酶的热稳定性研究及其在棉织物退浆、精练中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物酶的高效性、专一性和环境友好等特性使其受到人们的关注,应用也越来越广泛。但由于大多数酶是蛋白质,在高温时不可避免发生失活行为,生物酶的热稳定性差已经成为限制其高温应用的重要瓶颈,因此研究生物酶的热稳定性及探索提高酶耐热性的方法具有极为重要的意义。
     本论文首先研究了α-淀粉酶在溶液中的热稳定性,探讨了各种添加剂对α-淀粉酶耐热性的影响,并研究了酶在失活前后的粒径和荧光变化情况,分析了引起α-淀粉酶热失活的原因。结果表明,中温α-淀粉酶在溶液中的热失活符合一级动力学,其热稳定性很差,醋酸钙、乳酸钠、L-组氨酸和低分子量壳聚糖(LWCS)能够明显提高α-淀粉酶的耐热性。其中,LWCS的效果最好。醋酸钙和乳酸钠的复合物对α-淀粉酶A的热稳定性具有促进作用,这种作用效果比单独使用两种添加剂要好得多,但对α-淀粉酶B却没有这种效果。α-淀粉酶在高温下,粒径增大,发生聚集,而热稳定剂能通过抑制酶的聚集延缓酶的失活。而荧光光谱分析表明,热稳定剂的加入也改变了酶的构象,使其处于更完美的状态,从而提高了酶的耐热性。
     在退浆时,酶的失活行为发生在织物上,本论文也研究了α-淀粉酶在棉织物上的热稳定性。结果表明,中温α-淀粉酶在棉织物上的热失活同样符合一级动力学,但失活速率相对其在溶液中明显变慢,这说明棉织物也是α-淀粉酶很好的热稳定剂。加入各种添加剂后,酶的耐热性进一步得到改善,尤其是LWCS的加入,能够使α-淀粉酶在100℃以上保持较好的热稳定性。
     在此基础上,通过单因素和正交实验,确定了各种因素对棉织物α-淀粉酶退浆效果的影响,得到了最佳的处理工艺为:α-淀粉酶B浓度为0.5 g/L,LWCS浓度为15 mmol/L,汽蒸时间为15 min,汽蒸温度为100℃,溶液pH值为6,在此工艺条件下对棉织物进行退浆处理后,测定退浆率为98.6%。
     果胶酶在纺织上,尤其是在棉织物精练中的应用,越来越广泛,但果胶酶的性能研究却不够深入。本论文详细探索了精练用果胶酶酶活的测定方法,结果发现,果胶酶A由于能够水解苹果果胶,而且产物在紫外区236 nm处出现特征吸收峰,所以可以采用紫外法测定其活性。但果胶酶A无法作用于棉织物上的果胶,所以不能用于棉织物精练;果胶酶B由于无法水解苹果果胶,不能采用紫外法测定其活性,但果胶酶B能水解棉织物上的果胶,因此可以以棉织物上的果胶为底物,通过研究果胶酶B对果胶的去除情况,测定其酶活。
     本论文也研究了果胶酶B的酶学性质和热稳定性,当果胶酶B的浓度为0.16 g/L时,果胶酶B的最适温度为70℃,最适pH值范围为7~9。果胶酶B在低于70℃具有较好的热稳定性,在70℃时失活半衰期为131.2 min。
     棉织物上的果胶和蜡质都会影响其润湿性能,而且蜡质的影响效果要远远大于果胶物质。因此,在精练时需要结合果胶酶和表面活性剂的作用,同时去除果胶和蜡质。通过单因素实验和正交分析,确定果胶酶棉织物精练的最佳工艺为:预处理(沸水煮5 min)→处理液(果胶酶B溶液2 g/L,pH=7)→两浸两轧(轧液率100%)→90℃处理30 min→2 g/L平平加O溶液中100℃煮20 min→充分水洗。处理后,果胶去除率为93.8%,毛效为18.4 cm。
     本论文采用一浴法对棉织物进行退浆、精练,确定最佳的处理工艺为:处理液(α-淀粉酶0.5 g/L,果胶酶B 1g/L)→两浸两轧(轧液率100%)→90℃处理20 min→2 g/L平平加O溶液中100℃处理20 min→充分水洗。在此工艺条件下测得织物的前处理效果为:退浆率96.4%,果胶去除率90.4%,毛效18.6 cm。
The enzymes have got more attention and applications for their efficiency, specificity and mild action conditions. However, because most enzymes are proteins, inactivation behavior will take place inevitably at high temperatures. Poor thermostability has become the limitation of applications of enzymes at high temperatures. Therefore, it is very important to study the enzymatic thermostability and explore the methods of improving the thermal resistance of enzymes.
     Firstly, the thermostability ofα-amylase in solution was studied. The influence of several additives on the thermostability ofα-amylase was discussed. The varieties of particle sizes and fluorescence spectrum in the inactivation process were investigated. The results showed that inactivation of mesophilicα-amylases in solution followed first order kinetics. Calcium acetate, sodium lactate, L-histidine and low molecular weight chitosan (LWCS) could improve the thermostability of the enzymes remarkably. Among these additives, LWCS had best stabilizing effect. The composite of calcium acetate and sodium lactate had positive action on the thermostability ofα-amylase A, which was better than that when the additives was used individually. But the composite did not have such effect on the thermostability ofα-amylase B.α-Amylase aggregated and the particle size was increased at high temperatures. The thermal stabilizers postponed the inactivation through restrained the aggregation of the enzyme. The results from fluorescence spectroscopy measurements showed that the addition of stabilizers changed the conformation of the enzyme and made the enzyme in more ideal status, which was favorable to the thermostability of the enzyme.
