混合菌群共培养对偶氮染料的协同脱色及降解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染废水是国内外公认的最难处理的废水之一,这是因为废水中所含染料具有化学性质稳定,难以被生物降解的特点。其中偶氮染料占的比例最大,占染料总量50%以上。筛选能高效脱色降解偶氮染料的微生物,将其应用到印染废水处理上已经成为研究的热点之一。单一的脱色菌对偶氮染料的脱色效率低,降解不彻底,容易形成二次污染,混合菌群则能克服这些缺点。研究混合菌群共培养协同降解偶氮染料,可为提高印染废水的生物处理效率提供技术支持和相应的理论依据。
     本研究从印染废水筛选出能高效对偶氮染料直接蓝289脱色的混合菌群QM。将其分离、纯化,得到两种菌株,一株为真菌M3,一株为细菌Q1。单一的菌株进行脱色,脱色率较低,将两种菌株共培养则能显著提高脱色效率,说明两者具有协同对偶氮染料直接蓝289脱色的能力。从形态、生理生化及16SrDNA,18SrDNA基因序列分析方面对两种菌进行鉴定,确定细菌Q1为蜡状芽孢杆菌,真菌M3为白地霉。
     研究了混合菌群QM对直接蓝289的脱色条件,混合菌群QM脱色较佳条件为:温度30℃、初始pH7.0、静止状态。混合菌群QM具备一定的抗盐能力。与单一的菌株相比,混合菌群的脱色对环境条件的适应范围较广。混合菌群QM对多种不同结构的偶氮染料具有脱色作用,体现较广谱的脱色能力。
     研究表明混合菌群QM的对偶氮染料的脱色是在共代谢条件下进行的,葡萄糖、氯化铵为共代谢脱色较适合的碳、氮源。运用响应面设计法对共代谢脱色中的三个主要因素葡萄糖、氯化铵、染料浓度进行优化。得到三者的优化条件为:葡萄糖2.80g/L,氯化铵1.60g/L,染料0.15g/L。在染料浓度小于500mg/L下,混合菌群QM对直接蓝289脱色过程符合一级反应动力学,脱色速率与染料浓度之间的关系符合Haldane抑制方程,方程式为v = S + S2 /7122.93.202S + 94.32。
     研究了单一菌株Q1、M3及混合菌群QM对直接蓝289的脱色机制。结果表明菌株Q1的脱色反应是在低氧化还原电位下进行的。菌株M3脱色过程中,初期脱色主要是由菌体吸附完成的,脱色率较低,当脱色到第4d和5d时,脱色率显著提高,脱色率与漆酶的活性成正比。使用白地霉粗酶液(漆酶的酶活为6450U/L)对直接蓝289进行脱色,1.5h脱色率达到了90.2%。在混合菌群QM对直接蓝289的脱色过程中,菌株M3在培养前期能显著降低培养液的氧化还原电位。运用紫外-可见光谱扫描、HPLC、HPLC-MS技术对直接蓝289脱色的中间产物进行分析,证实混合菌群QM能将直接蓝289降解成小分子的化合物。鉴定的中间产物有3-羟基-2,7-氨基-萘磺酸钠,邻苯二甲酸。推断其中的一条脱色降解途径为直接蓝289偶氮键断裂形成3-羟基-2,7-氨基-萘磺酸钠等芳胺化合物,芳胺化合物进一步被降解生成邻苯二甲酸。初步判断混合菌群QM协同降解染料效应的机制是脱色初期菌株M3显著降低脱色液中氧化还原电位,低氧化还原电位促进菌株Q1对直接蓝289的脱色,脱色的中间产物能被菌株M3进一步降解,其中可能与菌株M3产的漆酶相关。
     使用海藻酸钙包埋菌株Q1,尼龙网载体吸附菌株M3,将两种菌株固定化。固定化菌株混合培养对直接蓝289进行脱色,结果发现固定化菌株保持较高的脱色活性。紫外-可见光谱扫描、HPLC分析证明固定化菌群能将直接蓝289降解。固定化菌群对直接蓝289的脱色符合一级反应动力学,具备连续脱色的能力。固定化菌群对实际印染废水进行处理,结果表明固定化菌群既能脱色,又能部分降低废水COD含量。
Treatment of dyeing wastewater is considered to be one of the most challenging tasks due to stable chemical structure of dyes recalcitrant to biodegradation. The majority (over 50%) of industrially synthesized dyes are azo dyes. Researchers have been focusing their attention on screening of effective microorganisms to decolorize azo dyes and its application to dyeing wastewater treatment. Individual strain has low efficiency in decolorization and cannot degrade azo dye completely, causing second pollution. Mixed consortium is capable of overcoming these shortcomings. The study of the co-culture of mixed consortium to degrade azo dye can provide technological support as well as theoretical foundation for treatment of dying wastewater.
