软磁材料直流磁特性测量中纹波的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁化电源是软磁材料直流磁特性测量系统中的重要组成部分,传统的磁化电源均采用线性电源。随着电源技术的发展,目前,在很多领域开关电源以其重量轻、体积小、效率高、功耗低等优点迅速取代了线性电源成为大多数电子设备的供能电源。但是,相对线性电源,开关电源有个明显的缺点就是输出纹波电压大。如果采用开关电源做磁化电源,该缺点必定会影响测量结果,造成测量误差。
     本文以国家标准GB3657-83软磁材料直流磁特性测量方法为平台,首先,通过对软磁材料磁化过程的研究以及相关实验,分析了纹波对直流磁特性测量的影响。其次,针对开关电源输入级整流过程,分析了低频纹波的产生,并根据开关电源宏模型,采用功率匹配法和等效电流源法推导了开关电源低频纹波电压的计算公式;针对反激式变换器的能量传输过程,分析了开关频率纹波的产生机理,并根据反激变换器的电感完全供能模式(CISM),不完全电感供能且连续电流模式(ⅡSM-CCM),不完全电感供能且断续电流模式(ⅡSM-DCM)三种工作模式,进行了相应的纹波计算;针对开关电源纹波电压的测量,介绍了几种业界认可的示波器测量法。然后,又针对反激式开关电源的低频纹波和开关频率纹波,设计了相应的纹波衰减电路,包括LC谐振滤波器和LDO电路,并进行了Pspice仿真,仿真结果表明,纹波衰减效果明显。最后,根据软磁材料直流磁特性测量系统中需要恒定的磁化电流来提供恒定磁化场的特点,从稳流的角度来消除开关电源纹波对直流磁特性测量的影响,设计了适合提供恒定磁化电流的恒流磁化电源。
     实验表明,应用纹波衰减后的开关电源,测量磁感应强度的相对误差小于±3%,符合国标规定。本文的研究工作为开关电源在磁特性测量中的应用提供了一定的参考价值。
The linear power supply is traditionally used as magnetization power supply which is an important device in measuring DC magnetic properties of soft magnetic material. Nowadays, it shows a strong need in application if the traditional linear power supply could be replaced by switching power supplies. With the unique properties such as low power consumption, small in size and light in weight, portable and high efficiency SMPS (switching power supply) will be used in many application fields and become the main stream in engineering. However, the ripple voltage in output of SMPS restricts its application. In the measurement of magnetic properties of materials this disadvantage will definitely affect the measurement results and result in measurement error.
     GB3657-83 is the national standard measurement methods of DC magnetic properties of soft magnetic materials. First of all, according to research and experiments related magnetization process of soft magnetic materials, the influence of ripple voltage in DC magnetic properties of measurement is analyzed. Secondly, the ripple voltage output in low-frequency during rectification process in SMPS is analyzed. Formulations for ripple voltage output in low-frequency are deduced by power matching method and equivalent current source circuit method. During the energy transmission process, switching frequency ripple voltage of fly-back converter is analyzed. The converter is divided into three operating phrases, i.e., the complete inductor supply mode (CISM), the incomplete inductor supply mode with continuous conduction mode (IISM-CCM), and the incomplete inductor supply mode with discontinuous conduction mode (IISM-DCM). Formulations for switching frequency ripple voltage are deduced respectively in each mode. The measuring ripple voltage can be obtained by using oscilloscope method. Than, the ripple voltage attenuation circuits are designed for ripple voltage of low-switching frequency including the LC resonant filters and LDO circuits. The Simulation with Pspice indicates that ripple voltage is obviously attenuation. Finally, in DC magnetic properties measurement system of the soft magnetic material, a constant current source is designed to eliminate the ripple voltage in the magnetization current.
     Experimental results show that there is no any difference between the application of adjusted switching power supply in DC magnetic properties measurement system and GB3657-83.Relative error of the measuring result is less than±3%.The textual research work can provide important reference value for the application of switching power supply in magnetic properties measurement system.
引文
[1]龙毅.新功能磁性材料及应用[M].北京:机械工业出版社,1997.
    [2]周磊,金自力,张羊换,王新林.铁钻基软磁材料合金化的研究进展[J].金属功能材料,2006,13(6):37-41.
    [3]赵义恒,张药西.软磁材料的技术进展及选择[J].电子元器件应用,2009,11(3):73-76.
    [4]R.C.奥汉德利(周永恰译).现代磁性材料原理和应用[M].北京:化学工业出版社,2002:21.
    [5]田民波.磁性材料[M].北京:清华大学出版社,2000.