     The inactivation of enzymes occurred on the fabrics in desizing process. The thermostability ofα-amylase on the fabrics was studied. The results showed that the inactivation of the enzyme on the fabrics also followed first order kinetics. But the inactivation rate ofα-amylase on the fabric was much slower than that in solution, which demonstrated that the fabrics were also good thermal stabilizers of the enzyme. After several stabilizers were added, the thermostability was further improved. Especially the addition of LWCS could make theα-amylase obtain preferable thermostability at temperatures higher than 100℃.
     Influences of various factors on the desizing effect of cotton fabrics were studied by "change-one-factor-at-a-time" method and orthogonal design. The optimal process conditions were set as follows: steaming temperature 100℃, steaming time 15 min,α-amylase B concentration 0.5 g/L, pH=6, LWCS concentration 15 mmol/L. The cotton was desized under this condition and the desizing ratio was 98.6%.
     The pectinase has obtained more and more application on the scouring of cotton fabric. But the study of the enzyme property is not intensive enough. In this paper, the activity of pectinase for scouring was explored in detail. It could be observed that pectinase A could hydrolyze apple pectin and the product had a characteristic absorption peak at 236 nm in ultraviolet region. Therefore, ultraviolet spectrophotometry method could be used to measure the activity of pectinase A. However, pectinase A had no effect on the pectin in cotton fabrics and this enzyme was not suitable for the souring of cotton fabrics. Pectinase B could not hydrolyze apple pectin and ultraviolet spectrophotometry method could not be applied to measuring its activity. But because pectinase B was able to hydrolyze the pectin in cotton fabrics, its activity could be characterized via the removing ability of pectin of cotton fabrics.
     The enzymology property and thermostability of pectinase B was investigated. When the concentration of pectinase B was 0.16 g/L, the optimal temperature was 70℃, the optimal pH value was 7-9. Pectinase B had good thermostability at temperatures lower than 70℃, and the half life time at 70℃was 131.2 min.
     Both the pectin and wax in cotton fabrics had effects on the wettability. And the effect of wax was much deeper than that of the pectin. Therefore, the pectinase and surfactant should be combined to remove pectin and wax at the same time in scouring process. Through "change-one-factor-at-a-time" method and orthogonal design, the optimal souring process conditions were determined as follows: pretreatment (5 min)→2 dip-squeeze (pectinase B 2 g/L, pH=7)→treatming for 30min at 90℃→treating for 20 min in 2 g/L paregal O solution at 100℃→washing thoroughly. After the treatment, the removing ratio of pectin was 93.8%, the capillary effect was 18.4 cm.
     Lastly, the cotton fabrics were treated by one-bath desizing-scouring method withα-amylase and pectinase and the conditions were optimized and adjusted, which was as follows. Solution (α-amylase B 0.5g/L, pectinase B 1g/L)→2 dip-squeeze (Liquid pickup 100%)→treatming for 20min at 90℃→treating for 20 min in 2 g/L paregal O solution at 100℃→washing thoroughly. Under this condition, the desizing ratio was 96.4%, the removing ratio was 90.4%, and the capillary effect was 18.6 cm.
引文
1 李群,赵昔慧.酶在纺织印染工业中的应用.北京:化学工业出版社,2006
    2 周文龙.酶在纺织中的应用.北京:中国纺织出版社,2002
    3 周毓.纯棉机织物生物酶前处理.印染,2007,33(16):11-15
    4 周疆.棉织物退煮漂轧蒸—浴法技术研究.现代纺织技术,2006(4):4-7
    5 谭艳君,杨定国,刘昌南.棉织物复合酶煮练—浴法工艺探讨.印染,2005,31(21):14-16
    6 沈志平,丁海刚.纯棉织物酶—氧退煮漂—浴法工艺探讨.北京纺织,2004,25(1):49-51
    7 顾军,杜庆华,杨志云,张庆.印染酶前处理—浴法连续工艺.印染,2003,29(11):7-8
    8 R R Min,K S Huang.Feasibility of a one-step process for desizing,scouring,bleaching and mercerising of cotton fabrics.Coloration,2006,11(2):69-72
    9 A.Hebeish,S.El-Bazza.Single stage process for desizing,scouring,and bleaching of cotton fabric.Macromolecular Materials and Engineering,2003,129(1):169-188
    10 Kuilderd Han,Wu Guifang.Simultaneous desizing and scouring with enzymes.AATCC Review,2008,8(6):33-35
    11 Dalvi P,Anthappan P,Darade N,Kanoongo N,Adiverekar R.Amylase and pectinase from single source for simultaneous desizing and scouring.Indian Journal of Fibre and Textile Research,2007,32(4):459-465
