控制系统中多模冗余与网络可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高系统可靠性和安全性主要有两种技术:一种是避错技术、一种是容错技术。避错技术通过质量控制、环境防护及提高元件集成度等措施避免将故障引入系统,以达到增加系统可靠性和安全性的目的。然而再好的避错技术也不能完全防止故障的发生。容错技术以资源冗余为前提,通过采用故障限制、故障屏蔽或者重组的方法,使得系统即使在存在故障的情况下,仍能产生可靠安全的输出。
     在采用容错技术的计算机控制系统中,使用较多的有双机比较结构、双机热备结构和三模表决冗余结构。近年来,在一些安全关键系统中,开始使用一种非表决的四模冗余结构——“二乘二取二冗余”(D2V2R:Double 2-Vote-2 Redundancy)结构。论文研究了这种冗余结构的工作原理和控制策略,并从可靠度、可用度和安全度角度对其性能进行了分析。论文还提出一种新的非表决四模冗余结构——双模冗余-比较”(C-DDMR:Comparison of Double Dual-Module Redundancy)结构,并将其性能与双机热备结构、三模表决冗余结构和“二乘二取二冗余”结构进行了对比。
     计算机控制系统中,除了直接数字控制系统外,集散式控制系统、现场总线控制系统和网络化控制系统的处理单元都通过网络相连。这些系统的可靠性不仅与控制单元的可靠性有关,还与控制单元间链路的可靠性及网络拓扑结构有关。论文重点研究了多跳控制网络可靠度和可用度的计算方法以及部件重要度的分析方法。
     论文的主要研究贡献归纳如下:
     (1)针对“二乘二取二”冗余结构的工作特点,提出了一种新的控制策略。现有的控制策略均假定子系统中有一个模块出现故障时,子系统将停止工作。采用这种工作策略可以保证系统有较高的安全性。如果子系统中在一个模块出现可测故障时,子系统不停机,则任意子系统中只要有一个模块正常,系统就可能继续正常工作。采用这种策略,则在故障检测覆盖度较大的情况下,可以以较小的安全度换取较大的可靠度。
     (2)提出了一种新的冗余结构——“双模冗余—比较”结构模型。和“二乘二取二”冗余结构一样,该结构也是由两个子系统组成,所不同的是子系统内部是双机热备结构,子系统间是比较结构。针对“双模冗余—比较”结构,给出了两种控制策略,研究了两种策略下的性能。
     (3)利用马尔可大过程对“双模冗余—比较”结构和“二乘二取二”冗余结构的性能进行了对比研究,讨论了各自的适用范围,即在模块故障检测覆盖率较大且修复率较小时适合使用“双模冗余—比较”结构;在模块故障检测覆盖率较小且修复率较大时适合使用“二乘二取二”冗余结构;其他情况下,两种结构的性能相差不大。
     (4)提出了一种计算节点不完全可靠情况下t时刻控制网络k-端可靠度或可用度的方法。该方法的基本思想是先将图的边定义为控制网络的链路及其端点,再通过对图的邻接矩阵进行递归分解,从而得到t时刻不相交的边变量k-端路集。在此基础上,使用条件概率对边变量k-端路集的概率进行求解以得到控制网络k-端可靠度或k-端可用度。该方法不仅可用于分析节点和链路不可靠的情形,还可用于分析节点和节点问存在多条链路的情况。另外,在对邻接矩阵进行变换运算时,以矩阵元素而不是以边作为变换的对象,可大大减少矩阵运算次数。
     (5)提出了一种基于图的路集完备集分析控制网络部件重要度的方法。介绍了图的路集完备集的概念,研究了路集完备集的性质及求法,给出了通过图的路集完备集计算结构重要度、概率重要度和关键重要度的过程和步骤。该方法可同时对这三种重要度指标进行快速分析。
There are mainly two kinds of techniques to improve reliability and safety of system——fault-avoidant technology and fault-tolerant technology. The fault-avoidant technology takes the measure of quality control, environmental protection and component integration improvement to avoid faults.into system and then improves reliability and safety. However, even the best fault-avoidant technology can not completely prevent the fault from occurring. By the redundancy of resources, the fault-tolerant technology adopts the method of fault restriction, fault masking or system reconfigurations, which makes the system still produce reliable and safe outputs even in the presence of faults.