    [6]D. E. Gay. Soft magnetic composite materials for AC electrical applicatons [J].Metal Powder Report,1997,52(8):42
    [7]J. Petzold.Advantages of soft magnetic nanocrystalline materials for modern electronic applications[J].Journal of Magnetism and Magnetic Materials,2002, (5):84-89
    [8]李庆达,连法增,尤俊华等.软磁Fe-Si-Al磁粉芯性能研究[J].功能材料,2009,3(40):369-371.
    [9]金丹,孙可为.铁硅铝磁粉芯的磁特性研究[J].材料开发与应用,2009,1(24):24-26.
    [10]赵修科.实用电源技术手册磁性元器件分册[M].沈阳:辽宁科学技术出版社,2005.
    [11]李军,孙颖,赵宇,喻晓军.取向硅钢板坯加热温度对热轧及冷轧板织构的影响[J].钢铁研究学报,2009,3(21):42-45.
    [12]何忠治.电工钢[M].北京:冶金工业出版社,1997.
    [13]孙玉魁,张长安,董学智.金属软磁材料及其应用[M].北京:冶金工业出版,1986:45-63.
    [14]王会宗.磁性材料及其应用[M].北京:国防工业出版社,1989.153-164.
    [15]王新林.非品和纳米晶软磁合金从研究到产业化[J].金属功能材料,1996,3(6):205
    [16]R.C.奥汉德利(周永恰译).现代磁性材料原理和应用[M].北京:化学工业出版社,2002:365-370.
    [17]Y. Ohta, H. YoshizawaY. G. Nakagawa. Microstructural changes in a Ni-base superalloy during service[J].Scripta Metallurgica,1989,23 (9):1609-1641.
    [18]Schwarz R B. Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders intermetallics[J]. Appl Phys Lett,1986,49(3):146
    [19]李长全,罗小铃.铁基纳米晶软磁粉芯研制进展概述[J].材料导报,2005,(19):23—26.
    [20]李长全.铁铜铌硅硼非晶与纳米晶磁粉芯性能比较研究[J].电子元件与材料,2006,(10):53-55.
    [21]纪松,钱冲明,张延松,谭锁奎.非晶纳米晶软磁材料及其应用[J].兵器材料科学与工程,2005,5(28):51-55.
    [22]聂建华.高性能MnZn铁氧体材料的制备及机理研究[D].华中科技大学博士学位论文,2004.
    [23]刘玉红.软磁铁氧体材料的现状及其发展趋势.材料导报,2000,14(7):30-31
    [24]刘九皋,汪作国,邵顺中,等.宽频高μ软磁铁氧体材料.第十一届全国磁学和磁性材料会议论文集.长沙,2002.368-370.
    [25]潘启军,马伟明,赵治华等.磁场测量方法的发展及应用[J].电工技术学报,2005,3(20):7-13
    [26]孙玉魁,张长安,董学智等.金属软磁材料及其应用[M].北京:冶金工业出版社,1986,182-189
    [27]毕淑娥,许定喜,姜三勇.软磁金属材料特性测试分选仪的功能与实现[J].磁性材料器件,2000(5):52-55.
    [28]Nakata T, Ishihara Y, Takahashi N. Analysis of Magnetic Foields in a Single Sheet Tester Using an H Coil [J].Journal
    [29]Nakata T, KawaseY, Nakno M. Improvement of Measuring Accuracy of Magnetic Field Strength in Single Sheet Tester by Using Two H coits [J].IEEE Trans on Magn,1987,23 (5):2596-2599.
    [30]ET车尔尼雪夫.直流与交流磁测量[M].刘湘元,译.上海:上海科技出社,1964:112-130
    [31]华瑛.磁性材料测量中计量的应用及其发展[J].上海计量测试,1999,26(5):32-35.
    [32]王永,硅钢片单片磁化特性计算机自动测量系统的研究[D],河北工业大学硕士学位论文,2002
    [33]何水校,磁性测量技术及专用仪器现状与发展[J].LSI制造与测试,1996,2(17):13-15
    [34]姜智鹏,赵伟,屈凯峰.磁场测量技术的发展及其应用[J].电测与仪器,2008.
    [35]国家标准局.GB/T3657-1983.软磁合金直流磁性能测量方法[S].北京:中国标准出版社,1983.
    [36]唐统一.现代电磁测量[M].北京:中国计量出版社,1998.
    [37]张福民.磁性材料测量方法国际标准简介[J].电工合金,1998(1):38-40.
    [38]刘兴民.直流磁性测量[M].北京:机械工业出版社,1989.
    [39]梅文余.动态磁性测量[M].北京:机械工业出版社,1985.
    [40]张占松,蔡宣三.开关电源的原理与设计[M].电子工业出版社,2000.