    12 Kim Ju Hye,Choi Eun Kyung,Kim Su Yeon.One-step process for desizing,scouring,and bleaching of cotton fabric using a novel eco-friendly bleaching agent.Journal of the Textile Association,2006,67(4):153-158
    13 Kino Hironari,Harikou Tatsuya,Maeshima Yosio.Desizing and scouting of cotton fabric with enzyme in one bath.Shizuoka-ken Hamamatsu Kogyo Gijutsu Senta Kenkyu Hokoku,1999,9:53-56
    14 何中琴.酶精练的评定方法和—浴法退浆、精练.印染译丛,2000(2):27-31
    15 Dilek Kilic Apar,Belma(O|¨) zbek.α-Amylase inactivation during rice starch hydrolysis.Process Biochemistry,2005,40:1367-1379
    16 Cristina LOpez,Ana Torrado.Enzymatic inhibition and thermal inactivation in the hydrolysis of chestnut puree with an amylases mixture.Enzyme and Microbial Technology,2006,39:252-258
    17 N.Ortega,S.de Diego.Kinetic properties and thermal behaviour of polygalacturonase used in fruit juice clarification.Food Chemistry,2004,88:209-217
    18 V.Bravo Rodriguez,E.Jurado Alameda.Thermal deactivation of a commercial α-amylase from Bacillus licheniformis used in detergents.Biochemical Engineering Journal,2006,27:29%304
    19 Belma(O|¨)zbek,Semra Y(u|¨)ceer.α-amylase inactivation during wheat starch hydrolysis process.Process Biochemistry,2001,37:87-95
    20 齐军仓,张国平.啤酒大麦β-淀粉酶热稳定性研究进展.麦类作物学报,2005,25(5):125-128
    21 王顺民.嗜热酶的研究及其在食品等相关工业中的应用.山西食品工业,2004,3:2-5,8
    22 吴远征,车程川,李纪顺.植酸酶的耐热性及其耐热机理的研究进展.饲料工业,2005,26(22):22-24
    23 周理红,许梓荣.酶的失活机理及其稳定化技术.浙江畜牧兽医,2004,6:7-8
    24 R Siva Sai Kumar,Sridevi Annapurna Singh,A G Appu Rao.Thermal Stability of α-amylase from malted jowar.Journal of Agricultural and Food Chemistry,2005,53:6883-6888
    25 Ciaran O,Fagain.Enzyme stabilization—recent experimental progress.Enzyme and Microbial Technology,2003,33:137-149
    26 Lenting H B M,Zwier E,Nierstrasz V A.Identifying important parameters for a continuous bioscouring process.Textile Research Journal,72(9):825-831
    27 范雪荣,万清余,王强.棉纤维润湿性影响因素分析.纺织学报,2004,25(1):72-74
    28 Perkins,W S.Textile coloration and finishing.Durham:Carolina Academic Press,1996
    29 吴辉,钱国坻,华兆哲.新型碱性果胶酶用于棉针织物精练的工艺优化.纺织学报,2008,29(5):59-63
    30 包德隆,马惠兰.染整工艺学(第一册).北京:中国纺织出版社,1999
    31 范雪荣.纺织品染整工艺学.北京:中国纺织出版社,2006
    32 Nabil AI,Mamdouh EH,Mahmoud SM,Basma ME.Development of new eco -friendly options for cotton wet processing.Journal of Applied Polymer Science,2004,93:1825-1836
    33 Shaowei D,Danian L.Kinetics of the thermal inactivation of Bacillus subtilis α-amylase and its application on the desizing of cotton fabrics.Journal of Applied Polymer Science,2008,109:3733-3738
    34 Achwal W B.Enzymatic removal of cotton pectin.Colourage,1992,39(7):35-40
    35 Bruhlmann F,Kim K S,Wolfgang Z,Fiechter A.Pectinolytic enzymes from actinomycetes for the degumming of ramie bast fiber.Applied and Environmental Microbiology,1994,60(6):2107-2112
    36 Li Y,Hardin I R.Enzymatic scouring of cotton:effect on structure and properties.Textile Chemist and colorist,1997,29(8):71-76
    37 王强,范雪荣,高卫东,陈坚.生物酶在棉织物精练加工中的应用,2006,28(8):113-116
    38 Hartzell M M,Hsieh Y.Enzymatic scouring to improve cotton fabric wettability.Textile Research Journal,1998,68(4):233-241
    39 Michelle Hartzell-Lawson,Sandra K Durrant.The efficiency of pectinase scouring with agitation to improve cotton fabric wettability.Textile Chemist and Colorist & American Dyestuff Reporter,2000,32(8):86-90
    40 何中琴.原果胶酶的基础和它在棉纤维精练中的应用.印染译丛,1997(8):74-81
    41 Sawada K,Ueda M,Wang X Y.Bioscouring of cotton with pectinase enzyme.Journal Society of Dyers and Colorists,1998,114(12):333-336
    42 Margarita Calafell,Pere Carriga.Effect of some process parameters in the enzymatic scouring of cotton using an acid pectinase.Enzyme and Microbial Technology,2004,34(3):326-331
    43 Csiszar E.Combining traditional cotton scouring with cellulose enzymatic treatment.Textile Research Journal,1998,68(3):163-167
    44 Buchert J,Pere J,Puolakka A,Nousiainen P.Scouring of cotton with pectinases,proteases and lipases.Textile Chemist and Colorist & Americal Dyestuff Reporter,2000,32(5):48-52
    45 Lin C H,Hsieh Y L.Direct scouring of greige cotton fabrics with proteases.Textile Research Journal,2001,71(5):425-434
    46 Sangwatanaroj U,Choonukulpong K.Cotton scouring with pectinase and lipase/protease/cellulose.AATCC,2003,3(5):17-20
    47 Csiszar E, Losonczi A, Szakacs G, Rusznak I, Bezur L, Reicher J. Enzymes and chelating agent in cotton pretreatment. Journal of Biotechnology,2001,89(2): 271 -279
