仪征市河流水环境容量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对仪征市水环境和污染源的现状作了较为全面的调查和评价,结合相关发展规划要求,划分出6个水污染控制单元,对此进行归类解析,确定本市主要河流均以有机污染为主,并选取CODMn和CODCr为本文主控因子。在此基础上,选取水质模型和水环境容量计算模型,对仪征市主要河流进行水环境容量计算,并进行了总量控制与分配方案的应用研究。
     根据河流的水文特征,不同河流选定满足其适用条件的水质模型和水环境容量模型,其中长江仪征段参考已有成果选用二维非稳态模型,仪扬河选用一维稳态模型,其他内河选用水库型河流模型。①对于仪扬河控制单元采用现场两点实测法,计算出上下游监测断面的最小距离,并通过现场勘察确定具体地址,以保证实验操作要求和降低外来因素影响,求解出该单元内河流的CODMn和CODCr降解参数分别为0.13d~(-1)和0.28d~(-1),并用近三年水文、水质监测资料对模型加以验证和灵敏度分析,结果满足使用要求;对其他控制单元的河流则采用实验室培养测定法,测定第1~(-1)0d的水样水质变化,求解其室内降解参数,进行室内外系数修正,求得室外CODMn和CODCr降解系数如下:胥浦河0.12d~(-1)、0.33d~(-1),龙河0.10d~(-1)、0.38d~(-1),沿山河0.10d~(-1)、0.41d~(-1),仪城河0.12d~(-1)、0.45d~(-1),并均予以验证和灵敏度分析,且结果满足使用要求。②在确定降解参数的基础上,运用相应水环境容量模型建立水环境容量与流量(水位)、河流水质浓度在不同保证率下的关系曲线,求解出参数分别在10%、25%、50%、75%、90%条件下各河流或河段的水环境容量值,这是实施自动化监测控制方案的必要工作和前提条件。③本文以流量(水位)90%保证率、水质浓度50%保证率为例进行计算说明,长江仪征段Ⅱ单元、仪扬河Ⅰ、Ⅱ单元、胥浦河、龙河、沿山河、仪城河CODCr的水环境容量分别为15190t/a、2926.21t/a、764.78t/a、532.07t/a、502.15t/a、82.65t/a、63.52t/a。通过对各控制单元污染物预测排放量与允许排放量的比较,不同控制单元应不同对待:长江仪征段Ⅱ单元、仪扬河Ⅰ、Ⅱ单元和龙河等河流的剩余可利用水环境容量分别为12402.73t/a、2926.21t/a、726.09t/a、502.15t/a,可以合理开发利用;胥浦河、沿山河剩余345.37t/a和64.3t/a,宜采取以控制为主、适度开发利用的原则;仪城河自身水环境容量小,且现状纳污量超出其水环境容量1870.7t/a,必须进行削减。
This paper first did overall field investigation and assessment of the water environment and pollutant resource. There were six water pollution control-units to be explained in detail. Based on it ,the water quality models and the water environment capacity models was selected. The rivers were mainly polluted by organic compound, so we took COD_(Mn) and COD_(Cr) as the principle components.
