低比转速复合叶轮离心泵非定常流场的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心叶轮是低比转速离心泵的主要过流部件之一,其作用是将原动机的机械能直接传给流体,以提高液体的静压能和动压能,因此叶轮的结构对离心泵内部流场及性能有着至关重要的作用。对此,本文基于三维N-S方程和RNG k-ε湍流模型对具有4叶片普通叶轮、8叶片和12叶片复合叶轮的三台低比转速离心泵进行了非定常数值模拟,并进行了外特性性能试验测试。主要研究内容如下:
     采用PRO/E三维造型软件对4叶片、8叶片和12叶片叶轮低比转速离心泵进行三维整机全流场造型,并用CFD软件FLUENT对其内部流动进行了数值模拟,分析了不同时刻3台离心泵内部的速度场和压力场;此外,在蜗壳具有代表性的四个断面的壁面附近以及蜗舌部位设置了监测点,对蜗壳壁面附近的压力脉动进行了分析;最后,对三台低比转速离心泵的外特性性能进行了数值预测和试验测试,并将数值结果和试验结果进行了对比。经过分析,得出了以下结论:
     (1)针对数值模拟得到的3个叶轮内部不同时刻的速度场进行了分析,发现由于普通叶轮中没有布置分流叶片,相邻长叶片间流道比较宽阔,流体的流动不可能完全被叶片所夹持,使得长叶片压力面较厚边界层内的液体不能顺利排出,因此在4叶片普通叶轮的流道中存在大面积的低速回流区,这种现象在8叶片复合叶轮中有所改善,而在12叶片叶轮中改善最为明显。在12叶片叶轮中液流基本沿叶片的曲率流动,可见分流叶片在一定程度上可以改善叶轮内部的速度分布;
     (2)对数值模拟得到的3个叶轮内部不同时刻的压力场进行了分析,发现12叶片叶轮内部的静压分布较为均匀,静压曲线基本上沿圆周方向分布,且静压系数明显大于4叶片叶轮相同半径上叶片的静压系数。此外,蜗壳腔体以及出口的静压系数也较大,说明分流叶片不仅可以改善泵内部的压力分布,同时也可以提高相同位置的压力值;
     (3)对数值模拟得到蜗壳壁面附近的压力脉动进行了分析,表明复合叶轮可以改善蜗壳内部的压力脉动,值得注意的是,复合叶轮产生的压力脉动的频率成分相比普通叶轮复杂,在复合叶轮中,除了基频及其倍频外,长叶片产生的频率在低频区上也会占主导地位;
     (4)针对3台低比转速离心泵进行了外特性性能试验研究,试验结果表明,12叶片叶轮离心泵扬程较高,但随着叶片数的增大,轴功率会变大,在一定程度上会影响泵的效率。
As the one of main flowparts in low-specific-speed centrifugal pump, impeller is totranform the mechanical energy of original motive into the pressure and kinetic energy of liquid,so the structure of the centrifugal impeller has a crucial role on flow condition and performanceof pump. Based on Reynolds-averaged Navier-Stokes equations and the RNG k-ε turbulencemodel, the whole flow field in low-specific-speed centrifugal pump with four-blade, eight-blade and twelve–blade impeller was simulated respectively in this thesis. And the experimentalinvestigation was also carried out on three low-specific-speed centrifugal pumps. The maincontents were as follows:
     The whole flow field in low-specific-speed centrifugal pump with four-blade, eight-bladeand twelve–blade impeller were completed by three-dimensional modeling software Pro/e, thevelocity and pressure distribution inside pump flow field were simulated by using FLUENT atthree different time. In addition,the pressure fluctuations were analyzed by setting upmonitoring points near the wall of volute and tongue.Finally,the pump external characteristicsreached by numerical prediction and experimental results were compared.After analysis,conclusions are as follows:
     (1) From the velocity analysis, it can be seen that the channel between the two long bladesis relatively wide and the fluid cannot be clamped well for ordinary impeller without splitterblades. As the result, fluid coming from the thick boundary layer on blade pressure side can notbe successfully discharged. So there exists a large area of low speed recirculation zone betweentwo blades inside four blades impeller, which is improved inside the other two impellers withsplitter blades. To some extent splitter blade can improve velocity distribution in the channel ofimpeller;