    48 Csiszar E, Urbanszki K, Szakacs G. Biotreatment of desized cotton fabrics by commercial cellulose and xylanase enzymes. Journal of Molecular Catalysis B: Enzymatic,2001,11(4):1065-1072
    49 Degani 0, Gepstein S, Dosoretz C G. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. Applied Biotechnology,2002,103(1):277-290
    50 郭勇, 郑惠平. 酶学. 广州:华南理工大学出版社, 2000
    51 郭勇. 酶工程. 北京: 科学出版社, 2004
    52 Diller G B, Moghazy E Y. Effect of scouring with enzymes, organic solvents, and caustic soda on the properties of hydrogen peroxide bleached cotton yarn. Textile Research Journal, 1998,68:920-929
    53 Richardson T H, Tan X, Frey G, Callen W, Cabell M, Lam D. A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable α-amylase. Journal of Biological Chemistry, 2002, 277: 26501 -26507
    54 Vihinen M, Mantsala P. Microbial amylolytic enzymes. Critical Review in Biochemistry and Molecular Biology, 1989,24:329-418
    55 Colonna P, Buleon A, Lemarie F. Action of Bacillus subtilis α-amylase on native wheat starch. Biotechnology Bioengineering, 1988,31:895-904
    56 Komolprasert V, Ofoli R Y. Starch hydrolysis kinetics of Bacillus licheniformis α-amylase. Journal of Chemical Technology and Biotechnology, 1999,51:209-223
    57 Azadeh Ebrahim Habibi, Khosro Khajeh, Hossein Naderi-Manesh. Thermostability of Bacillus amyloliquefaciens α-amylase by chemical cross -linking . Journal of Biotechnology,2006,123:434-442
    58 Henk A Schols, Edwin J Bakx, Dick Schipper, et al. A xylogalacturonan subunit present in the modified hairy regions of apple pectin. Carbohydrate Research, 1995,279:265-279
    59 C J B van der Vlugt-Bergmans, P J A Meeuwsen, A G J Voragen, et al. Endo -xylogalacturonan Hydrolase, a novel pectinolytic enzyme. Applied and environmental microbiology,2000,66(1):36-41
    60 M M H Huisman, H A Schols, A G J Voragen. Enzymatic degradation of cell wall polysaccharides from soybean meal. Carbohydrate Polymers, 1999,38:299-307
    61 Li Y, Hardin I R. Treating cotton with cellulases and pectinases: effects on cuticle and fiber properties. Textile Research Journal, 1998,68(9):671-679
    62 Li Y, Hardin I R. Enzymatic scouring of cotton-surfactants, agitation, and selection of enzymes. Textile Chemist Colorist, 1998,30(9):23-29
    63 Mozhaev VV, Martinek K. Structure.stability relationships in proteins: new approaches to stabilizing enzymes. Enzyme and Microbial Technology, 1984, 6: 50 -59
    64 Nielsen JE, Borchert TV. Protein engineering of bacterial α-amylases. Biochem Biophys Acta,2001,1543:253-274
    65 Zale SE, Klibanov AM. Why does ribonuclease irreversibly inactivate at high temperatures? Biochemistry, 1986,25:5432-5444
    66 Matthews B W. Structural and genetic analysis of protein stability. Annual Review of Biochemistry, 1993,62:139-160
    67 Lee B, Vasmatzis G. Stabilization of protein structures. Current Opinion in Biotechnology,1997,8:423-428
    68 Lopes D H J, Sola-Penna M. Urea increases tolerance of yeast inorganic pyrophosphatase activity to ethanol: The other side of urea interaction with proteins. Archeves of Biochemistry and Biophysics,2001,394:61-66
    69 邹承鲁. 酶活性部位的柔性. 山东:山东科学技术出版社, 2004
    70 Vioet M, Meunier JC. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis alpha amylase. Biochemistry Journal, 1989,263:665-670
    71 Tomazic SJ, Klibanov AM. Why is one Bacillus alpha-amylase more resistant against irreversible thermoinactivation than another? Journal of Biological Chemistry, 1988,263:3092 -3096
    72 Padma V. Iyer, Laxmi Ananthanarayan. Enzyme stability and stabilization— Aqueous and non-aqueous environment. Process Biochemistry,2008,43:1019 -1032
    73 Ciaran 6, Fagain. Understanding and increasing protein stability. Biochimica et Biophysica Acta,1995,1252: 1-14
    74 Brosnan, M P, Kelly, C T, Fogarthy, W M. Investigation of the mechanisms of irreversible thermoinactivation of Bacillus sterothermophilus α-amylase. European Journal of Biochemistry, 1992, 203: 225-231
    75 Susan J Tomazic, Alexander M Klibanov. Mechanisms of irreversible thermal inactivation of Bacillus α-amylases. The Journal of Biological Chemistry, 1988, 263(7):3086-3091
    76 Koch R, Spreinat K, Lemke K, et al. Purification and properties of a hyperthermoactive α-amylase from the archaeobaterium Pyrococcus woesei. Archives Microbiology, 1991,155:572-578