     In computer control systems adopting fault-tolerant technology, dual-modular comparison redundancy (DMCR), dual-modular hot standby redundancy (DMHSR) and triple module voting redundancy (TMVR) are more used. In recent years, a non-voting quadruple modular redundant——double 2-vote-2 redundancy (D2V2R) begins to use in some safety-critical systems. The thesis studies the working principle and control strategy of this redundant structure, and analyzes its performance from the view of reliability, availability and safety. The thesis also proposes a new non-voting quadruple modular redundant——comparison of double dual-module redundancy (C-DDMR), and compares its performance with DMHSP, TMVR and D2V2R.
     In all computer control systems, except for the direct digital control systems, the processing units are connected through network in other systems, such as decentralized control system, fieldbus control system and network control system. The reliability of those systems is relative with not only the reliability of control unit, but also with the reliability of the link between control units and the network topology structure. This thesis focuses on the computation of reliability and availability in multi-hop control networks and the analyzing method of the component importance.
     The main contributions of this study are summarized as follows:
     (1) To the working features of D2V2R, a new control strategy is proposed. The existing control strategies assume when a module in a subsystem faults, the subsystem will stop working. This strategy can ensure that the system have higher safety. If the subsystem doesn't stop work when a detected fault occurs in a module, the system may continue to work as long as one module is normal in any subsystem. Adopting this strategy, the smaller safety can be exchanged for the better reliability in the situation of larger fault detection coverage rate.
     (2) A new redundancy structure model of C-DDMR is proposed. As the same as D2V2R, C-DDMR also consists of two subsystems. The difference is that subsystem is dual-modular hot standby redundancy structure and the two subsystems are comparison structure. For C-DDMR structure, two control strategies are given, and the performance under the two strategies are studied.
     (3) With the help of Markov procession, D2V2R structure and C-DDMR structure are comparatively studied and the application scope of those structures is discussed. That is if module has larger fault detection coverage rate and smaller repair rate, C-DDMR structure should be selected. If module has smaller fault detection coverage rate and larger repair rate, D2V2R structure should be selected. In other cases, performance of D2V2R structure is almost as same as that of C-DDMR structure.
     (4) A method is proposed for computing k-terminal reliability or availability of control network with unreliable nodes at time t. The basic idea of this method is that the edge of graph is defined as link and its terminals of control network first and then the disjoint edge variable k-terminal path sets are obtained by recursive decomposition of the adjacency matrix of the graph. On this basis, k-terminal reliability or availability is solved by computing all the probability of those path sets in the use of conditional probability. The proposed method can be used to analyze not only network with unreliable nodes and links but also network in which there are multiple links between two nodes. In addition, the number of matrix operations can be significantly reduced because transformation object is the matrix elements other than edge of graph when connection matrix is transformed.
     (5) A method is also proposed for importance analysis of control network components based on complete sets of path sets of graph. Concept of the complete sets is introduced and property and solving method of the complete sets are studied. Steps on calculating structure importance, probability importance and critical importance by the complete sets are also given. The proposed method can simultaneously analysis these three importance metrics quickly.
引文
[1]王春民,刘兴明,嵇艳鞠.连续与离散控制系统[M].北京:科学出版社,2008,2.
    [2]彭可,陈际达,邹润民.控制系统网络化及控制系统与信息网络集成技术[J],信息与控制,2002,31(5):441-445.
    [3]Wei Zhang. Stability analysis of networked control system[D].博士学位论文,Case Western Reserve University,August,2001.
    [4]王长力,罗安.分布式控制(DCS)系统设计与应用实例[M].北京:电子工业出版社,2005,12.
    [5]刘子明.基于Ethernet/IP的工业控制网络的研究与实现[D].硕士学位论文,东南大学,2006.
    [6]王树清,赵鹏程.集散型计算机控制系统(DCS)[M].杭州:浙江大学出版社,1994.