     (2) As can be seen in the static pressure analysis, static pressure distribution inside twelveblades impeller is more uniform and static pressure coefficient is significantly greater than fourblades impeller blades in the same radius, the same change rules can been also seen insidevolute chamber and the exit.All is indicating that splitter blades can not only improve thepressure distribution inside the pump, but also increase the pressure at same location;
     (3) From pressure fluctuation analysis, numerical results show that the complex impeller can significantly improve the pressure fluctuation inside volute chamber. Compared withordinary impeller, it is worth noting that frequency components generated by the compleximpeller is more complex. In addition to fundamental frequency and its harmonic, pressurefluctuation generated by the long blades play the dominant role in low frequency region forcomplex impeller;
     (4) The experimental results show the higher head is obtained by the pump with twelveblades. The pump shaft power becomes larger with the increase of the number of blades, whichwill affect pump efficiency to a certain extent.
引文
[1] Robert X Perez,Robert A Akins,Chung E Lee,et al. Fiber-optic Pressure sensors detectcavitation and flow instabilities in centrifugal pump[J]. Word Pumps,1996(5):58-59
    [2]王福军,张玲,张志民.轴流泵不稳定流场的压力脉动特性研究[J].水利学报,2007,38(8):1003-1009
    [3]耿少娟,聂超群,黄伟光等.不同叶轮形式下离心泵整机非定常流场的数值研究[J].机械工程学报,2006,42(5):27-31.
    [4]倪永燕.离心泵非定常湍流流场计算及流体诱导振动研究[D].江苏大学博士论文,2008:2-5.
    [5]刘阳,袁寿其,袁建平.离心泵的压力脉动研究进展[J].流体机械,2008,36(09):33-37
    [6]何秀华.水泵压力脉动的类型研究[J].排灌机械,1996,(4):47-50.
    [7] Dring R P, Joslyn H D, Hardin L W, et al. Turbine rotor-stator interaction ASME,J,Eng. Power,1982,104:729-742.
    [8] Iino T, Kasai K. An Analysis of Unsteady Flow Induced by Interaction between a Centrifugal Impellerand a Vaned Diffuser[J]. Trans. Jpn. Soc. Mech.Eng.1985,51(471):154-159.
    [9] Arndt, N., Acosta, A. J., Brennen, C. E.,et al. Rotor-Stator Interaction in a Diffuser Pump[J].ASME J.Turbomach.,1989,111:213-221.
    [10] Arndt, N., Acosta, A. J.,Brennen, C. E., et al. Experimental Investigation of Rotor-Stator Interaction in aCentrifugal Pump With Several Vaned Diffusers[J].ASME J.Turbomach.,1990,112:98-108
    [11] Dong R, Chu S, Katz J. Quantitative-Visualization of the Flow Within the volute of a Centrifugal Pump.Part B: Results [J]. ASME J. Fluids Eng.,1992,114(3):396-403.
    [12] Akin O, Rockwell D. Flow Structure in a Radial Flow Pumping System Using High-Image-DensityParticle Image Velocimetry [J]. ASME J. Fluids Eng.1994,116:538-544.
    [13] Chu, S., Dong, R., Katz, J.. Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in aCentrifugal Pump; Part A: Use of PDV Data to Compute the Pressure Field[J] ASME J. Fluids Eng.,1995,117:24-29.
    [14] Chu, S., Dong, R., Katz, J.. Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in aCentrifugal Pump; Part B: Effects of Blade-Tongue Interaction[J] ASME J. Fluids Eng.,1995,117:30-35.
    [15] Dong, R., Chu, S., Katz, J.. Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow,Pressure Fluctuations, and Noise in a Centrifugal Pump[J]ASME J.Turbomach.,1997,119:506-515.