    77 Lee J T, Kanai H, Kobayashi T, et al. Cloning, mucleotide sequence and hyperexpression of α-amylase gene from an archaeon Thermococcus profundus. Journal of Fermentation and Bioengineering, 1996,82:432-438
    78 Kwak Y S, Akeba T, Kudo T. Purification and characterization from hyperthermophilic archaeon hermococcus profundus, which hydrolyzes both α-1,4 and α-1,6 glucosidiclinkages. Journal of Fermentation and Bioengineering, 1998,86:363-367
    79 Bronnenmeier K, Kern A, Liebl W, et al. Pruification of Thermotoga maritime enzymes for the degradation of cellulose materials. Applied Environmental Microbiology,1995,61:1399-1407
    80 Kengen S W M, Luesink E J, Stams A J M, et al. Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. European Journal of Biochemistry,1993,213:305-312
    81 Fujiwara S, Okuyama S, Imanaka T. The world of archaea: genome analysis, evolution and thermostable enzymes. Gene, 1996,179:165-170
    82 Miland E, Smyth M R, Fagain C O. Increased thermal and solvent tolerance of acetylated horseradish peroxidase. Enzyme and Microbial Technology, 1996,19: 63-67
    83 Miland E, Smyth M R, Fagain C O. Modification of horseradish peroxidase with bifunctional N-hydroxysuccinimide esters: effects on molecular stability. Enzyme and Microbial Technology, 1996,19:242-249
    84 Mozhaev V V, Melik-Nubarov N S, Galkantaite N Z, Denis G J. Protein stabilization via Hydrophilization: covalent modification of trypsin and α-chymotrypsin. European Journal Biochemistry, 1988,173:147-154
    85 Wong S S, Wong L J C. Chemical crosslinking and the stabilization of proteins and enzymes. Enzyme and Microbial Technology, 1992,14:866-874
    86 Khosro Khajeh, Hossein Naderi-Manesh, Bijan Ranjbar, et al. Chemical modification of lysine residues in Bacillus α-amylases: effect on activity and stability. Enzyme and Microbial Technology,2001,28:543-549
    87 Sefan Janecek, Stean Balaz, Michal Rosenberg, Miroslav Stredansky. Chemical stabilization of Bacillus subtilis α-amylase by modification with D-glucono-δ -lactone.Biotechnology Techniques,1992,6(2):173-176
    88 Itaru Urabe,Hiromichi Nanjo,Hirosuke Okada.Effect of acetylation of Bacillus subtilis α-amylase on the kinetics of heat inactivation.Biochimica et Biophysica Acta,1973,302(1):73-79
    89 Rajesh K Bund,Rekha S Singhal.An alkali stable cellulose by chemical modification using maleic anhydride.Carbohydrate Polymers,2002,47:137-141
    90 尹亮,赵树进.聚乙二醇修饰超氧化物歧化酶稳定性变化的研究.生物技术,2003,13(4):29-30
    91 石宣明,刘淑珍,黄玉碧.嗜热酶耐热机制的研究进展.科学技术与工程,2004,4(9):804-809
    92 Ahern T J,Klibanov A M.The Mechanism of irreversible enzyme inactivation at 100-DEGREES-C.Science,1985,228:1280-1284
    93 Daniel R M.The upper limits of enzyme thermal stability.Enzyme and Microbial Technology,1996,19:74-79
    94 Kumar S,Tsai C J,Nussinov R.Factors enhancing protein thermostability.Protein Engineering,2000,13(3):179-191
    95 Facchiano A M,Colonna G,Ragone R.Helix stabilizing factors and stabilization of thermophilic proteins:an X-ray based study.Protein Engineering,1998,11(9):753-760
    96 Argos P,Rossmann M G,Grau U M,et al.Thermal stability and protein structure.Biochemistry,1979,18(25):5698-5703
    97 吴穗洁,吴文林,刘斌.嗜热酶耐热机制及提高酶热稳定性的研究进展.亚热带农业研究,2006,2(4):293-297
    98 Mrabet N T,Van Den Broeck A,Van Den Brande I,et al.Arginine residues as stabilizing elements in proteins.Biochemistry,1992,31:2239-2253
    99 Kirino H,Aoki M,Aoshima M,et al.Hydrophobic interaction at the subunitinterface contributes to the thermostability of 3-isopropylmalate dehydrogenase from an extreme thermophile Thermus thermophilus.European Journal of Biochemistry,1994,220(1):275-281
    100 王洪斌.两大饲用酶制剂的研究进展.生物技术世界,2006,2:28-29
    101 岳振峰,彭志英,徐建祥.壳聚糖固定化α-葡聚糖苷酶的性质研究.食品与发酵工业,2001,27(4):20-24
    102 R Siva Sai Kumar,K S Vishwanath,Sridevi Annapurna Singh,AG Appu Rao.Entrapment of α-amylase in alginate beads:Single step protocol for purification and thermal stabilization.Process Biochemistry,2006,41(11):2282-2288
    103 Qu Y, Bolen C L, Bolen D W. Osmolyte-driven contraction of a random coil protein. Proceedings of the National Academy of Sciences of the United States of America, 1998,95:9268-9273
    104 Kaushik J K, Bhat R. Thermal stability of proteins in aqueous polyol solutions. Journal of Physical Chemistry B,1998,102:7058-7066
    105 Anjum F, Rishi V, Ahmad F. Compatibility of osmolytes with Gibbs energy of stabilization of proteins. Biochimica Biophysca Acta,2000,1476:75-84
