非晶FeSiB合金磁粉芯的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料,其特殊的软磁性能使其在许多应用场合具有其他磁性材料难以比拟的优势。21世纪以来,科技进步需要各种高性能的电子器件,由此对磁粉芯提出了更高的要求。非晶Fe78Si9B13磁粉芯具有品质因数高、高频损耗低、价格低廉等特点,在高频电感铁芯具有广泛的应用前景。
     本实验选用Fe78Si9B13非晶带材为原料,分别通过机械破碎和气流破碎成非晶粉末,采用粉末冶金工艺压制成磁粉芯。同时运用扫描电镜分析、X射线衍射分析、差热分析等现代分析手段,研究了制备工艺参数对非晶Fe78Si9B13磁粉芯的磁导率、品质因数、损耗等磁性能的影响规律。结论如下:
     机械破碎法得到的粉体颗粒形貌为片状,呈多边形和长条形,并存在大量尖角。而气流破碎法得到的粉体颗粒形貌以圆片状为主,边缘比较平滑。气流破碎法得到的粉末制备的磁粉芯磁性能更优,是非晶带制粉更适宜的破碎方法。
     经过钝化处理,磁粉颗粒表面生成了一层磷化膜。添加钝化剂可以使磁粉芯频率特性变得更加稳定,损耗降低,品质因数提高。
     绝缘包覆是磁粉芯制备的关键工艺。绝缘剂的添加可以降低磁粉芯的涡流损耗,提高品质因数;但过多的绝缘剂又会使磁粉芯中非磁性物质比例增大,降低其磁导率;最佳的粘结剂添加量为3.5%。适当的磁粉粒度配比可以有效提高磁粉芯的磁导率,降低损耗。实验中最佳的粒度配比为:-100~+150目占60%,-150~+200目占10%,-200~+250目占10%,-250~+320目占20%。
     热处理对磁粉芯性能影响显著。增加退火温度能够有效地增大非晶磁粉芯的磁导率,降低损耗;但退火温度过高会使非晶磁粉晶化,生成导电性较差的非磁性相,同时也会破坏绝缘剂的包覆效果,降低磁粉芯的性能;最佳退火温度为400℃,时间为1小时。
     成型压力是保证磁粉芯获得好的磁性能的基础,增大压力有利于增加样品的密度,提高磁导率;但压力过大会破坏磁粉芯的绝缘层,降低粉芯的磁性能;当成型压力为1800MPa(保压1分钟),磁粉芯的综合磁性能最好。
Metal magnetic powder core is one of soft magnetic materials, which is compressed by magnetic powder mixed with insulation medium, its special properties can’t be compared by the other materials. In the 21th century, scientific and technological progress needs high performance electronic devices,which put forward higher requirements for magnetic powder cores. Amorphous Fe78Si9B13 magnetic powder core has high quality factor, low loss in high frequency and low price, Which is hope to be widely used as inductor cores in high frequency.
     In this experiment, amorphous Fe78Si9B13 strip used as raw materials was broken into amorphous powder by mechanical and airflow mill separately, then compressed into magnetic powder cores applying powder metallurgy technology. Effects of process parameters on the permeability, quality factor, and loss of Fe78Si9B13 magnetic powder cores were investigated by modern analysis techniques including x-ray diffraction analysis(XRD), scanning electron microscopy(SEM) and differential scanning calorimeters (DSC). The main conclusions are listed as follows:
     Powders broken by mechanical mill are flake, mostly polygon and strip, and there are a lot of sharp corners. But the powders broken by airflow mill are round flake mostly, and the edges are smooth. Airflow mill is the more suitable breaking method for amorphous powders.The magnetic powder core prepared by the airflow mill powder has better performance.
     Magnetic powder has a layer of phosphate coating after passivation. The addition of passivant can improve the frequency character, reduce the magnetic loss and increase the quality factor of amorphous magnetic powder cores.
     Insulation treating is the most key procedure for the prepatation of magnetic powder core. Increasing insulating compound content can reduce eddy current loss and promote frequency character. but excessive insulating compound can increase the proportion of non-magnetic material of magnetic powder core, and then reduce the permeability. The best binding admixture content is 3.5%.
     The proper particle ratio can effectively reduce loss of magnetic powder core and promote the permeability. It was found that the optimum particle ratio of Fe78Si9B13 magnetic powder is 60% of -100% of +150 mesh, 10% of -150~ +200 mesh, 10% of -200~ +250 mesh, 20% of -250~+320 mesh.
     Heat treatment is the most important factor of affecting magnetic performance. Increasing annealing temperature can effectively reduce loss of magnetic powder core and promote the permeability. Over annealing temperature can deteriorate magnetic properties due to the crystallization of amorphous power, the forming of nonmagnetic phase, and the damage of coating insulation. The optimum annealing temperature is 400℃, the time is 1 hour.