     The water quality models and the water environment capacity models were established by the rivers flow characteristics.For example, a model of two-dimensional unsteady state was used in Yizheng section of Yangtze River, a model of one-dimensional steady state was used in Yiyang River, and a reservoir river model was used in the other rivers.①A method of two points mensuration was adopted in Yiyang River. It should be figured out the least distance and selected spot position. The degradation coefficient of COD_(Mn) and COD_(Cr) was established, which was 0.10d~(-1) and 0.28d~(-1).The coefficient was also identified with the data of last three years. A method of simulation in constant temperature circumstance was adopted in other rivers. it’s titers were mensurated from 1 to 10 days continuously. From them, we got degradation coefficients of COD_(Mn) and COD_(Cr) in constant temperature circumstance and modified them to be seasoned with practical, which were:Xupu River 0.12d~(-1) and 0.33d~(-1),Long River 0.10d~(-1) and 0.41d~(-1),Yanshan River 0.10d~(-1) and 0.41d~(-1),Yicheng River 0.12d~(-1) and 0.45d~(-1).It was also identified and got a sensitivity analysis.②Based on the degradation coefficients, we can get the rivers’water environmental capacity with different flow(water level) and water concentration probability at level of 10%,25%,50%,75%,90%. It’s necessary and important to put mensurateing automatically in practice.③In this paper, It took 90% of flow(water level) and 50% of water concentration for example. We can get water environmental capacity such as Yizheng section of Yangtze River, sectionⅠandⅡof Yiyang River, Xupu River, Long River, Yanshan River and Yicheng River, which were 15190t/a,2926.21t/a,764.78t/a, 532.07t/a,502.15t/a,82.65t/a and 63.52t/a.From the results, we knew that the water environmental capacity in Yizheng was relatively richer as a whole. But, the capacity in different section had different quantity. For example, the residual capacity in Yizheng section of Yangtze River, sectionⅠandⅡof Yiyang River and Long River were more richer, they also can be used more than 12402.73t/a,2926.21t/a,726.09t/a and 502.15t/a. While Xupu River and Yanshan River’s had a few residual capacity about 345.37t/a and 64.3t/a.It should be controlled the total quantity strictly. At last, There was lack of water environmental capacity in Yicheng River. It was accommodated a large quantity of industry wastewater and living sewage yet. So it must be reduced COD_(Cr) 1870.7t/a at least.
     Finally, the result of water environmental capacity and forecast of the development of industry were utilized in this paper to total quantity distribute in industry with discharge coefficient method. It should be reduced from 3.62kg/10,000 Yuan to 1.28kg/10,000 Yuan. And total quantity of distribution would be increased from 1828.02t to 1929.05t, which was increased 5.53%. Ulteriorly, this paper also provided the discharge coefficients about major industries. It can be restraining parameters for total quantity distribute.
     This Paper,according to the water environment capacity calculating process,selected the models of water quality model and water environment capacity model with reason, and designed the experimentation in order to evaluating parameter of water quality with handily. Based on it, it was calculated the dynamic water environment capacities of Yizheng’s rivers, which were used in
引文
[1] 周密,王华东,张义生.环境容量[M].长春:东北师范大学出版社,1987.
    [2] Scherer,Charles R.On the Efficient Allocation of Environmental Assimilative Capacity:The Case of Thermal Emissions to a Large Body of Water[J].Water Resouce Research,1975,11(1):180-181.
    [3] Cairns,John Jr,Matching Heated Waste Waster Discharges to Environmental Assimilative Capacity[M].Symp on Energy Prod and Therm EffProc,Oak Brook,IL,USA,1973: 10-11.
    [4] Fuliwara O.,Gnanendran S.K.,and Ohgaki S.River quality mangement under stochastic streamflow[J].Journal of Environmental Engineering,.1986,112(2):185-198
    [5] Lohani B.N.and Thanh N.C…Probabilistic water quality control polices [J]. Journal of Environmental Engineering Division,1979,105(4):713-725.
    [6] Ecker J.G..A Grometric Programming Model for Optimal Allocation of Stream Dissolved Oxygen [J]Management Science,1975,21(6):658-668.
    [7] Liebman J.C.,Lynn W.R.The Optimal Allocation of Stream Dissolved Oxygen[J]. Water Resouce Research,,1966,2(3):581-591.
    [8] Loucks D.P.,Revelle C.S.,and Lynn W.R.Management Models for Water Quality Contral[J].Management Science,1967,14(4):166-181.
    [9] Revelle C.S.,Loucks D.P.,and Lynn W.R.Linear Programming Applied to Water Quality Management[J].Water Resource Research,1968,4(1):1-9.