    [7]邬宽明.现场总线技术应用选编2[M].北京:北京航空航天大学出版社,2004,1.
    [8]甘永梅,李庆丰,刘晓娟.现场总线技术及应用[M].北京:机械工业出版社,2004,2.
    [9]李正军.现场总线与工业以太网及其应用系统设计[M].北京:人民邮电出版社,2006,2.
    [10]Rojas C, Morell P. Guidelines for industrial Ethernet infrastructure implementation:A control engineer's guide[C]. Cement Industry Technical Conference,2010 IEEE-IAS/PCA 52nd, 2010:1-18.
    [11]Gong Zhi-yuan; Liu Bin; Yang Shun-kun et al. Analysis of industrial Ethernet's reliability and real-time performance[C].8th International Conference on Reliability, Maintainability and Safety,2009:1133-1136.
    [12]Hao Xiao-hong,Wu Li-zhen. Performance evaluation of industrial Ethernet and its modeling[C]. International Conference on Information Acquisition.2004:527-531.
    [13]Lei Xu. Industry network QoS approach based on new Ethernet standards[C]. Proceedings of 2009 4th International Conference on Computer Science and Education,2009:395-398,2009.
    [14]Willig A, Matheus K, Wolisz A. Wireless technology in industrial networks[C] Proceedings of the IEEE,2005,93(6):1130-1151.
    [15]Miorandi D, Uhlemann E, Vitturi S, et al. Guest editorial:special section on wireless technologies in factory and industrial automation(Part Ⅰ)[J]. IEEE Transactions on Industrial Informatics,2007,3(2):95-98.
    [16]Miorandi D, Uhlemann E, Vitturi S, et al. Guest editorial:special section on wireless technologies in factory and industrial automation(Part Ⅰ)[J]. IEEE Transactions on Industrial Informatics,2007,3(3):189-190.
    [17]Xavier C, Tuan D, Devic C. Industrial wireless technologies:applications for the electrical utilities [C]. Proceedings of the IEEE International Conference on Industrial Informatics, 2006:108-113.
    [18]王沁,万亚东,李磊等.工业环境IEEE802.15.4链路的多频道可靠性分析与建模[J].计算机研究与进展,2009,46(2):1971-1984.
    [19]员春欣,江建慧.安全关键计算机系统[M].北京:中国铁道出版社,2003,10.
    [20]徐拾义.可信计算系统设计和分析[M].北京:清华大学出版社,2006,5.
    [21]赵志熙.计算机联锁系统技术[M].北京:中国铁道出版社,1999,9.
    [22]袁由光.容错计算原理.哈尔滨:哈尔滨工程大学出版社,2006,2.
    [23]Kulkarni S S, Ebnenasir A. Complexity issues in automated synthesis of failsafe fault-tolerance dependable and secure computing[J]. IEEE Transactions on Dependable and Secure Computing,2005,2(3):201-215.
    [24]Jhumka A, Leeke M. Issues on the Design of Efficient Fail-Safe Fault Tolerance[C]. 20thInternational Symposium on Software Reliability Engineering,2009:155-164.
    [25]Kulkarni S S, Ebnenasir A. The complexity of adding failsafe fault-tolerance[C].Proceedings of the 22nd International Conference on Distributed Computing Systems (ICDCS'02),2002: 337-344.
    [26]Benosman M, Lum K Y. Passive actuators fault-tolerant control for affine nonlinear systems[J]. IEEE Transactions on Control Systems Technology,2010,18(1):152-163.
    [27]Straka M, Kastil J, Kotasek Z. Modern fault tolerant architectures based on partial dynamic reconfiguration in FPGAs[C].2010 IEEE 13th International Symposium on Design and Diagnostics of Electronic Circuits and Systems,2010:173-176.
    [28]Arlat J, Costes A, Crouzet Y, et al. Fault injection and dependability evaluation of fault-tolerant systems[J]. IEEE Transactions on Computers,1993,42(8):913-923.