     Shaping pressure is the basis for magnetic powder cores to obtain high magnetic property. Adding pressure can increase the density of the sample and promote the permeability. But much too big pressure will destroy the insulating coating of magnetic powder cores and reduce the magnetic properties. The optimum comprehensive magnetic properties can be obtained when the shaping pressure is 1800MPa(1 minute the pressure).
引文
[1] Manivel Raja M, Ponpandian N, Majumdar B. Soft magnetic properties of nanostructured FINEMET alloy powder cores. Materials Science EngineeringA, 2001, 304~306: 1062~1065.
    [2]刘亚丕,何时金,包大新等.软磁材料的发展趋势.磁性材料及器件,2003(03):26~32.
    [3] Shok rollahi H, Janghorban K. Soft magnetic composite materials (SM Cs). Journal of Materials Processing Technology, 2007, 189: 1~12.
    [4]赵修科.实用电源技术手册磁性元器件分册.沈阳:辽宁科学技术出版社, 2002.
    [5] Kordecki A, Weglinski B. Development and Applications of Soft Magnetic PM Materials. Power Metallurgy, 1990, 33(2): 151~155.
    [6] Kalathur Narasimhan, Francis Hanejko, Michael L Marucci.粉末冶金铁基软磁材料的发展与应用.粉末冶金工业,2010,20(2):43~46.
    [7]王占国,陈立泉,屠海令.中国材料工程大典.北京:化学工业出版社,2005,13:261~263.
    [8]陈付时.纯铁系软磁材料.上海钢研,2003(03):19~23.
    [9]夏强强,李莉娟,刘立华等.取向硅钢生产工艺研究进展.材料导报,2010(05):85~88.
    [10]金丹,孙可为.铁硅铝磁粉芯的磁特性研究.材料开发与应用,2009(1):24~29.
    [11]张绍波.高能球磨制备片状坡莫合金粉末及其屏蔽涂料应用研究:(硕士论文).云南:昆明理工大学,2008.
    [12]严密,彭晓领.磁学基础与磁性材料.杭州:浙江大学出版社,2006.
    [13] Seongmin Hong, Cheolgi Kim, Jongoh Kim. Magnetic and structural prooperties of nitrified FINEMET powder using mechanical milling method. Current Applied Physics, 2008, 8(6): 787~789.
    [14] Aleksandra Kolano Burian, Roman Kolano, Jan Szynowski, et al. Induced magnetic anisotropy in Co-doped Finemet-type nanocrystalline materials. Journal of Magnetism and Magnetic Materials, 2008, 320(20): 758~761.
    [15] Yoshizawa Y, Yamauchi K. Fe-based soft magnetic alloys composed of ultrafine grain structure. Materials Transactions, 1990, 31(4): 307~314.
    [16] Yoshizawa Y. Magnetic properties and applications of nanostructured soft magnetic materials. Scripta Materialia, 2001, 44(8-9): 1321~1325.
    [17] Duwez P, Lin S C H. Amorphous ferromagnetic phase in iron-carbon-phosphorus alloys. J Appl Phys, 1967, 38(10): 4096~4099.
    [18] Shen T D, Harms U, Schwarz R B. Bulk Fe-based metallic glass with extremely soft ferromagnetic properties. Materials Science Forum, 2002, 386: 441~443.
    [19] Sen N, Sau R. Physical modeling of liquid feeding for an unequal diameter two roll thin strip caster. Canadian Metal-lurgical Quarterly, 1998, 37(2): 161.
    [20]李智勇,陈孝文,张德芬.非晶纳米晶软磁材料的发展及应用.金属功能材料,2007,14(4):28~31.
    [21] Suzuki K. High saturation magnetization and soft magnetic properties of bcc Fe-Zr-B alloys with ultrafine grain structure. Mater Trans JIM, 1990, 31(8): 743~746.
    [22]赵义恒,张药西.软磁材料的技术进展及选择.技术前沿,2009,11(3):73~76.
    [23] Chen H, He Y, Gibert C J, et al. Mechanical properties of partially crystallizer aluminum based metallic glasses. Scripta Metall, 1991, 25(6): 1421~1423.
    [24]陈国钧.新型金属软磁材料的最新发展.金属功能材料,1998,5:1~10.
    [25]卢志超,李德仁,周少雄.非晶软磁合金丝材的国内外发展现状及应用展望.2004,11:46-52.
    [26] He K Y, Sui M L, Liu Y. A structural investigation of a Fe73.5Cu1Nb3Si13.5B9 nanocrystalline soft magnetic material. J Appl Phys, 1994, 75(7): 3684~3686.
    [27]卢志超,周少雄.非晶合金发展的历史、现状与展望.钢铁研究总院庆祝建院五十周年科技论文集,2002,9:98~100.