    [10] Thomann R.V.and Sobed M.S. Estuarine Water Quality Management and Forecasting[J].Journal of Sanitary Engineering Kivision,ASCE,1964,89(5):9-36.
    [11] 刘家殿,温晓丹.水质箱式模型的建立及应用——在淮河蚌埠段的尝试[J].中国环境科学.1987,6:37-41.
    [12] Bowels,D.S.,and Greeney,W.J.,Steady state river quality modeling by sequential extended Kaman filter[J]. Water Resource Research, 14(1),1979:84-86.
    [13] Dewey R.J.,and Lettenmailer,D.P.,Probailistic methods in system quality management[J].Water Resources Bull, 11(1),1975:115-120.
    [14] Zielinski,P.A.,Stochastic Dissolved oxygen model[J].Environmental Eng.,ASCE, 114(1),1988:74-90.
    [15] Padgett,W.J.,Rao,A.N.V.,Estimation of BOD and DO probability distribution[J].Environmental Engineering,ASCE, 105(2),1979:525-530.
    [16] 张永良,洪继华,夏青,刘培哲.我国水环境容量研究与展望[J].环境科学研究.1988,2(1)73-81.
    [17] 曾光明,杨春平,袁兴中.城市开发区区域大气、水环境容量的计算及管理[J].环境与发展,1994.9(4),P355-357.
    [18] Allen v kneese,Blair T Bower, Environmental Quality and residuals management[M].Resources for the future,USA,1979.
    [19] 夏青,孙艳,贺珍等.水污染物总量控制实用计算方法概要[G].环境科学研究专辑,1989,6.
    [20] 张永良.水环境容量基本概念的发展[J].环境科学研究.1992,5(3):59-61.
    [21] 刘家殿,温晓丹.水质箱式模型的建立及应用[J].中国环境科学.1987,6(3):11-13
    [22] 陈 治 谏 . 模 糊 最 优 化 方 法 在 河 流 水 质 规 划 中 的 应 用 [J]. 中 国 环 境 科学.1989,9(1):26-27.
    [23] 过孝民,罗桂玲等.区域环境经济规划模型[J].中国环境科学.1985,2(1):41-43.
    [24] 潭 建 强 , 顾 丁 锡 等 . 湖 泊 岸 边 污 染 带 水 质 预 测 研 究 [J]. 中 国 环 境 科学.1988,4(1):22-23.
    [25] 陈阳,陈亮等.河流容量简化模式的建立,计算及其在水环境保护中的应用[J].中国纺织大学学报.1998,24(6):66-79.
    [26] 孙 卫 红 . 基 于 不 均 匀 系 数 的 水 环 境 容 量 计 算 方 法 探 讨 [J]. 水 资 源 保护.2001,64(2):25-26.
    [27] 龚若愚,周源岗.刘江柳州段水环境容量研究[J].水资源保护.2001,63(1):31-32.
    [28] 慕金波,酒济明.广利河感潮段水环境容量研究[J].山东科学.1997,10(3):53-58.
    [29] 杨志平,孙伟.潮汐河流动态水环境容量计算方法探讨[J].上海环境科学.1995,14(6):14-16.
    [30] 徐贵泉,褚君达.吴祖扬,陈庆江.感潮河网水环境容量影响因素研究[J].水科学进展.2000,11(4):375-380.
    [31] 阳衍华,崔文科,孙涛.东母猪河水环境容量研究[J].环境监测管理与技术.1995,7(1):21-25.
    [32] 国家环境保护局,中国环境规划院.全国地表水水环境容量核定技术指南[R]. 2003,9.
    [33] 国家环境保护局.水污染物排放总量监测技术规范 HJ/T92-2002 [S]. 2003,1.
    [34] 国家环境保护局,中国环境规划研究院. 排放水污染物总量监测技术规范HJ/T92-2002. [S]. 2003,9.