    [29]Shinohara K, Watanabe M. A double or triple module redundancy model exploiting dynamic reconfigurations[C]. Proceedings of the 2008 NASA/ESA Conference on Adaptive Hardware and Systems,2008:114-121.
    [30]Rocchi P, Betori, W. Notes on the passive and active redundancies in digital technology[C]. Proceedings of the Fourth IASTED International Conference on Circuits, Signals, and Systems,2006:347-351.
    [31]Zhang Fei-fei, Suyama, K. Reliable stability against sensor failures in passive redundancy[C], Proceedings of the 1996 IEEE IECON 22nd International Conference on Industrial Electronics, Control, and Instrumentation,1996,2:796-801.
    [32]王旭艳,师义民.不可“修复如新”的线形相邻n中取连续n-1好系统的可靠性分析[J]. 工程数学学报,2006,23(1):85-91.
    [33]Lu Li-xuan, Lewis G. Configuration determination for k-out-of-n partially redundant systems[J]. Reliability Engineering and System Safety,2008,93(11):1594-1604.
    [34]Zuo M J, Lin Da-ming, Wu Yan-hong. Reliability evaluation of combined k-out-of-n:F, consecutive-k-out-of-n:F and linear connected-(r, s)-out-of-(m, n):F system structures[J]. IEEE Transactions on Reliability,2000,49(1):99-104.
    [35]Myers A F. k-out-of-n:G system reliability with imperfect fault coverage[J]. IEEE Transactions on Reliability,2007,56(3):464-473.
    [36]Pratt B, Caffrey G, Derrick M, et al. TMR with more frequent voting for improved FPGA reliability. Proceedings of the 2008 International Conference on Engineering of Reconfigurable Systems and Algorithms,2008:153-158.
    [37]Michele F, Cecilia M. TMR voting in the presence of crosstalk faults at the voter inputs[J]. IEEE Transactions on Reliability,2004,53(3):342-348.
    [38]Kastensmidt F L, Sterpone L. On the optimal design of triple modular redundancy logic for SRAM-based FPGAs[C]. Proceedings of Design, Automation and Test in Europe.2005:1290-1295.
    [39]Fu Hao; Cai Ming; Fang Liu, et al. Research on RTOS-Integrated TMR for fault tolerant systems[C]. Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,2007,3:750-755.
    [40]江建慧.交替互补定位器及其用于双模比较冗余结构的差错定位[J].计算机研究与发展,2001,38(6):754-764.
    [41]江建慧,闵应骅,彭澄廉.一种用于双模冗余系统的健壮故障安全接口[J].同济大学学报,2002,30(10):1164-1168.
    [42]Teifel,J.Self-voting dual-modular-redundancy circuits for single-event-transient mitigation[J]. IEEE Transactions on Nuclear Science,2008,55(6):3435-3439.
    [43]李宏亮,金十尧,胡华平,于志英.短事务、强实时双机容错系统的研究[J].计算机学报,2003,26(2).:243-249.
    [44]金士尧,胡华平,李宏亮.具有容错结构的高可用计算机双系统研究[J].中国工程科学,1999,1(3):46-50.
    [45]Zhong Chong-quan, Zhang Li, Li Hong-yu, et al. Research and implementation of dual-server hot-standby of configuration software[C]. The Sixth World Congress on Intelligent Control and Automation,2006,2:6120-6123.
    [46]Parashar B, Taneja, G. Reliability and profit evaluation of a PLC hot standby system based on a master-slave concept and two types of Repair Facilities[J]. IEEE Transactions on Reliability,2007,56(3):534-539.
    [47]Chen C H, Ting Y, Lu W B, et al. Recovery mechanism design for hot standby computer system Systems, Man and Cybernetics[C]. IEEE International Conference on 2003,2003,3: 3027-3031.
    [48]孙蕾,徐洪泽.双机热备计算机联锁控制系统的安全性和可用性分析[J].中国安全科学学报,2004,14(7):30-33.
    [49]高继祥,郑俊杰.双机热备计算机联锁系统可靠性和安全性指标分析[J].北方交通大学学报,1998,22(5):73-77,88.