    [41]何宏,魏克新,王红君.开关电源电磁兼容性[M].北京:国防工业出版社,2008.
    [42](美)沃尔法思.铁磁材料[M].刘增民译.北京:电子工业出版社,1993.
    [43]Marisol Delgado,Hebertt Sira-Ramirez.A bond graph approach to the modeling and simulation of switch regulated DC-to-DC power supplies[J].Simulation Practice and Theory,1998,6:631-646.
    [44]E. Gaio, R, Piovan, V.Toigo. EMI on diagnostics and control circuits due to switching power supplies[J].Fusion Engineering and Design,2005,75-79:61-66.
    [45]杨旭,裴云庆,王兆安.开关电源技术[M].北京:机械工业出版社,2004.
    [46]Raymond A.Mack,Jr.Demystifying Switching Power Supplies[J].Posts&Telecom Press.2007.
    [47]刘健,杨旭,王兆安.单位功率因数单相开关变换器的输出电压纹波[J].电力电子技术,1998,(4):1~4.
    [48]李宏.一种超低纹波组合开关电源的研制[J].电工技术杂志,2000,(12):1416.
    [49]肖国春,裴云庆,姜桂宾等.大功率低纹波稳定电源用直流有源滤波器[J].电力电子技术,2001,35(4):1~4.
    [50]石磊.大功率高效率移相全桥ZVS DC/DC变换器研究[D].武汉:空军雷达学院,2007.
    [51]李宏.浅谈开关直流电源的纹波抑制问题[J].电力电子技术,2000,34(6):28—30.
    [52]吴振军,胡智宏,崔光照.基于混沌反控制降低Buck型变换器EMI及纹波研究[J].系统仿真学报,2008,20(4):993-996.
    [53]鞠文耀,封心歌,陈善.华用于雷达接收机的开关电源的低纹波设计[J].现代雷达.2005,27(10):81-82
    [54]刘郑辉,席自强.基于Buck电路的开关电源纹波的计算和抑制[J].湖北工业大学学报.2007,22(5):22-24.
    [55]杜中义.开关电源输出纹波抑制措施的研究[J].电力电子技术.1996,(4):55-57.
    [56]高利兵.一种新型的低纹波开关电源[J].电子工程师,2004,30(8):25-27
    [57]阮新波.严仰光.自流开关电源的软开关技术[M].北京:科学出版社,2000.
    [58]刘树林,刘健,杨银玲.Boost变换器的能量传输模式及输出纹波电压分析[J].中国电机工程学报.2006,26(5):119-124.
    [59]胡进.一种低纹波输出仪用数控恒压/恒流直流电源的研究[D].杭州:浙江大学硕士学位论文,2005.
    [60]闫晓金,潘艳,陈永真.开关电源对电解电容器性能的基本要求[J].电源世界.2008,(4):33-36.
    [61]宋永祥.开关电源用铝电解电容器[J].电子元件与材料,1994,(2):67-69.
    [62]陈永真.电容器及其应用[M].北京:科学出版社,2005.
    [63]王锡清.开关稳压电源用铝电解电容器的失效机理[J].电子产品可靠性与环境试验,2002,(3):16-18.
    [64]沙占友,安国臣,张良.低压差线性稳压器的拓扑结构与应用[EB/OL](2008-11-10) [2009-09-11].http://www.quanwen.com.cn/doc/1759121.
    [65]Alicea P, Ortiz C, Perez R. Design of an Adjustable, Low Voltage, Low Dropout Regulator. Proceeding of the Fifth IEEE International Caracas Conference on Devices, Circuits and Systems,2004,5:24-26.
    [66]吴晓波,李凯,严晓浪.高性能低压差性稳压器的研究与设计[J].微电子学,2006,36(3):347-351.
    [67]Kugelatadt T. Fundamental Theory of PMOS Low-Dropout Voltage Regulators.Texas Instrument Application Report,1999,4:SLVA068.
    [68]蔡敏,孙君颖.LDO线性稳压器中动态频率补偿的研究[J].微电子学与计算机,2009,26(7):123-126.
    [69]王松林,罗莉,来新泉.一种适用于LDO的动态频率补偿方案[J].电子器件,2008,31(4):1273-1275.
    [70]何燕飞.恒流源综述[J].益阳师专学报,2002,19(6):24-25.
    [71]郭文会,张维玲.计量用恒流电源装置的设计[J].移动电源与车辆,2005,(1):42-44.
    [72]汪雨凌.25A恒流源系统实验研究与设计[D].吉林:吉林大学硕士学位论文,2006.
    [73]王士杰.场效应管恒流源特性的分析与研究[J].自动化仪表,1996,(2):34-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700