    [35] Daoyang ding,philip L-F liu.An operator-splitting Algorithm for Two-dimension Convection DisPersion Reaction Problems.Proc.of Int.on Computational Methods in Flow Analysis[M].H.Niki,M.Kawahara Tokoyo,1988,101-108.
    [36] Holly FM,Jt,Two-Dimensional Maxs Dispersion in river Colorado State University[D]1975, 78.
    [37] Jean A cunge.Two-Dimensional modeling of flooding plains[M].Unsteady Flow in Open Channels.1975(2):705-763.
    [38] Lowe,S.A.;Improving the water Quality Calculation in Watershed Models[J].Journal of Environmental Hydrology, 2001, 9(2).
    [39] 金忠青,韩龙喜,一种新的平原河网水质模型组合单元水质模型[J].水科学进展,1998.3,35-40.
    [40] Morid,5.,H.Ghaemi,H.Mir Abolghasemi,and Abediny;Evaluation of the HEC-1 Model for Flood Forecasting and Simulation in the Hormozgan Province,Iran[J].Journal of Environmental Hydrology,2001,6:43-46.
    [41] 徐贵泉,褚君达,吴祖达,陈庆江,感潮河网水环境容量影响因素研究[J].水科学进展,2000,12:369-376.
    [42] 褚君达,河网对流输移问题的求解及应用[J].水利学报,1994,10:14-35.
    [43] 徐贵泉,宋德蕃,黄士力等,感潮河网水量水质模型及其数值模拟[J].应用基础与工程学学报,1996,1:94-104.
    [44] 吴时强,丁道扬,吴碧君马英,平面二维动态水质数学模型,水动力学研究与进展,1996,12:653-660.
    [45] 蒋忠锦,王继徽,天然河流一维水质模型的研究与改进[J].湖南大学学报,1997,12:90-94.
    [46] 国家环境保护局监督管理司.环境影响评价培训教材[M].北京:化学工业出版社,1997:13-50.
    [47] 郝明家,赵玉强,张丽君等. 沈阳市水环境容量测算及其方法的研究[J]. 环境保护科学.2003, 117 (29):9-12.
    [48] 万金保,王嵘,黄学平.乐安河 COD 环境容量的研究[J]. 江西农业大学学报.2004, 26 (2):805-807.
    [49] 单中超,朱焕山,刘佳宁.抚西河流域水环境容量测算[J]. 环境保护科学.2004, 124 (30):24-25,38.
    [50] 柴群宇.富春江流域水环境容研究[D].浙江大学硕士研究生论文.2002.12.
    [51] 方子云等主编.水资源保护工作手册[M].南京:河海大学出版社,1988.
    [52] 孙勤芳,贺昭和,李锦秀等.河网水质数学模型的参数估算[J].农村生态环境(学报).1994,10(4):46-50.
    [53] 董林等.潮汐河网可降解有机物降解系数研究[J].环境科学研究,1990,3(6):8-15.
    [54] 慕金波,酒济明.河流中有机物降解系数的室内模拟实验研究[J].山东科学.1997,10(2):50-55
    [55] 张俊.大沽河干流青岛段水环境容量研究[D].硕士研究生论文.2003,8.
    [56] 罗缙,逄勇,罗清吉等.太湖流域平原河网区往复流河道水环境容量研究[J].河海大学学报(自然科学版).2004, 32 (2):144-146.
    [57] 左欣.大汶河泰安段水污染控制与水质预测初步研究[D].中国农业大学硕士研究生论文.2005,3.
    [58] 叶旭.温瑞塘河流域水污染物总量控制研究[D].浙江大学硕士研究生论文.2002,12.
    [59] 汤一凡.乐山市水环境容量研究[D].西南交通大学硕士研究生论文.2004,11.
    [60] 孙程.渭河陕西段水环境污染和水环境容量的计算模拟[D].西安建筑科技大学研究生学位论文.2004,6.