     Mixed consortium QM, with remarkable ability to decolorize the Direct Blue 289(DB289), was isolated from the dyeing wastewater. Two groups of strains were purified and obtained: fungi M3 and bacteria Q1. Decolorization rate of DB289 by individual strain was low, but the co-culture of two strains enhanced decolorization efficiency. The results showed that the two strains exhibited syngersitic ability in decolorizing the azo dyes. Morphological, biochemical characterization as well as 16SrDNA, 18SrDNA gene sequences analysis indicated that the strain Q1 was Bacillus cereus and the strain M3 was Geotrichum candidum.
     The study of conditions for DB298 decolorization by mixed consortium QM was carried out. Optimal conditions was initial pH 7 and temperature at 30℃under static condition. Mixed consortium QM in this study seemed to be salt-tolerating in decolorization. Compared with individual strain, mixed consortium QM in decolorization adapt to environmental conditions on a wider scope. Besides, it was capable of decolorizing structurally different azo dyes, and exhibited a broader dye-decolorizing spectrum.
     Studies have shown that decolorization of azo dyes by mixed consortium QM was carried out under conditions of co-metabolism. Glucose, ammonium chloride is more suitable as carbon and nitrogen sources for decolorization of co-metabolism. Response Surface Methodology (RSM) have been applied to optimize the three major factors for co-metabolism decolorization: glucose, ammonium chloride, dye concentration. The RSM analysis indicated that the optimized conditions for the above factors are 2.80g / L, ammonium chloride: 1.60g / L, dye: 0.15g / L respectively. At the dye concentration of less than 500mg / L, the decolorization process of mixed consoritium QM in DB 289 fits the first-class kinetics model. The relationship between the decolorization rate and dye concentration is in accordance with the Haldane Inhibition Equation. The Equation is
     The study of the mechanism of DB289 decolorization by individual strain (Q1 and M3) and mixed consortium QM was investigated. The result showed that the strain Q1 was decolorized under the low oxidation-reduction potential (ORP). Initially the decolorization by the strain M3 was achieved by absorption of mycelium, and the decolorizaiton rate was low.The decolorizaiton rate increased on the 4th and 5th. The decolorization rate is in positive proportion to the activity of Laccase. Decolorization rate of DB 289 by crude Laccase (the enzyme activity is 6450U/L) produced by Geotrichum candidum reached 90.2% after 1.5h. During the decolorizaiton process of DB 289 by mixed consortium QM, the strain M3 can reduce ORP of the culture significantly. UV-Vis scan, HPLC as well as HPLC-MS was used to analyze the intermediate of DB289 decolorization. The result showed low molecular compounds produced with DB289 reduction were further degraded by mixed consortium. The intermediates were generally suggested to be aromatic amines such as 3-hydroxy-2,7-amino-naphthalene sulfonate and phthelic acid. The possible degradation pathway was therefore proposed. It is inferred that the first step of the decolorization is the cleavage in azo bonds of DB289 followed by the formation of aromatic amines, which is further degraded to phthelic acid. The mechanism of decolorization by mixed consortium QM was probably that initially ORP was reduced remarkably by the strain M3 , low ORP promoted decolorization of DB289 by the strain Q1, the intermediate of decolorization can be further degraded by the strain M3, which might involve the Laccase produced by the strain M3.
     The strain Q1 was immobilized with calcium alginate, and the strain M3 with nylon net carrier. Decolorization capacity was retained during the decolorization of DB289 by immobilized mixed consortium. Scanning Electron Microscopy confirmed that after decolorization the consortium grew well in the carriers. UV-Vis scan, HPLC analysis shows that immobilized mixed consortium can degrade DB 289 efficiently. Decolorization of DB 289 by immobilized mixed consortium fits the first-class kinetics. It has a continuous decolorization capacity. Treatment of real dyeing wastewater by the immobilized mixed consortium showed that they could partially remove color and COD.