    [50]闫剑平,汪希时.两种方式双机热备结构的安全性和安全性分析[J].铁道学报,2000,22(3):124-127
    [51]Hu Rong-bing; Xie Jun.Optimal maintenance policies for a cold standby redundant system with two units[C]. IEEE International Conference on Service Operations and Logistics, and Informatics,2008,2:1774-1778.
    [52]Wang Wen-dai, Loman J. Reliability/availability of K-out-of-N system with M cold standby units[C]. Reliability and Maintainability Symposium,2002,450-455.
    [53]Meng Xian-yun, Yuan Li; Yin Rui-ling. The reliability analysis of a two-unit cold standby system with failable switch and maintenance equipment[C] International Conference on Computational Intelligence and Security,2006,2:941-944.
    [54]Dhillon B S. Reliability and availability analysis of a system with warm standby and common cause failures[J].Microelectronics Reliability,1993,33(9),:1343-1349.
    [55]Houbao X. Weihua G. Asymptotic stability of a parallel repairable system with warm standby[J]. International Journal of Systems Science,2004,35(12):685-692.
    [56]Amari S V, Dill G. Redundancy optimization problem with warm-standby redundancy[J]. Reliability and Maintainability Symposium (RAMS),2010 Proceedings-Annual,2010,1-6.
    [57]Wang Wen-dai,Loman J. Reliability/availability of K-out-of-N system with M cold standby units[C]. Reliability and Maintainability Symposium,2002,450-455.
    [58]She J, Pecht M G.Reliability of a k-out-of-n warm-standby system[J]. IEEE Transactions on Reliability,1992,41 (1):72-75.
    [59]Zhang, Tie-ling, Xie Min, Horigome M. Availability and reliability of k-out-of-(M+N):G warm standby systems[J]. Reliability Engineering and System Safety,2006,91(4):381-387.
    [60]岳强,徐洪泽.二取二乘二计算机联锁控制系统及其安全性的研究[C].中国杭州:第五届全球智能与自动化大会,2004,5292-5296.
    [61]张佳楠,王海峰,蒋大明.计算机联锁系统二乘二取二容错结构分析[J].铁路计算机应用,2006,15(11):46-49.
    [62]Hyunki Kim, Hyeunate Lee and Keyseo Lee. The design and analysis of AVTMR(all voting triple modular redundancy) and dual-duplex system[J]. Reliability Engineering and System Safety (S0951-8320),2005,88(3):291-300.
    [63]吕永昌,林瑜筠。计算机联锁系统。北京:中国铁道出版社.2007.4
    [64]张本宏,陆阳,魏臻,韩江洪.双模冗余—比较系统的可靠性和安全性分析.系统工程学报,2009,24(2):231-237.
    [65]郭永基.可靠性工程原理[M].北京:清华大学出版社,2002,1.
    [66]局滋培.可靠性工程[M].北京:原子能出版社,2000,3
    [67]Santhi, V.; Anitha, R.Reliability of a K-out-of-N system with spares and repair where repaired components are not all as good as new[J]. Journal of the Institution of Engineers (India), 2007,88:56-58.
    [68]Eryilmaz S. Lifetime of combined k-out-of-n, and consecutive kc-out-of-n systems[J]. IEEE Transactions on Reliability,2008,57(2):331-335.
    [69]汤胜道,汪凤泉.失效率随时间而变的n中取k表决系统可靠性分析[J].系统工程学报.2005,20(5):555-558.
    [70]王丽华,徐志根.可维修三模冗余系统的可靠度与安全度分析[J].西南交通大学学报,2002,37(1):103-107.
    [71]Asadi M, Bayramoglu I. The mean residual life function of a k-out-of-n structure at the system level[J]. Source:IEEE Transactions on Reliability,2006,55(2):314-318.
    [72]Kenneth W Philp and Norman D Deans. Comparative redundancy. an alternative to triple modular redundant system design[J]. Microelectronics Reliability,1997,37(4):581-585.
    [73]Asadi M and Bayramoglu I. The mean residual life function of a k-out-of-n structure at the system level[J]. IEEE Transactions on Reliability.2006,55(2):314-318.