    [16] Fortes-Patella, Longatte F, Kueny J L, et al. Numerical analysis of unsteady flow in a centrifugalpump[J]. ASME Fluid Machinery, FED,1995,222:41-46
    [17] Ubaldi M, Zunino P, Barigozzi G, et al. An Experimental Investigation of Stator Induced Unsteadinesson Centrifugal Impeller Outflow [J]. ASME J. Turbomach,1996,118:24-54.
    [18] Qin W, Tsukamoto H. Theoretical Study of Pressure Fluctuations Downstream of a Diffuser PumpImpeller Part1: Fundamental Analysis on Rotor-Stator Interaction [J]. ASME J. Fluids Eng.,1997,119(3):647-652
    [19] Qin W, Tsukamoto H. Theoretical Study of Pressure Fluctuations Downstream of a Diffuser PumpImpeller Part1: Effects of Volute, Flow Rate and Radial Gap [J]. ASME J. Fluids Eng.,1997,119(3):653-658
    [20] Kaupert, K. A., and Staubli, T..The Unsteady Pressure Field in a High Specific SpeedCentrifugal PumpImpeller,Part I: Influence of the Volute[J]. ASME J. Fluids Eng.,1999,121:621-626
    [21] Stickland, M.T., Scanlon, T.J., Parrondo, J., et al. An experimental study on the unsteady pressuredistribution around the impeller outlet of a centrifugal pump[J]. Proceedings of ASME2000FluidsEngineering Division Summer Meeting. ASME. ISBN0791819795.
    [22] Shi F, Tsukamoto H. Numerical Study of Pressure Fluctuations Caused by Impeller-Diffuser Interactionin a Diffuser Pump Stage [J]. ASME J. Fluids Eng.,2001,123:466-474.
    [23] Shi F, Tsukamoto H. Numerical Studies of Effects of Flow Rate and Radial Gap on Pressure FluctuationsDownstream of a Diffuser Pump Impeller [A]. Proceedings of the3rd ASME/JSME Joint FluidsEngineering Conference[C]. July,1999:18-23.
    [24] Wang H, Tsukamoto H. Numerical Analysis of Pressure Fluctuation due to Rotor-Stator Interaction in aDiffuser Pump by Vortex Method [A]. The20th IAHR Symposium[C]. Charlotte, U. S. A, Aug2000:6-9.
    [25] Wang H, Tsukamoto H. Fundamental Analysis on Rotor-Stator Interaction in a Diffuser Pump by VertexMethod [J]. ASME J. Fluids Eng.,2001,123:737-747
    [26] Wang H, Tsukamoto H. Experimental and Numerical Study of Unsteady Flow in a Diffuser Pump atoff-Design Conditions [J]. ASME J. Fluids Eng.,2003,125:767-778
    [27] Kelder J D H, Dijkers R J H, Esch B P M van, et al. Experimental and theoretical study of the flow in thevolute of a low specific-speed pump [J]. Fluid Dynamics Research2001,28(4):267-280.
    [28] Sano Takeshi, Yoshida Yoshiki, Tsujimoto Yoshinobu, et al. Numerical Study of Rotating Stall in aPump Vaned Diffuser[J]. ASME J. Fluids Eng.,2002,124:363-369
    [29] Gonza′lez, J., Ferna′ndez, J., Blanco, E., et al. Numerical Simulation of the Dynamic Effects Due toImpeller-Volute Interaction in a Centrifugal Pump[J] ASME J. Fluids Eng.,2002,124:348-355.
    [30] Jorge L. Parrondo-Gayo, Jose′Gonza′lez-Pe′rez, Joaqu′n Ferna′ndez-Francos.The Effect of theOperating Point on the Pressure Fluctuations at the Blade Passage Frequency in the Volute of aCentrifugal Pump[J].Transactions of the ASME,2002,124:784-789.