引文
[1] Choudhary G. Human health perspectives on environmental exposures to benzidine: a review[J]. Chemosphere, 1996, 12:267-291
    [2]徐文东,文湘华.微生物在含染料废水处理中的应用[J].环境污染治理技术与设备, 2000, 1(2): 9-16
    [3] Vaidya A.A, Datye K.V. Environmental pollution during chemical processing of synthetic fibres[J]. Color Age, 1982(14):3-10
    [4]薛方亮,张雁秋.染料废水处理技术最新研究进展[J].水科学与工程技术, 2007(2): 26-29
    [5] Richardson M.L. Dyes-the aquatic environment and the mess made by metabolites[J]. Society of Dyers and Colourists, 1983, 99: 198-200
    [6]钟金汤.偶氮染料及其代谢产物的化学结构与毒性关系的回顾与前瞻[J].环境与职业医学, 2004, 21(1): 58-62
    [7]阮新潮,曾庆福,黎谦等.纺织印染废水处理技术进展[J].武汉科技学院学报, 2001, 14(2): 66-7
    [8]张建英,梁缘东,陈曙光,等.染色废水脱色混凝效应研究[J].环境污染与防治, 1998, 20(3): 9-12
    [9]贾堤,雅著,张志东等.海泡石用作染料吸附剂的研究[J].天津城市建设学院学报, 2002, 8: 79-81
    [10] Liu T. H, Matsuurat, Sourirajon S. Effect of membrane material sand average pore sizes on reverse osmosis separation of dyes[J]. TIndustrialT and TEngineeringT Chemistry, Product TResearch and DevelopmentT, 1983, 22: 77-85
    [11]王振余,郭树才.炭膜处理染料水溶液的研究[J].膜科学与技术, 1997, 17(5): 7-1
    [12]刘梅红,姜坪.膜法染料废水处理试验研究[J].膜科学与技术, 2001, 21(3): 50-52
    [13] Chu W. Dye removal from textile dye waste water using recycled alumsludge[J].Water Research, 2001, 35: 3147-3152
    [14]郑曦.高铁絮凝剂的电合成及其在染料废水处理中的应用[J].福建师范大学学报(自然科学版), 2002, 18: 54-57
    [15]胡文容,钱梦路,高廷耀.超声强压臭氧氧化偶氮染料的脱色效能[J].中国给排水.1999, 15(11): 1-4
    [16]顾平,刘奎,杨造燕. Fenton试剂处理活性黑KBR染料废水研究[J].中国给排水, 1997, 13(6): 16-1
    [17] DaVis R.J el al. Photocatalytic decolorization ofwastewater dyes[J]. Water Environmental Research, 1994, 66: 50-53
    [18]王怡中,陈梅雪,胡春,王菊思.光催化氧化与生物氧化组合技术对染料化合物降解研究[J].环境科学学报, 2000, 20(6): 772-776
    [19] Prieto O, Fermoso J, Nunez Y et al. Decolouration of textile dyes in waste waters by Photocatalysis with TiOB2B[J]. Solar Energy, 2005, 79, 376-383
    [20] Reutergradh L.B, Iangpashuk M. Photocatalytic decolorization of reactive azo dye: a comparison between TiO2 and CdS photocatalysis. Chemosphere, 1997, 35:585-96
    [21]管玉江,杨卫身.复极性固定床电解反应器对活性染料的降解[J].环境化学, 1999,18(3): 270-273
    [22]杨玉身,周集体,杨风林.微电解法降解染料的研究[J].上海环境科学, 1996, 15(7): 30-33
    [23]许海梁,杨卫身.偶氮染料废水的电解处理[J].化工环保,1999, 19(1):32-36
    [24]贾金平,杨骥,廖军.活性炭纤维(ACF)电极法处理染料废水的探讨[J].上海环境科学, 1997, 16(4): 19-22, 25
    [25]雷乐成.湿式氧化法处理高浓度活性染料废水[J].中国环境科学, 1999, 19(1): 79-84
    [26] Razo-flores E, Luijten M, Donlon B.E.A.Biodegradation of selected azodyes under methanogenic conditions[J].Water Science Technology.1997, 36(6-7):65-72
    [27] Bromley-challenor K.C.A, Knapp J.S, Zhang Z.Decolorization of an azo dye by unacclimated activated sludge under anaerobic conditions[J]. Water Research, 2000, 34(18):4410-4418
    [28] Manu B, Chaudhari S. Anaerobic decolorisation of simulated textile waste water containing azo dyes[J]. Bioresource Technology, 2002, 82:225-231
    [29] Mahdavi T.A, Donnelly T, Anderson G.K. Colour removal from a simulated dye wastewater using a two-phase anserobid Packed bed reactor[J]. Water Research, 2001, 35(2): 425-432
    [30]付莉燕,文湘华,徐丽捷等.活性翠蓝生物降解性能的试验研究[J].环境科学, 2001,22(4): 100-103
    [31]徐向阳,郑平,俞秀娥等.染化废水厌氧生物处理技术的研究[J].环境科学学报, 1998, 18(2):153-160
    [32] NuttaPun S, Kanehara J, Somsak. D, et al. MiCrobial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system. Chemical Engineering Journal, 2004, 99: 169-176
    [33]闫庆松.偶氮染料废水的厌氧好氧处理工程实例[J].工业水处理, 2001, 21(1): 44-46
    [34] OP,Pneill C, Hawkes F.R, Hawkes D.L, et al. Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye[J].Water Research. 2000, 34(8): 2355-2361
    [35] Sandhya S, Padmavathy S, Swaminathan K, et al. Microaerophilic–aerobic sequential batch reactor for treatment of azo dyes containing simulated wastewater[J]. Process Biochemistry, 2005, 40: 885-890
    [36]罗志腾,刘义,林荣忱等.固定化微生物厌氧移动床-好氧法处理偶氮染料废水[J].城市环境与城市生态, 1996, 9(3): 6-10
    [37]竺建荣.厌氧UASB-好氧工艺处理染料废水的研究[J].环境科学, 1994, 15(4): 31-34.