    [61] 张永良,洪继华,夏青等,我国水环境容量研究与展望[G].环境科学论文集,北京:中国环境科学出版社,1990:165-175.
    [62] 刘培哲,水环境容量研究的理论与实践[G].环境科学论文集,北京:中国环境科学出版社,1990:8-200.
    [63] 马光 , 胡仁禄 , 城市规划中应用环境容量模型的研究 [J]. 东南大学学报,1999,1:82-86.
    [64] 褚君达,徐惠慈,河网水质模型及其数值模拟[J].河海大学学报,1992,1:16-22
    [65] 韩龙喜,姚琪,张键,南通水系片水环境容量及污染综合治理研究[J].河海大学学报,1998,1:ll4-118.
    [66] 翁焕新,城市水资源控制与管理[M].浙江大学出版社,2000:234-241.
    [67] 郑 孝 宇 , 褚 君 达 , 朱 维 斌 . 河 网 非 稳 态 水 环 境 容 量 研 究 [J]. 水 科 学 进展.1997,8(1):25-31.
    [68] 刘兰芳,张祥伟,夏军.河流水环境容量预测方法研究[J].水力学报.1998,7:16-20.
    [69] 孙卫红,姚国金,逄勇.基于不均匀系数的水环境容量计算方法探讨[J].水资源保护.2001,2:25-27.
    [70] 龚若愚,周源岗.柳江柳州段水环境容量研究[J].水资源保护.2001,1:31-33.
    [71] 田卫,愈穆清,刘桂琴.图们江地区水环境容量及其对区域开发的影响研究[J].地理科学.1998,12(2):169-175.
    [72] 周孝德,郭瑾珑,程文等.水环境容量计算方法研究[J]. 西安理工大学学报.1999, 15 (3):1-6.
    [73] 曾思育,徐一剑,张天柱. 环状河网水质模型在水污染控制规划中的应用. 水科学进展.2004. 15 (2):193-196.
    [74] 刘兰芬,张祥伟,夏军.河流水环境容量预测方法研究[J].水利学报.1998.7:16-20.
    [75] 陈燕华,李彦武,牟海省等.长江九江段水环境容量研究[J]. 环境科学研究.1994,1(7):24-29.
    [76] 尧桂龙,周孝德.汉江中下游水污染控制规划模型研究[J]. 水利水电科技进展.2003, 23 (4):18-19,37.
    [77] 郭 怀 成 , 尚 金 城 , 张 天 柱 主 编 . 环 境 规 划 学 [M]. 北 京 : 高 等 教 育 出 版社.2001:149-150.
    [78] 何增耀,叶兆杰,吴方正.农业环境科学概论[M]. 上海:上海科学技术出版社:1991.
    [79] 鲍全盛.密云水库非点源污染负荷评价研究[J]. 水资源保护.1997,1:8-11.
    [80] 李怀恩.估算非点源污染负荷的平均浓度法及其应用[J].环境科学学报.2000, 20 (4):397-400.
    [81] 陈友媛,惠二青,金春姬等.非点源污染负荷的水文估算方法[J].环境科学研究.2003, 16 (1):10-13.
    [82] 梁博. 最大日负荷总量计划在非点源污染控制管理中的应用.水资源保护.2004,4:37-41.
    [83] 曾光明,杨春平,袁兴中.城市开发区区域大气,水环境容量的计算及管理[J].环境与发展.1994,9(4):355-357.
    [84] 张逢甲等 . 水污染容许排放量计算方法 [M]. 北京 : 中国科学技术出版社.1991:24-25.
    [85] 吕志华.汾河太原城区段水质模型的建立[J].山西师大学报(自然科学版),1999,13(2):61-64.
    [86] 田家怡,慕金波,王安得.山东省小清河流域水污染问题与水质管理研究[M].山东东营:石油大学出版社(第一版),1996:143.
    [87] 徐祖信 . 河流污染治理规划理论与实践 [M]. 北京 : 中国环境科学出版社.2002:491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700