    [31] Larsen Poul S,Jacobsen Christian B. Flow in a Centrifugal Pump Impeller at Design and Off-DesignConditions-Part I: Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV)Measurements[J]. ASME J. Fluids Engineering,2003,125:61-72.
    [32] Majidi Kitano.Numerical Study of Unsteady Flow in a Centrifugal Pump[J]. ASME J. Turbomachinery,2005,127:363-370.
    [33] GUO Shijie, MARUTA Yoshiyuki. Experimental Investigations on Pressure Fluctuations and Vibrationof the Impeller in a Centrifugal Pump with Vaned Diffusers[J].JSME International Journal,2005,48:136-143.
    [34] Zhu Baoshan, Kamemoto Kyoji.Numerical simulation of unsteady interaction of centrifugal impellerwith its diffuser using Lagrangian discrete vortex method[J].Acta Mech Sinica,2005,21:40-46.
    [35] González José, Santolaria Carlos.Unsteady Flow Structure and Global Variables in a Centrifugal Pump[J].ASME J. Fluids Eng.,2006,128:937-945.
    [36] ShojaeeFard M.H., Boyaghchi F.A., Ehghaghi M.B..Experimental Study and Three-DimensionalNumerical Flow Simulation in a Centrifugal Pump when Handling Viscous Fluids[J].IUST InternationalJournal of Engineering Science,2006,17(3):53-60
    [37] Cheah K.W., Lee T.S.,Winoto S.H.,et al. Numerical Flow Simulation in a Centrifugal Pump at Designand Off-Design Conditions[J]. International Journal of Rotating Machinery,2007,2007:1-8.
    [38] Feng Jianjun, Benra Friedrich-Karl, Dohmen Hans Josef. Numerical Investigation on PressureFluctuations for Different Configurations of Vaned Diffuser Pumps[J]. International Journal of RotatingMachinery,2007,2007:1-10.
    [39]周华,杨华勇.海水液压泵汽蚀初生特征的识别[J].机械工程学报,1999,35(6):52-55.
    [40]徐朝晖,吴玉林,陈乃祥,等.高速泵内三维非定常湍流激振计算[J].清华大学学报(自然科学),2003,43(10):1428-1431.
    [41]徐朝晖,吴玉林,陈乃祥,等.高速泵内三维非定常动静干扰流动计算[J].机械工程学报,2004,40(3):1-4.
    [42]徐朝晖.高速离心泵内全流道三维非定常流动及其流体诱导压力脉动研究[D].清华大学,2004.
    [43]徐朝晖,吴玉林,陈乃祥,等.基于滑移网格与RNG湍流模型计算泵内的动静干扰[J].工程热物理学报,2005,26(1):66-68.
    [44]徐洁,谷传纲.长短叶片离心泵叶轮内部流动的数值模拟[J].化工学报,2004,55(4):541-544.
    [45]郭鹏程,罗兴锜,刘胜柱.离心泵内叶轮与蜗壳间耦合流动的三维紊流数值模拟[J].农业工程学报,2005,21(8):1~5
    [46]陈党民,李新宏,黄淑娟.部分流泵非定常流动分析[J].西安交通大学学报,2005,39(9):954-957.
    [47]陈党民,李新宏,黄淑娟.部分流泵整机非定常流动数值模拟[J].工程热物理学报,2005,26(增刊):89-92.
    [48]陈党民,李新宏,黄淑娟.部分流泵蜗壳壁面静压及外特性研究[J].工程热物理学报,2005,26(6):960-962.
    [49]袁寿其,何有世,袁建平等.带分流叶片的离心泵叶轮内部流场的PIV测量与数值模拟[J].机械工程学报,2006,42(5):60-63.
    [50]耿少娟,聂超群,黄伟光等.不同叶轮形式下离心泵整机非定常流场的数值分析[J].机械工程学报,2006,42(5):27-31.
    [51]张兄文,李国君,李军.离心泵蜗壳内部非定常流动的数值模拟[J].农业机械学报,2006,37(6):63-68.