    [38] Kemper L.C. Anaerobic/aerobic trearment of a textile dye wastewater [J]. Hazard Industrial Wasters, 1992, 24: 593-601
    [39] Isik M, Sponza D.T. Decolorization of azo dyes under batch anaerobic and sequential anaerobic/ aerobic conditions[J]. Journal of Environment Science and Health. Part A, 2004, 39: 1107-1127
    [40] Ong S, Toorisaka E, Hirata M, Hano T. Decolorization of azo dye (Orange II) in sequential UASB-SBR system[J].Separation and Purification Technology, 2005,42:297-302
    [41] Van d.Z, F P Villaverde S. Combined anaerobic-aerobic treatment of azo dyes-a short review of bioreactor studies. Water Research 39, 2005, 1425-1440
    [42]徐颖,赵菊香,朱家征.物化-生化法处理染料废水中间体生产废水[J].环境保护科学, 2002, 28, 15-17
    [43]彭晶,王爱杰,任南琪等.水解一酸化一好氧工艺处理还原性染料废水的中试研究[J].哈尔滨工业大学学报, 2005, 37, 753-755
    [44] Kim S.Y, Park C, Kim A.Y , et al. COD reduction and decolorization of textile effluent using a combined Process[J]. Journal of Bioscience and Bioengineering, 2003, 95(1): 102-105
    [45] Tauber M.M, Guebitz G.M, Rehorek A. Degradation of Azo Dyes by Laccase and Ultrasound Treatment. Applied and Envirmental Microbiology, 2005, 5: 2600-2607
    [46] Schnoor J.L, Licht L.A, Mccutcheon S.C, et al. Phytoremediation of organic and nutrient contaminants. Environmental Science Technology. 1995, 29, 318-323
    [47]李杏.耐盐菌-碱蓬共生系统对偶氮染料的脱色研究[D].大连:大连理工大学硕士学位论文, 2007
    [48]丘木清.偶氮染料废水的植物-微生物复合净化系统的研究[D].杭州:浙江大学博士学位论文, 2007
    [49]李庄,曾光明,高兴斋等.偶氮染料废水处理研究现状及其发展方向[J].湖南化工, 2000, 30(6):12-15
    [50]徐文东,文湘华.微生物在含染料废水处理中的应用[J].环境污染治理技术与设备, 2000, 1(2): 9-16
    [51] Pandey A, Singh P, Iyengar L. Bacterial decolorization and degradation of azo dyes[J]. International Biodeterioration & Biodegradation, 2007, 59:5973-84
    [52] Rafii F, Cerniglla E.C. Comparison of the Azoreductase and Nitroreductase from Clostridium perfringens[J]. Applied and Environmental Microbiology, 1993, 59: 1731-1734
    [53] Russ R, Rau J, Stolz A. The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria[J]. Applied and Environmental Microbiology, 2000, 66: 1429-1434
    [54] Ghosh D.K, Mandal A, Chaudhuri J. Purification and partial characterization of two azoreductases from Shigella dysenteriae type1[J]. FEMS Microbiology Letters, 1992, 98:229-234
    [55]贾省芬,杨惠芳,刘双江.硫酸盐还原菌对多种染料厌氧脱色的特性[J].环境科学,1998,19(4):18-21
    [56]许玫英,钟小燕,曹渭等.脱色希瓦氏菌(Shewanella decolorationis)S12PTP的脱色特性[J].微生物学通报,2005,32(1):5-9
    [57]黄志勇,杨惠芳,刘双江.沼泽红假单胞菌H3对酸性红B2GL染料的厌氧脱色和降解作用[J].1999, 19(3):307-312
    [58] Kudlieh M, Keek A, Klein J, et al. Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. Strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction[J]. Applied and Environmental Microbiology, 1997,63(9):3691-3694
    [59] Chen H.Z, Wang R.F, Cerniglia C E. Molecular cloning, overexpression, purification, and characterization of anaerobic FMN-dependent azoreductase from Enterococcus faecalis[J]. Protein Expression and Purification, 2004, 34:302-310
    [60] Hu T.L. Degradation of azo dye RP2B by Pseudomonas luteola [J].Water Science and Technology, 1998, 38: 299-306
    [61] Wong P.K, Yuen P.Y. Decolorization and biodegradation of methyl red by Klehsie pneumoniae RS-13[J]. Water Research, 1996 , 30(71):1736-1744
    [62] Kodam, Msoojhawon K, Lokhande I et al. Microbial decolorization of reactive azo dyes under aerobic conditions[J].World Journal of Microbiology & Biotechnology ,2005, 21(3):367-370
    [63] Suzuki Y, Yoda T, Ruhul A, et al. Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil[J]. The Journal of Biological Chemistry, 2001, 276: 9059-9065
    [64] Blümel S, Knackmuss H.J, Stolz A. Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F[J]. Applied Environmental Microbiology, 2002, 68: 3948-3955
    [65] Blümel S, Stolz A. Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24[J].Applied Environmental Microbiology, 2003,62:186-190