    106 Andersson M M, Hatti-Kaul R. Protein stabilizing effect of polyethyleneimine. Journal of Biotechnology, 1999,72:21 -31
    107 Schmid R. Stabilized soluble enzymes. Advances in Biochemical Engineering, 1979,12:41-118
    108 Haard N. Specialty enzymes from marine microorganisms. Food Technology, 1998,52:64-67
    109 Karaseva E, Metelitza D. Stabilization of glucose-6-phosphate dehydrogenase by its substrate and cofactor in an ultrasonic field. Russian Journal of Bioorganic Chemistry,2006,32:436-443
    110 Valee B L, Stein E A, Summerwell W N. Metal content of α-amylase of various origins. Journal of Biological Chemistry, 1995,234:2901-2929
    111 Atsushi Tanaka, Eiichi Hoshino. Calcium-binding parameter of Bacillus amyloliquefaciens α-amylase determined by inactivation kinetics. Biochemistry Journal,2002,364:635-639
    112 Anders D Nielsen, Claus C Fuglsang, Peter Westh. Effect of calcium ions on the irreversible denaturation of a recombinant Bacillus halmapalus α-amylase: a calorimetric investigation. Biochemistry Jouraal,2003,373:337-343
    113 Douglas S Bush, Liliane Sticher, Robert Van Huystee, et al. The calcium requirement for stability and enzymatic activity of two isoforms of barley aleurone α-amylase. The Journal of Biological Chemistry, 1989,264 (15): 19392 -19398
    114 Wang Yao-Bing, NAGATA Shinichi. Participation of ions and solutes on the thermostability of α-amylase. Chinese Journal of Biotechnology, 2004, 20: 104-109 L M Simon, M Kotorman, G Garab, I Laczko. Effects of polyhydroxy compounds on the structure and activity of α-chymotrypsin. Biochemical and Biophysical Research Communication, 1992,293:416-420
    115 Michiaki Matsumoto, Koji Kida, Kazuo Kondo. Effects of polyols and organic solvents on thermostability of lipase. Journal of Chemistry Technology Biotechnology, 1997,70:188 -192
    116 Uedaira H. The effects of sugars on the stability of protein structure. Sen-I Gakkaishi, 1981,37:436-443
    117 Gekko K. Why are proteins stable in the presence of sugar and polyols? Tanpakushitsu Kakusan Kouso,1985,30:1115-1126
    118 Graber M, Combes D. Effect of polyols on fungal α-amylase thermostability. Enzyme and Microbial Technology, 1989,11:673-677
    119 De Cordt S, Hendrickx M, Maesmans G, Tobback P. The influence of polyalcohols and carbohydrates on the thermostability of alpha amylase. Biotechnological Bioengineering, 1994,43:107-114
    120 Javier D Breccia, Ana C Moran, Guillermo R Castro, Faustino Sineriz. Thermal stabilization by polyols of β-xylanase from Bacillus amyloliquefaciens. Journal of Chemical Technology and Biotechnology, 1998,71:241-245
    121 Yann Guiavarc'h, Daniel Sila, Thomas Duvetter, et al. Influence of sugars and polyols on the thermal stability of purified tomato and cucumber pectinmethylesterases: a basis for TTI development. Enzyme and Microbial Technology,2003,33:544-555
    122 Tsutomu Arakawa, Serge N Timasheff. Stabilization of protein structure by sugars. Biochemistry, 1982,21:6536-6544
    123 Tim Baks, Anja E M Janssen, Remko M Boom. The effect of carbohydrates on α-amylase activity measurements. Enzyme and Microbial Technology,2006,39: 114-119
    124 Asther M, Meunier JC. Increased thermal stability of Bacillus licheniformis α-amylase in the presence of various sugars. Enzyme and Microbial Technology, 1990,12:902-905
    125 Larreta-Garde V, Xu Z F, Thomas D. Behavior of enzymes in the presence of sugars. Influence of alcohols, polyols and sugars on the activity and stability of yeast alcohol dehydrogenase. Ann NY Acad Sci, 1988,542:294-298
    126 Gray CJ. Sugars and enzyme stability. Biocatalysis, 1988,1:187-196
    127 Violaine Athes, Patrice Guerra, Didier Combes. Effect of soluble additives on enzyme thermo- and/or baro-deactivation. Journal of Molecular Catalysis B: Enzymatic, 1999,7:1-9
    128 Baptista, R P, Cabral J M S, Melo E P. Trehalose delays the reversible but not the irreversible thermal denaturation of cutinase. Biotechnology and Bioengineering,2000,70(6):699-703
    129 Mauro Sola-Penna, Jose Roberto Meyer-Fernandes. Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: why is trehalose more effective than other sugars? Archives of Biochemistry and Biophysics,1998,360:10-14
    130 E C Lopez-Diez, S Bone. The interaction of trypsin with trehalose: an investigation of protein preservation mechanisms. Biochimica et Biophysica Acta, 2004,1673:139-148