    [74]Nixon M, Chen De-ji, Blevins T, et al. Meeting control performance over a wireless mesh network[C]. IEEE International Conference on Automation Science and Engineering,2008, 540-547.
    [75]Iino Y, Fujita M. Wireless Sensor Network based Control System--Trade off between sensor power saving and control performance[C]. SICE,2007 Annual Conference,2007:2582-2585.
    [76]黄文君,谢东凯,卢山等.一种高可用性的冗余工业实时以太网设计[J].仪器仪表学报2010,31(3)704-708.
    [77]Xu Ai-dong, Jiang Li-qun; Yu Hai-bin. Research of fault-tolerance technique for high availability Industrial Ethernet[C]. International Conference on Information and Automation, 2009,301-305.
    [78]孙明刚.工业以太网冗余问题的研究[D].硕士学位论文,西南大学,2008.
    [79]Loy D, Schmalek R, Wien Tul.Thoughts about redundancy in fieldbus systems anchored in OSI layer-4 and applied to the Lontalk protocol on neuron based network nodes[C]. Proceedings of the 1995 IEEE International Workshop on Factory Communication Systems, 1995,21-26.
    [80]梁雄键,孙青华,张学渊等.通信网可靠性管理[M].北京:北京邮电大学出版社,2004.9.
    [81]陈勇.通信网可靠性的评价方法研究[D].博士学位论文,南京:东南大学,2004.
    [82]熊蔚明,刘有恒.关于通信网可靠性的研究进展[J].通信学报,1990,11(4):44-49.
    [83]吴俊,谭跃进.复杂网络抗毁性测度研究.系统工程学报,2005,20(2):128-131.
    [84]Albert R, Barabasi A L Statistical mechanics of complex networks", Rev. Mod. Phys., vol.74, 2002, pp.47-97.
    [85]Cohen R, Erez K. and Avraham D. Resilience of the Internet to random breakdowns. Phys. Rev. Lett., vol.85, no.21,2000, pp.4626-4628.
    [86]冯海林.网络系统中可靠性问题的研究[D].博十学位论文,西安:西安电子科技大学,2004.
    [87]冯海林,刘三阳,宋月.通信网全端可靠性界的一种计算方法[J].电子学报,2004,32(11):1868-1870.
    [88]Gary H, Corinne L, Nikolaos L. K-terminal network reliability measures with binary decision diagrams[J]. IEEE Transactions on Reliability,2007,56(3):506-515.
    [89]Khachiyan L, Boros Endre, Elbassioni Khaled, et al. Enumerating disjunctions and conjunctions of paths and cuts in reliability theory[J]. Discrete Applied Mathematics,2007, 155(2):137-149.
    [90]Mishra R, Chaturvedi S K. Minimal cutset enumeration in directed networks and reliability Measures[C]. IEEE Region 10 and the 3rd international Conference on Industrial and Information Systems,2008,1-4.
    [91]Hung-Yau Lin, Sy-Yen Kuo, Fu-Min Yeh. Minimal cutset enumeration and network reliability evaluation by recursive merge and BDD[C]. The 8th IEEE International Symposium on Computers and Communication,2003,2:1341-1346.
    [92]刘缵武.应用图论[M].长沙:国防科技大学出版社,2006,1.
    [93][4]Javanbarg M B, Scawthorn C, Kiyono J, et al. Minimal path sets seismic reliability evaluation of lifeline networks with link and node failures[J]. Lifeline Earthquake Engineering in a Multihazard Environment,2009,357:105-107.
    [94]Yi Hong, Zhang Yu-fang, Tong Jiao. System reliability simulation based on minimal cut sets[C]. Proceedings of the IASTED International Conference on Applied Simulation and Modeling,2004,299-302.
    [95]Rajesh M, Chaturvedi S K.A cutsets-based unified framework to evaluate network reliability measures[J]. IEEE Transactions on Reliability,2009,58(4):658-666.