    [66] Maier J, Kandelbaner A, Eracher A et al. A new alkali-thermostable azoreductase from Bacillus sp. Strain SF[J]. Applied and Environmental Microbiology , 2004, 70, 837-844
    [67] Chen H , Hopper S.L, Cerniglia C.E. Biochemical and molecular characterization of an azoreductase from Staphylococcus aereus. Atetrameric NADPH-dependent flavoprotein[J]. Microbiology, 2005,151:1433–1441
    [68] Nachiyar C.V, Rajkumar G.S. Purification and characterization of an oxygen insensitiveazoreductase from Pseudomonas aeruginosa[J]. Enzyme and Microbial Technology 2005, 36: 503-509
    [69] Feigel B.J, Knackmuss H.J. Syntropic interactions during degradation of 4-amino benzenesulfonic acid by a two species bacterial culture[J]. Archives of Micobiology, 1993, 159: 124-130
    [70] Perei K, Rakhely G, Kiss U.I, Polyak B, Kovcas K.L. Biodegradation of sulfanilic acid by Pseudomonas paucimobilis[J]. Applied Microbiology and Biotechnology, 2000, 55:101-107
    [71] Thurnheer T, Zurrer D, Hoglinger O, Leisinger T, Cook A M. Initial steps in the degradation of benzenesulfonic acid,4-toluenesulfonic acid and orthanilic acid in Alcaligenes sp.Strain O-1 [J]. Biodegradation, 1990, 1:55-64
    [72] Coughlin M.F, Kinkle, B.K, Bishop P L. High performance degradation of azo dye acid orange 7 and sulfanilic acid in laboratory scale reactor after seeding with cultured bacterial strains[J]. Water Research, 2003, 37: 2757-2763
    [73] Rozgaj R, Glancer S.M. Total degradation of 6-amnionaphthalene 2-sulfonic acid by a mixed culture consisting of different bacterial genera[J]. FEMS Microbiology Ecology, 1992, 86:229-239
    [74]任随周,郭俊,曾国驱等. 2株苯胺降解菌的分离鉴定及其降解特性研究[J].环境科学, 2006, 27(12):2526-2530
    [75] Kapdan I. K, Alparslan S. Application of anaerobic-aerobic sequential system to real textile wastewater for color and COD removal[J]. Enzyme and Microbial Technology, 2005, 36:273-279
    [76] TMyersT J. M, TMyersT C.R. TRole of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. Journal of Bacteriology,2000,182(1):67-75
    [77] Van der Zee F.P, Lettinga G, Field J.A. The role of (auto)catalysis in the mechanism of anaerobic azo reduction.Water Science Technology, 2000, 42(5-6 ):301–308
    [78] Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Applied Microbiological Biotechnology, 2001, 56:69–80
    [79] Zhang S.J, Yang M, Yang Q.X. Biosorption of reactive dyes by the mycelium pellets of anew isolate of Penicillium oxalicum. Biotechnology Letters, 2003,25: 709-713
    [80] Polman J.K , Breckenridge, C R. Biomass-mediated binding and recovery of textile dyes from waste effluents. Textile Chemist and Colorist , 1996, T28T (4): 31–35
    [81]荚荣,汤必奎,张晓宾.藜芦醇和吐温80对白腐菌产木质素降解酶的影响及在偶氮染料脱色中的作用[J].生物工程学报, 2004, 20(4): 302-305
    [82] Young L, Yu J. Ligninase-catalyzed decolorization of synthetic dyes[J].Water Research, 1997, 31(5), 1187-1193
    [83] Chagas E. P, Regina D.L. Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme and microbial technology, 2001,29(8-9): 473-477
    [84] Verma P, Madamwar D. Decolorization of synthetic textile dyes by lignin peroxidase of Phanerochaete chrysosporium[J]. Folia Microbiology, 2002, 47:283-286
    [85]张朝晖,夏黎明,林建平.黄孢原毛平革菌对染料和印染废水的降解[J].应用与环境生物学报, 2001,7(4):382-387
    [86] Reza H, Hamedaani K, Sakurai A, et al. Decolorization of synthetic dyes by a new manganese peroxidase-producing white rot fungus. Dyes and Pigments, 2007, 72:157-162
    [87] Park C.W, Lee M, Lee B. W, et al. Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii[J]. Biochemical Engineering Journal, 2007,36: 59-65
    [88]朱建军,曾抗美.白腐真菌处理染料废水研究进展[J].四川环境. 2006.25(6):86-90
    [89] Couto S.R. Decolouration of industrial azo dyes by crude laccase from Trametes hirsute[J]. Journal of Hazardous Materials, 2007,148:768-770
    [90] Doralice S.L.B, Regina T.R.M. Decolorization of textile indigo dye by ligninolytic fungi[J]. Journal of Biotechnology, 2001, 89: 141-145