    131 Kangcheng Ruan, Chunhe Xu, Tingting Li, et al. The thermodynamic analysis of protein stabilization by sucrose and glycerol against pressure-induced unfolding. European Journal of Biochemistry,2003,270:1654-1661
    132 Guifu Xie, Serge N Timasheff. The thermodynamic mechanism of protein stabilization by trehalose. Biophysical Chemistry, 1997,64:25-43
    133 Mauricio R Terebiznik, Maria P Buera, Ana M R Pilosof. Thermal stability of dehydrated α-amylase in trehalose matrices in relation to its phase transitions. Lebensm-Wiss u-Technol, 1997,30:513-518
    134 Patricia Zancan, Mauro Sola-Penna. Trehalose and glycerol stabilize and renature yeast inorganic pyrophosphatase inactivated by very high temperatures. Archives of Biochemistry and Biophysics,2005,444:52-60
    135 Jai K Kaushik, Rajiv Bhat. Why is trehalose an exceptional protein stabilizer? The Journal of Biological Chemistry, 2003,278,29:26458-26465
    136 Mike A Singer, Susan Lindquist. Multiple effects of trehalose on protein folding in vitro and in vivo. Molecular Cell, 1998,1 (5):639-648
    137 蒙哥马利·柯蒂斯·杰里,谢泰·杰亚拉马·卡登戈. α-淀粉酶的热稳定性. 中国:CN8610055A, 1986
    138 Spreti N, Reale S, Amicosante G, et al. Influence of sulfobetaines on the stability of the Citrobacter diversus ULA-27 β-lactamase. Biotechnology Progress, 2001, 17:1008-1013
    139 Schmid R. Stabilized soluble enzymes. Advances in Biochemical Engineering, 1979,12:41-118
    1 Zhizhuang Xiao,Reginald Storms.A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities.Analytical Biochemistry,2006,351:146-148
    2 C.F.Gonzalez,J.I.Farina,L.I.C.Figueroa,A critical assessment of a viscometric assay for measuring Saccharomycopsis Wbuligeraα-amylase activity on gelatinised cassava starch.Enzyme and Microbial Technology,2002,30:169-175
    3 McCleary BV,McNally M,Monaghan D,Mugford DC,Black C,et al.Measurement of α-amylase activity in white wheat flour,milled malt,and microbial enzyme preparations,using the Ceralpha assay:collaborative study.Journal of AOAC International,2002,85:1096-1102
    4 Z.Konsula,M.Liakopoulou-Kyriakides.Hydrolysis of starches by the action of anα-amylase from Bacillus subtilis.Process Biochemistry,2004,39:1745-1749
    5 V.Bravo Rodriguez,E.Jurado Alameda.Thermal deactivation of a commercial α-amylase from Bacillus licheniformis used in detergents.Biochemical Engineering Journal,2006,27:299-304
    6 V.Bravo Rodriguez,E.Jurado Alameda,A.Reyes Requena,A.I.Garcia Lopez,J.F.Martinez Gallegos.Thermal deactivation of an α-amylase from Bacillus licheniformis.Afinidad,2004,61:147-151
    7 E.Dobreva,V.Ivanova,E.Emanuilova.Effect of temperature on some characteristics of the termastable α-amylase from Bacillus licheniformis.World Journal of Microbiology & Biotechnology,1994,10:547-550
    8 Michele Violet.Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis α-amylase.Biochemistry Journal,1989,263:665-670
    9 李剑芳.α-淀粉酶测定方法的探讨.江苏食品与发酵,1996(3):8-14
    10 袁建芬.淀粉酶快速比色测定法.交通医学,1998,12(2):255
    11 严淑兰,陆大年.壳聚糖H_2O_2法降解研究.化工新型材料,2001,29(12):21-23
    12 薛行华,郑向前,朱荣华,仇厚援.水溶性低分子壳聚糖的制备.热带作物学报,2005,26(14):82-84
    13 Hui Yun Zhou, Xi Guang Chen, Ming Kong, et al. Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydrate Polymers,2008,73: 263-273
    14 Chen, X G, Zheng L, Wang Z, et al. Molecular affinity and permeability of different molecular weight chitosan membranes. Journal of Agricultural and Food Chemistry,2002,50:5915-5918
    15 Nan Liu, Xi Guang Chen, Hyun Jin Park, et al. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers, 2006,64:60-65
    16 王伟, 薄淑琴, 秦汶. 不同脱乙酰度壳聚糖Mark-Houwink 议程的订定. 中 国科学B辑, 1990, 11: 1126-1131
    17 Kaushik J K, Bhat R. Thermal stability of proteins in aqueous polyol solutions. Journal of Physical Chemistry B,1998,102:7058-7066
    18 Boel, E., et al. Calcium binding in α-amylases: an X-ray diffraction study at 2.1 A resolution of two enzymes from Aspergillus. Biochemistry, 1990,29:6244-6249
    19 A R Nazmi, T Reinisch, H J Hinz. Ca-binding to Bacillus licheniformis alpha -amylase (BLA). Archives of Biochemistry and Biophysics,2006, 18-25
    20 J Fitter, R Herrmann, N A Dencher, A Blume and T Hauss. Activity and stability of a thermostable α-amylase compared to tts mesophilic homologue: Mechanisms of thermal adaptation. Biochemistry,2001,40:10723 -10731