    [96]武小悦,沙基昌.网络系统可靠度的BDD算法[J].系统工程与电子技术,1999,21(7):72-74.
    [97]Imai H, Sekine K. Computational investigations of all-terminal network reliability via BDDs[J].IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,1999,E82-A(5):714-721.
    [98]Xing Liu-dong. An efficient binary-decision-diagram-based approach for network reliability and sensitivity analysis[J]. IEEE Transactions on Systems, Man and Cybernetics—PART A: Systems and humans,2008,38(1):105.
    [99]Charles J C. The Combinatorics of Network reliability[M]. Oxford:oxford University Press, 1987.
    [100]Yeh Wei-Chang, Lin Yi-Cheng,Chung Yuk-Ying. Performance analysis of cellular automata Monte Carlo simulation for estimating network reliability[J]. Expert Systems with Applications,2010,37(5):3537-3544.
    [101]Hui Kin-ping. Monte Carlo network reliability ranking estimation[J]. IEEE Transaction on Reliability,2007,56(1):50-57.
    [102]Enrico Zio, Luca Podofillini. Monte Carlo simulation analysis of the effects of different system performance levels on the importance of multi-state components[J]. Reliability Engineering and System Safety,2003,82:63-73.
    [103]Wei-Chang Yeh, Yi-Cheng Lin, Yuk Ying Chung. A particle swarm optimization approach based on Monte Carlo simulation for solving the complex network reliability problem[J]. IEEE Transactions on Reliability,2010,59 (1):212-221.
    [104]Douglas R S. Network reliability and algebraic structures [M]. New York:Clarendon Press,1991,41-50.
    [105]Shier Douglas R. Network reliability and algebraic structures[M]. Clarendon Press Oxford, 1991.
    [106]冯海林,刘三阳,宋月.网络系统可靠性分析的马尔可大过程法,系统工程与电子技术,2004,26(11):1669-1671.
    [107]Shier D R. A new Algorithm for performance analysis of communication systems. IEEE Transactions on Communication,1988,36(4):51.6-519.
    [108]Li V O K, Silvester J A. Performance analysis of networks with unreliable components. IEEE Transactions on Communication,32(5):105-110.
    [109]刘爱民,刘有恒.部件不可靠下的通信网业务性能分析[J].电子学报,2002,30(10):1459-1462.
    [110]熊庆旭,刘有恒.基于网络状态之间关系的网络的可靠性分析[J].通信学报,1998,19(3):55-61.
    [111]Min Young Chung, Jae Uck Yo, Dan Keun Sung, et al. Performability analysis of common-channel signaling networks, based on signaling system 7[J]. IEEE Transactions on Reliability,1999,48(7):224-233.
    [112]Hagin A A. Reliability evaluation of a repairable network with limited capacityand structure redundancy[J]. Microelectronic Reliability,1997,37(2):341-347.
    [113]费培之.图和网络及其应用[M].成都:四川大学出版社,1996,8.
    [114]曹晋华,,程侃.可靠性数学引论[M].北京:高等教育出版社,2006,7.
    [115]Adams G, Ferrante F. Markov modeling application to a redundant safety system[C]. Proceedings of the ASME Power Conference 2007,237-243.
    [116]李毅力.二乘(二取二)计算机联锁系统[J].计算机工程,2004,12(增刊):482-484.
    [117]Shawqi K, Wang Wen-ye. Computing two-terminal reliability in mobile Ad hoc Networks[C]. Wireless Communications and Networking Conference,2007(WCNC'2007),2831-2836.
    [118]Yi-Kuei Lin. Reliability of a flow network subject to budget Constraints[J]. IEEE Transactions on Reliability.2007,56(1):10-16.
    [119]X. Chen and M. R. Lyu. Reliability analysis for various communication schemes in wireless CORBA[J]. IEEE Transaction on Reliability.2005,54(2):232-242.
    [120]高飞,张少中,王光兴.计算无线通信网络2-终点可靠性的快速算法[J].计算机学报,2007,30(6):1035-1039.