    [91] Nyanhongo G.S, Gomes J, Gubitz G.M. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Research, 2002, 36(6):1449-1456
    [92] Oswaldw, GotaasH.B Photo synthesis in sewage treatment transactions[J]. American Society of Civil Engineers, 1955, 122:73-105
    [93] KumarK V, Sivanesan S, Ramamurthi V. Adsorption of malachite green onto pithophora sp a a fresh water algae: Equilibrium and kinetic modeling. Process Biochemistry, 2005, 40, 2865-2872
    [94] Khanidtha M, Prasert P. Removal of basic dye (Astrazon Blue FGRL)using maeroalga Caulerpa Ientillifera[J]. Journal of Environmental Management, 2006, 78, 268-274
    [95]李庄,曾光明,高兴斋.偶氮染料废水处理研究现状及其发展方向[J].湖南化工, 2000, 30(6):12-15
    [96]孙红文,黄国兰,丛丽莉等.藻类对偶氮染料的降解及定量结构-生物降解性研究[J].中国环境科学, 1999,19(4):289~292
    [97] Liu J, Liu H. Degradation of azo dyes by algae. Environmental Pollution, 1992, 75: 273-278
    [98] Aeuner E, Dilek F B, Treatment of Tectilon Yellow 2G by chlorella vulgaris. Process Biochemist, 2004, 39, 623-631
    [99] Ramalho P.A, Paiva S, CavacoPaulo A et al. Azo reductase activity of intact Saccharomyes cereVisiae cells is dependent on the Frelp component of plasa membrane ferric reductase. Applied and Environmental Microbiology, 2005, 71(7):3882-3888
    [100] Fu Y.Z, Viraraghavan T. Fungal decolorization of dye wastewaters: a review[J]. Bioresource Technology, 2001, 79, 251-262
    [101]常忠义,周波,高红亮等.基因工程菌在生物降解中的应用及其发展[J].生物技术, 2003, 13(5):46-48
    [102]戴树桂,宋文华,颜慧等.偶氮染料脱色优势菌的特性及基因定位初步研究[J].南开大学学报(自然科学), 1999,32(1),113-118
    [103]李可,张肇铭,刘晓辉等.沼泽红假单胞菌偶氮还原酶新基因的克隆表达[J].生物技术, 2004, 14(3): 8-10
    [104] Gesche S.H, Bhavna G, Eric R.D. Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes[J]. FEMS Microbiology Letters, 1992, 99:221-226
    [105] Nakanishi M, Yatome C, Ishida N, et al . Putative ACP phosphodiesterase gene encodes an azoreductase[J]. Journal of Biological Chemistry, 2001, 276 (49): 46394-46399
    [106] Yan B, Zhou J.T, Wang J, et al. Expression and characterization of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737[J]. FEMS Microbiology Letters, 2004, 236:129-136
    [107] Liu Z.J, Chen H.Z, Shaw N, et al.Crystal structure of an aerobic FMN-dependentazoreductase(AzoA) from Enterococcus faecalis[J]. Archives of Biochemistry and Biophysics, 2007 463: 68–77
    [108] Chen H.Z, Wang R.F, Cerniglia C E. Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis[J]. Protein Expression and Purification, 2004,34:302-310
    [109]金玉洁,金若非,王竞等.基因工程菌的发酵及偶氮染料脱色研究[J].工业安全与环保, 2005, 31(9):10-12
    [110]李剑凤,洪宇植,肖亚中.栓菌420漆酶C基因的克隆、高效表达及重组酶的染料脱色潜能[J].微生物学报, 2007, 47(1):54-58
    [111] Chang J.S, Lin C.Y. Decolorization kinetics of a recombinant Escherichia coli strain harboring azo-dye-decolorizing determinants from Rhodococcus sp. Biotechnology Letters, 2001, 23: 631-636
    [112] Molin S. Environmental potential of suicide genes[J].Current Opinion in Biotechnology, 1993, 4(30):299-305
    [113] ]Molin S. Suicidal genetic elements and their use in biological containment of bacteria [J] . Annual Review of Microbiology, 1993, 47:139-166
    [114] Kaplan D.L, Mello C, Sano T, et al.Streptavidin-based containment systems for genetically engineered microorganisms[J].Biomolecular Engineering, 1999, 16(1-4):135-140
    [115] Timmis K.N, Pieper D.H. Designing microorganisms for the treatment of toxic wastes[J]. Annual Review of Microbiology,1994,48:525-557
    [116] Ahrenhotz.A conditional suicide system in Escherichia coli based on the intracellular degradation of DNA[J].Applied and Environmental Microbiology, 1994, 60(10): 3746-3751
    [117] Friello D.A, Myloroie J.R, Chakrabarty A.M. Use of genetically engineered multiplasmid microorganisms for rapid degradation of fuel hydrocarbons[J].International Biodeterication and Biodegradation, 2001,48(1-4):233-242
    [118] Ripp S, Nivens D.E, Ahn Y, et al. Controlled field release of a bioluminescent genetically engineered microorganisms for bioremediation process monitoring andcontrol[J].Environmental Science and Technology, 2000, 34(5):846-853