    [28]张志,郭金柱,刘娇娇.Fe基块体非晶软磁合金研究进展.金属功能材料,2010,17(3):76~80.
    [29]李庆达.软磁磁粉芯:(博士论文).辽宁:东北大学,2009.
    [30]姚中,姚丽姜,虞维杨等.高导磁高品质因数磁粉芯研究.上海钢研,1998,1:11~17.
    [31]吴安国.铁粉芯,磁介质,粉芯,粘结软磁.磁性材料及器件,1999,30(6):55~56.
    [32]钟传鹏,朱正吼,黄渝鸿.Fe基纳米晶/铁氧体复合材料磁粉芯制备及其软磁性能.功能材料,2008,11(39):1795~1798.
    [33] Stoppel D. Developments in soft magnetic power ferrites. J Magn Magn Mater, 1996, 160(3): 323~324.
    [34] Waeckerle T, Fraisse H, Furnemont Q. Soft magnetic FeNi alloys for DC current sensors with high accuracy. Journal of Magnetism and Magnetic Materials 2005, 290-291: 1584~1588.
    [35]崔永飞,周娟.磁粉芯研究的进展.材料导报,2010,24(2):27~32.
    [36] Iqbal Y, Davies H A, Gibbs M R J, et al. Nanocrystalline powder cores for high frequency applications, Journal of Magnetism and Magnetic Materials, 2002, 242~245: 282~284.
    [37]黄伟兵,朱正吼,杨操兵等.Fe/FeSiB磁粉芯软磁性能研究.功能材料,2010,41(11):2010~2013.
    [38]郑鑫,严彪.非晶合金铁心配电器变压器的发展及应用.上海有色金属,2011,32(2):95~98.
    [39]刘昌坻,王鲜,冯则坤等.Fe-Cr-Si-B非晶磁粉芯的制备与磁性能研究.电子元件与材料,2010,29(11):45~47.
    [40] Manivel Raja M, Ponpandian N, Majumdar B, et al. Soft magnetic properties of nanostructured FINEMET alloy powder cores. Materials Science Engineering A, 2001, 304-306: 1062~1065.
    [41] Hong Seongmin, Kim Cheolgi, Kim Jongoh. Magnetic and structural properties of nitrified FINEMET powder using mechanical milling method. Curr Appl Phy, 2008, 8: 787~789.
    [42] Gr?ssinger R, Sassik H, Holzer D, et al. Magnetic characterization of soft magnetic materials experiments and analysis. Journal of Magnetism and Magnetic Materials, 2003, 254~255: 7~13.
    [43]于敏,连法增,唐坚.Fe78Si9B13非晶磁粉芯磁性能研究.第七届中国功能材料及其应用学术会议论文集(第4分册),2010:224~225.
    [44]李长全,朱正吼,宋晖等.铁铜铌硅硼非晶磁粉芯性能研究.电子元件与材料,2005,24(6):30~32.
    [45]陆曹卫,卢志超,郭峰等.水雾化Fe69Ni5Al4Sn2P10C2B4Si4非晶合金粉末及其磁粉芯的性能.钢铁研究学报,2007,19(9):33~35.
    [46]王红忠.特种磁粉芯的制备及性能研究:(硕士论文).湖南:中南大学,2007.
    [47]王伟,肖于德,周娟.FeCuNbSiB软磁粉芯制备及磁性能研究.矿冶工程,2009,29(3):95~99.
    [48]韩志全.Fe基非晶磁粉芯的新进展.磁性材料及器件,2011,1:7~9.
    [49] Manivel Raja M, Ponpandian N, Majumdar B, et al. Soft magnetic properties of nanostructured FINEMET alloy powder cores. Materials Science Engineering A, 2001, 304~306: 1062~1065.
    [50] ZHANG Liang, LI De-ren, LU Zhi-Chao, et al. Novel Fe-based amorphous magnetic powder cores with ultra-low core losses. Science China(Technological Sciences), 2010, 53(5): 1290~1293.
    [51]王红霞,唐书环,崔嘉义等.Fe78Si9B13非晶粉末的钝化工艺对其磁粉芯性能的影响.金属功能材料,2010,17(2):8~11.
    [52]鲁静,姜少宁,龙毅.钝化工艺及绝缘包覆工艺对纳米晶软磁复合磁粉芯中高频段磁性能影响的研究.功能材料,2010论文集:318~321.
    [53]李庆达,连法增,尤俊华等.软磁Fe-Si-Al磁粉芯性能研究.功能材料,2009,40(3):369~371.
    [54] Shokrollahi H, Janghorban k. Effect of warm compaction on the magnetic and electrical properties of Fe-based soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2007, 313(1): 182~186.
    [55]徐晖,何开元,丘俞青等.纳米晶Fe73.5Cu1Nb3Si13.5B9磁粉芯的磁性能.功能材料,2000,31(1):42~44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700