    [121]Chen Yong, Hu Ai-qun, Kun-wah Yip, et al. A modified combined method for computing terminal-pair reliability in networks with unreliable nodes[C]. Xi'an:Proceedings of the Second International Conference on Machine Learning and Cybernetics,2003,2426-2429.
    [122]钟子果,胡爱群,陈勇.具有不完全可靠节点的无向网络终端对可靠性评价方法[J].电路与系统学报,2005,10(5):136-143,128.
    [123]Mohammad G, Christoph Ml, Sara K. K-terminal network reliability evaluation using Binary decision diagram[C]. Information and Communication Technologies:From Theory to Applications,2008(ICTTA 2008),1-5.
    [124]Deo N, Medidi M. Parallel algorithm for terminal-pair reliability [J]. IEEE Trans. Reliability, 1992,41(2):201-209.
    [125]AboEiFotoh H M F, Iyengar S S, Chakrabarty K. Computing reliability and message delay for cooperative wireless distributed sensor networks subject to random failures[J]. IEEE Transaction on Reliability.2005,54(1):145-155.
    [126]何明礼,向晓东,郭尹亮.基于重要度的系统可靠性分配方法[J].安全与环境工 程,2009,16(4):62-65.
    [127]金光.动态系统可靠性分析的新概念[J].国防科技大学学报,2004,26(2):100-105.
    [128]BallM O, Golden B L, Vohra R V. Finding the most vital arcs in a network[J]. Operations Research Letters,1989,8 (2):73-76.
    [129]Nardelli E, Proietti G, Widmayer P. Finding the detour-critical edge of a shortest path between two nodes [J]. Information Pro2 cessing Letters,1998,67 (1):51-54.
    [130]Nardelli E, Proietti G, Widmayer P. A faster computation of the most vital edge of a shortest path[J]. Information Processing Letters,2001,79(2):81-85.
    [131]Page L B, Perry J E. Reliability polynomials and link importance networks[J].IEEE Transaction on Reliability,1994,43 (1):51-58
    [132]Traldi L. Commentary on:Reliability polynomials and link importance in Networks[J]. IEEE Transaction on Reliability,2000,49 (3):322.
    [133]Liang Wei-fa. Finding the k most vital edges with respect to minimum spanning trees for fixed k[J]. Discrete Applied Mathematics,2001,113 (2-3):319-327.
    [134]Liang Wei-fa, Shen Xiao-jun. Finding the k most vital edges in the minimum spanning tree problem[J]. Parallel Computing,1997,(23-13):1889-1907.
    [135]Tsen F P, Sung T Y, Lin M Y, et al. Finding the most vital edges with respect to the number of spanning trees [J]. IEEE Transaction on Reliability,1994,43 (4):600-602.
    [136]Rao V V B. Most-vital edge of a graph with respect to spanning trees[J]. IEEE Transaction on Reliability,1998,47 (1):6-7.
    [137]陈勇,胡爱群,蔡天佑等.通信网中链路重要性的评价方法[J].电子学报,2003,31(4):573-575.
    [138]陈勇,胡爱群,胡啸.通信网中节点重要性的评价方法[J].通信学报,2004,25(8):129-134.
    [139]余新,李艳和,郑小平等.基于网络性能变化梯度的通信网络节点重要程度评价方法[J].清华大学学报:自然科学版,2008,48(4):541-544.
    [140]肖宇峰.基于离散概率模型的二端可靠性分析[D].博士学位论文,北京:北京邮电大学,2009.
    [141]Ou Y, Dugan J B. Sensitivity analysis of modular dynamie fault trees[C]. Proceeding of computer performance and Dependability Symposium,2000:35-43.
    [142]Xing Liu-dong. Fault-tolerant network reliability and importance analysis using binary decision diagrams[C]. Reliability and Maintainability,2004 Annual Symposium-RAMS, 2004:122-128.
    [143]Chang Y R, Amari S V, Kuo S Y. Computing system failure frequencies and reliability importance measure using OBDD[J], IEEE Transaetions on Computers,2004,53(1):54-68.
    [144]孙新利,陆长捷.工程可靠性教程[M].北京:国防工业出版社,2005,1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700