    21 M.M. Andersson, R. Hatti-Kaul. Protein stabilising effect of polyethyleneimine. Journal of Biotechnology, 1999,72:21 -31
    22 T Takeuchi, K Morita, T. Saito, W. Kugimiya, T. Fukamizo. Chitosansoyprotein interaction as determined by thermal unfolding experiments. Bioscience Biotechnology and Biochemistry,2006,70:1786-1789
    23 Leyden Fernandez, Leissy Gomez, Hector L Ramirez, Maria L. Villalonga, Reynaldo Villalonga. Thermal stabilization of trypsin with glycol chitosan. Journal of Molecular Catalysis B: Enzymatic,2005,36(1-6):14-17
    24 Mayur G Sankalia, Rajashree C Mashru, Jolly M Sankalia, Vijay B Sutariya. Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization. European Journal of Pharmaceutics and Biopharmaceutics,2007,65:215-232
    25 E Casal, N Corzo, F J Moreno, A Olano. Selective recovery of glycosylated caseinmacropeptide with chitosan. Journal of Agricultural and Food Chemistry, 2005,53:1201-1204
    26 Leyden Fernandez, Leissy Gomez, et al. Thermal stabilization of trypsin with glycol chitosan. Journal of Molecular Catalysis B,2005,34:14-17
    27 G.I. Makhatadze, P.L. Privalov. Energetics of protein structure. Advances in Protein Chemistry, 1995,47,307-425
    28 Douglas N.Lecker, Arshad Khan. Theoretical and experimental studies of the effects of heat, EDTA, and enzyme concentration on the inactivation rate of α-amylase from Bacillus sp. Biotechnology Progress,1996,12:713-717
    1 蒲宗耀,陈松,卢涛,赵健.耐碱耐温淀粉酶性能及退浆工艺试验研究.纺织科技进展,2006,1:24-26
    2 李立.酶退浆工艺探讨.印染,2004,12:17-19
    3 Tzanko Tzanov,Margarita Calafell,Georg M.Guebitz,Artur Cavaco-Paulo.Bio-preparation of cotton fabrics.Enzyme and Microbial Technology,2001,29(6-7):357-362
    4 Khan A Farhan,Arif Shoib.Development and applications of animal amylases for enzymatic desizing of woven fabric.Pakistan Journal of Scientific and Industrial Research,2006,49(2):103-105
    5 Ibrahim Nabil A,El-Hossamy Mamdouh,Morsy Mahmoud S,Eid Basma M.Optimization and Modification of Enzymatic Desizing of Starch-Size.Polymer -Plastics Technology and Engineering,2004,43(2):519-538
    1 Tahara T.Journal of Fermaentation Technology,1972,50(9):655-656
    2 Liliana Ceci,Jorge Loazno.Determination of enzymatic activities of commercial pectinases for the clarification of apple juice.Food Chemistry,1998,61(1-2):237-241
    3 Azza A S Labib,F A El-Ashwah.Heat-inactivation of mango pectinesterase and polygalacturonase.Food Chemistry,1995,53:137-142
    4 Zhongli Lei,Shuxian Bi,Bing Hu,Hong Yang.Combined magnetic and chemical covalent immobilization of pectinase on composites membranes improves stability and activity.Food Chemistry,2007,105:889-896
    5 北京大学生物化学教研室编,生物化学实验指导.北京:高等教育出版社,1988
    6 李忠福,徐建国.分光光度法测定果胶酶活性方法的研究.黑龙江医药,2006,15(6):428-430
    7 Natividad Ortega,Silvia de Diego,JoseM Rodriguez-Nogales,et al.Kinetic behaviour and thermal inactivation of pectinlyase used in food processing.International Journal of Food Science and Technology,2004,39:631-639
    8 Diana Fachin,Ann M Van Loey,Binh Ly Nguyen,et al.Inactivation kinetics of polygalacturonase in tomato juice.Innovative Food Science and Emerging Technologies,2003,4:135-142
    9 Diana Fachin,Chantal Smout,Isabel Verlent,et al.Inactivation kinetics of purified tomato polygalacturonase by thermal and high-pressure processing.Journal of Agricultural Food Chemistry,2004,52:2697-2703
    10 崔莉,范雪荣,钱国坻等.棉织物前处理酶解产物的快速检测.印染,2003,5:32-35
    11 李玲,刘立明,谢晓芬等.3,5-二硝基水杨酸比色法测定芦荟中多糖含量.仪器仪表与分析检测.2002,4:30-31
    12 贝斯特S De,旺达姆EJ,斯泰因比歇尔A.生物高分子.北京:化学工业出版社,2004
    13 张小玲.果胶的咔唑硫酸分光光度测定法.甘肃农业大学学报,1999,34(1):75-78
    1 徐谷仓.棉织物生物酶前处理工艺.印染,2002,12:39-44
    2 Qiang W.,Fan X.R.,Hua Z.Z.,et al.Degradation kinetics of pectins by an alkaline pectinase in bioscouring of cotton fabrics.Carbohydrate Polymers,2007,67:572-575
    3 Achwal W.B.Enzymatic removal of cotton pectin.Colourage,39(7):35-40
    4 Buschle-Diller G.,El Mogahzy Y.,Inglesby M.K.,Zeronian S.H.Effects of scouring with enzymes,organic solvents and caustic soda on the properties of hydrogen peroxide bleached cotton yarn.Textile Research Journal,1998,68(12):920-929
    5 Li Y.,Hardin I.R.Enzymatic scouring of cotton:effects on structure and properties.Textile Chemist and Colorist,1997,29(8):71-76
    6 王春梅,胡啸林,李朝晖.表面活性剂在精练中的应用研究.印染助剂,1997,14(5):27-30
    7 范雪荣,王强,王平,高卫东.生物酶精练对棉织物棉蜡含量的影响.针织工业,2003,3:88-89
    8陈荣圻.表面活性剂化学与应用.北京:纺织工业出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700