    [52]崔宝玲,朱祖超,林勇刚等.不同形式高速离心泵叶轮内部流动的数值模拟[J].机械工程学报,2007,43(5):19-23.
    [53]王福军,张玲,张志民.轴流泵不稳定流场的压力脉动特性研究[J].水利学报,2007,38(8):1003~1009.
    [54]丛国辉,王福军.双吸离心泵隔舌区压力脉动特性分析[J].农业机械学报,2008,39(6):61-66.
    [55]袁寿其,薛菲,袁建平等.离心泵压力脉动对流动噪声影响的试验研究[J].排灌机械,2009,27(5):287-290.
    [56]邵春雷,顾伯勤,陈晔.离心泵内部非定常压力场的数值研究[J].农业工程学报,2009,23(1):75-79.
    [57]田辉,郭涛,孙秀玲等.离心泵内部动静干涉作用的数值模拟[J].农业机械学报,2009,40(8):92-95.
    [58]杨敏,闵思明,王福军.双蜗壳泵压力脉动特性及叶轮径向力的数值模拟[J].农业机械学报,2009,40(11):84-88
    [59]赵斌娟,袁寿其,刘厚林.双流道泵内非定常流动数值模拟及粒子图像测速测量[J].机械工程学报,2009,45(9):82-88
    [60]赵斌娟,袁寿其,陈汇龙.基于滑移网格研究双流道泵内非定常流动特性[J].农业工程学报,2009,25(6):115-118
    [61]董晓岚.离心泵内部非定常速度场数值研究[J].石油机械,2009,37(4):45-48
    [62]陈向阳,袁丹青,杨敏官等.300MW级核电站主泵压力脉动研究[J].核动力工程,2010,31(3):78-82
    [63]朱荣生,胡自强,付强.双叶片泵内压力脉动的数值模拟[J].农业工程学报,2010,26(6):129-134
    [64]王新,李同春,赵兰浩.大型灯泡贯流泵站全流道非定常湍流数值模拟[J].水电能源科学,2010,28(4):119-121.
    [65]孔繁余,周水清,王志强等.旋涡泵内部不稳定流场的数值模拟[J].农业机械学报,2011,42(1):44-48
    [66]柴立平,潘兵辉,石海霞等.不同叶轮高速部分流泵非定常压力场数值分析[J].热能动力工程,2011,26(1):20-22.
    [67]李辰光,王福军,许建中等.两级双吸离心泵压力脉动特性[J].农业机械学报,2011,42(7):42-48.
    [68]尹俊连,刘锦涛,王乐勤等.水泵水轮机泵工况小流量区压力脉动[J].工程热物理学报,2011,32(7):1142-1144.
    [69]姚志峰,王福军,杨敏等.叶轮形式对双吸离心泵压力脉动特性影响试验研究[J].机械工程学报,2011,47(12):134-137.
    [70]周俊杰,徐国权,张华俊. FLUENT工程技术与实例分析[M].北京:中国水利水电出版社,2010,5:1-3
    [71]江帆,黄鹏.FLUENT高级应用与实例分析[M].北京:清华大学出版社,2008,7:86-87
    [72] Miguel Asuaje,FaridBakir,Smaine Kouidri,et al.Numerical modelization of the flow in centrifugalpump:volute influence in velocity and pressure fields[J].International Journal of RotatingMachinery,2005,3:244-255
    [73]王瑞金,张凯,王刚. FLUENT技术基础与应用[M].北京:清华大学出版社,2007,2:37-39.
    [74]龙天渝,苏亚欣,向文英等.计算流体力学[M].重庆:重庆大学出版社,2007,3:26-27
    [75] V.Yakhot,S.A.Orzag.Renormalization Group Analysis of Turbulence:Basic Theory[J]. Journal ofScientific Computing,1986,1(1):3-11.
    [76]郑梦海.泵测试实用技术[M].北京:机械工程出版社,2006,6:114-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700