固溶处理过程中Mg2Si相颗粒的球状化.材料工程,2007,(3):34~37.
    [65]张春香,陈培磊,陈海军等.镁合金在汽车工业中的应用及其研究进展.铸造技术,2008,29(4):531~535.
    [66]黄瑞芬,武仲河,李进军等.镁合金材料的应用及其发展.内蒙古科技与经技,2008,(14):158~160.
    [67]柴跃生,孙钢,梁爱生.镁及镁合金生产知识问答.北京:冶金工业出版社,2005.
    [68]王殊,师春生,赵乃勤等.自行车车架材料以及镁合金的应用.材料导报,2006,20(8):87~93.
    [69]李新林,肖柳,李莉等.Mg-Si-Sn系镁合金及变质其中汉字状共晶Mg2Si相的热处理工艺.中国,A,200710144699.9.2008.
    [70] Liu H M, Chen Y G, Tang Y B, et al. The microstructure, tensile properties, and creep behavior of as-cast Mg-(1-10)%Sn alloys. Journal of Alloys and Compounds, 2007, 440(1~2): 122~126.
    [71]杜军,李文芳,麦嘉浩等.一种Mg-Sn-Si-La系耐热镁合金及其制备方法.中国,A,201010291241.8.2011.
    [72] Kozolv A, Gr?bner J, Schmid-Fetzer R. Phase formation in Mg-Sn-Si and Mg-Sn-Si-Ca alloys. Journal of Alloys and Compounds, 2011, 509(7): 3326~3337.
    [73]李世成,陈云贵,肖素芬等.铸态Mg-5Sn-(0~3)Sr合金的组织和性能.特种铸造及有色合金,2011,31(4):369~372.
    [74] Nayyeri G, Mahmudi R. The microstructure and impression creep behavior of cast Mg-5Sn-xCa alloys. Materials Science and Engineering A, 2010, 527(7~8): 2087~2098.
    [75]徐云龙,陈刚,赵玉涛等.钙和锶对Mg2Si/AZ91D复合材料组织和性能的影响.机械工程材料,2009,33(11):11~14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700