    [119] King J.M.H, DiGrazia P.M, Applegate B, et al. Rapid sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation[J]. Science, 1990, 294: 778-781
    [120] Forgacs E, Cserhati T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environmental International .2004, 30, 953-971
    [121] Banat I.M, Nigam P, Singh D, et al. Microbial decolorization of textile dye containing effluents: a review. Bioresource Technology 1996, 58, 217-227
    [122]闵一钰. ZE-1号印染废水脱色菌群的选育及适用条件的研究[J].环境污染与防治,1992,14(6):14-16
    [123]鲜海军,贾省芬,杨惠芳.用高效染料脱色菌和PVA降解菌混合培养液处理印染废水[J].环境科学学报,1993,13(4):420-426
    [124]曾丽璇,罗国维.优势菌处理印染废水中水解池的脱色机理[J].中国环境科学, 1998, 18(5):423-426
    [125]李蒙英,孟祥勋,倪建国等.真菌和细菌对染料吸附脱色的高效共培养体系研究[J].环境污染治理技术与设备, 2002, 11(3):16-19
    [126] Jian Y, Wang X.W, Yue P. L, et al.Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains[J]. Water Resource, 1996, 35: 3579-3586
    [127] Khehraa M.S, Sainia H.S, Sharma D.K, et al. Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes. Water Research 2005, 39: 5135–5141
    [128] Knackmuss H.J. Basic knowledge and perspectives of biolimination of xenobiotic compounds[J]. Journal of Biotechnology, 1996, 51:287-295
    [129] Park C, Lee B, Han E J et al. Decolorization of acid black 52 by fungal immobilization[J]. Enzyme and Microbial Technology, 2006, 39: 371-374
    [130] Jung M.K, Yong H.K, Bong K.S et al. Novel immobilization of titanium dioxide(TiOB2B) on the fluidizing carrier and its application to the degradation of azo dye[J]. Journal of Hazardous Materials, 2006, 134: 230-236
    [131] He F, Hu W.R, Li Y.Z, Investigation of isolation and immobilization of a microbial consortium for decoloring of azo dye 4BS[J].Water Research, 2004, 38:3596-3604
    [132]梁沈平,王菊思,姜兆春.固定化微生物柱对染料废水的脱色试验[J].环境科学,1998,19:10-14
    [133] Kapdanik, Kargif, Mcmullan G et al. Biological decolorization of textile dyestuff by Coriolus versicolor in a packed column reactor[J].Environment technology, 2000, 21(2):231-236
    [134] Kastnath A, Novotny C, Svobdova K et al. Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor[J].Enzyme and Microbial Technology, 2003, 32(1):167-173
    [135] Zhang F.M, Yu J. Decolourisation of Acid Violet 7 with complex pellets of white rot fungus and activated carbon[J]. Bioprocess Engineering, 2000, 23(3): 295-301
    [136] Pazarlioglu N.K, Urek R.O, Ergun F. Biodecolourization of Direct Blue 15 by immobilized Phanerochaete chrysosporium[J].Process Biochemistry, 2005, 40: 1923- 1929
    [137]荚荣,谢萍,秦易.固定化白腐菌对多种染料脱色的研究[J].菌物系统, 2003, 22(2): 308-313
    [138] Knapp J.S, Newby P.S, Reece L.P.Decolorization of dyes by wood-rotting basidiomycete fungi[J]. Enzyme and Microbial Technology, 1995, (17): 664-668
    [139] Pastigrigsby M.B, Paszczynski A, Goszczynski S et al. Influence of aromatic substitution patterns on azo dye degradability by Strptomyces spp. and P.chrysosporium[J].Applied and Environmental Microbiology,1992,58(11): 3605-3613
    [140] Zimmermann T, Kulla H.G, Leisinger T. Properties of purified OrangeⅡazoreductase, the enzyme initiating azo dye degradaion by Pseudomonas KF46[J].European Journal of Biochemistry., 1982(19): 197-200
    [141] Liu J.Q, Houtian L. Degradation of azo dyes by algae[J]. Environmental Pollution, 1992, (75): 273-278
    [142] Spadaro J.T, Gold M.H, Renganathan V. Degradation of azo dyes by the lignin-degrading fungus P. chrysosporium[J]. Applied and Environmental Microbiology, 1992, 58(8): 2397-2401
    [143]戴树桂,宋文华,李彤等.偶氮染料结构与其生物降解性关系研究进展[J].环境科学进展, 1996, 4(6):1-9
    [144]魏景超.真菌鉴定手册[M].上海科学技术出版社.1979, 489
    [145]何国庆,尹源明,冯澜.在小麦淀粉废水中培养白地霉的研究[J].中国粮油学报,1998, 13(5):33-37
    [146] Saratale R.G, Saratale G.D, Kalyani D.C et al. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR[J]. Bioresource Technology, 2007, 2493-2500
    [147] S.Asad, M.A Amoozegar, A A Pourbabaee, et al. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria[J]. Bioresource Technology, 2006, 10:1-7
    [148]柳广飞,周集体,王竞.细菌对偶氮染料的降解及偶氮还原酶的研究进展[J].环境科学与技术, 2006, 29(4):112-114
    [149]陈魁.试验设计与分析[M].北京:清华大学出版社, 1996, 94-180
    [150]杨文雄,高彦祥.响应面法及其在食品工业中的应用.中国食品添加剂[J], 2005,2: 68-71
    [151] Sharma P, Singh L, Dilbaghi N. Response surface methodological approach for the Decolorization of simulated dye effluent using Aspergillus fumigatus fresenius[J]. Journal of Hazardous Materials. 2009, 161:1081-1086
    [152]臧荣春,夏凤毅.微生物动力学模型[M].北京:化学工业出版社, 2004, 202-212
    [153] Eggert C, Temp U, Eriksson K.L. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus. Purification and characterization of the laccase[J]. Appllied Environmental Microbiology, 1996, 62(4):1151-1158
    [154] Martine M.J, Ruiz-Duenas F.J, Guillen F et al. Purification and catalytic properties of two managenese-peroxidase isoenzymes from Pleurotus eryngii[J]. European Journal of Biochemistry, 1995, 237:424-432
    [155] Tien M, Kirk T.K.Lignin-degrading enzymes from the hymenomycete Phanerochaete chrysosoporium Burds[J]. Science, 1983, 221:661-663
    [156]郭勇.现代生化技术[M].华南理工大学出版社,1992, 108
    [157] Haug W, Sehlnidi A, N?rtemann B, et al. Mineralization of the sulfonated azo dye mordant yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. Applied and Environmental Microbiology[J].1991, 57(11):3144-3149
    [158] Rafii F, Franklin W, Cerniglia C.E. Azoreductase activity of anaerobic bacteria isolatedfrom human intestinal microflora[J]. Applied and Environmental Microbiology,1990,56: 2146-2151
    [159]郭建博,周集体,王栋等.固定化蒽醌对偶氮染料生物降解促进作用研究[J].环境科学, 2006, 27(10):2071-2075
    [160] Sumathi S, Manju B.S. Uptake of reactive textile dyes by Aspergillus foetidus[J]. Enzyme Microbiological Technology 2000, 27:347-355
    [161] Cristina Máximo, Maria T, Pessoa Amorim et al. Biotransformation of industrial reactive azo dyes by Geotrichum sp. CCMI 1019. Enzyme and Microbial Technology 2003,32:145-151
    [162]龙良俊.白腐菌对染料废水脱色及降解的研究进展[J].重庆工商大学学报(自然科学版), 2006, 23(1):25-28
    [163] Ullah M.A. Reaction of pentachlorophenol with laccase from Coriolus versicolor[J] Applied and Environmental Microbiology, 2000, 53:223
    [164] Elithabeth R, Michael A.P, Rafael V.D. Industrial dye Decolorization by laccases from ligninolytic fungi[J]. Current Microbiology, 1999, 43:93-100
    [165] Chivukula M, Renganathan V. Phenolic azo dye oxidation by laccase from Pyricularia oryzae[J].Applied and Environmental Microbiology. 1995, 61:4374-4377
    [166] A.Bafana, S.S Devi, K Krishnamurthi. Kinetics of decolourisation and biotransformation of Direct black 38 by C.hominis and P.stutzeri[J]. Environmental Biotechnology, 2007, 74:1145-1152
    [167]贾燕,尹华,叶锦韶等.假单胞菌N7的萘降解特性及其降解途径研究[J].环境科学, 2008, 29(3): 756-761
    [168] Gavril M, Peter V, Hodson. Chemical evidence for the mechanism of the biodecoloration of Amaranth by Trametes versicolor[J]. World Journal of Microbiology and Biotechnology. 2007, 23:103–124
    [169] Park H.S, Lim S.J, Chang Y.K, et al. Degradation of chloronitrobenzens by a coculture of Pseudomonas putida and a Rhodococcus sp[J]. Applied and Environmental Microbiology, 1999,65(3): 1083-1091
    [170] S Boonchan, M.L Britz, G.A Stanley. Degradation and Mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterialco-cultures[J]. Applied and Environmental Microbiology, 2000, 66(3):1007-1019
    [171]许振文,张甲耀,陈兰洲等.固定化外源降解菌强化生物降解作用研究[J].环境科学与技术, 2007, 30(3):19-21
    [172]田萍,姚秉华,杜宝中等.优势菌固定化细胞对偶氮染料脱色的研究[J].化学研究与应用, 2004, 16(6): 765-767
    [173] Zouari H, Labat M, Sayadi S. Degradation of 4-chlorophenol by the white rot fungus Phanerochaete chrysosporium in free and immobilized cultures. Bioresource Technology, 2002, 84: 145-150
    [174]邹龙生.印染废水中COD的快速测定.湖南科技学院学报[J]. 2005, 5(26):119-121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700