重型汽车动力传动系热管理系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重型汽车在经济和社会发展中的作用日渐突出,已经成为公路货物运输的主力。在山区公路行驶的重型汽车和一些特种重型汽车,动力传动系的热负荷大,其工作温度区间直接关系到整车的使用稳定性,间接影响到整车的动力性和燃油经济性;散热系统的控制方式,与发动机的寄生损失紧密关联。
     本文研究重型汽车动力系和传动系的热管理系统,主要工作包括:
     1.建立了动力传动系动力学模型并确定了其热管理系统方案。建立了动力系热源与热管理部件的传热计算模型。将传动系统热源模型进行了等效处理;采用工程流体力学的方法,建立了传动系统“油-空”散热器的三维热分析模型。
     2.由动力传动系统仿真,为其热管理系统仿真提供边界条件。通过发动机热管理系统一维仿真,研究了其热管理系统的稳定性和热管理部件的性能特性。采用三维流体仿真分析,获得传动系热管理系统“油-空”散热器整体的传热特性和空气侧流阻特性,并得到传动系热管理系统仿真结果。
     3.进行了动力系和传动系的热管理台架试验。介绍了热管理试验的内容、方法,对试验数据进行了分析与处理。将试验数据与仿真结果进行对比,验证了动力系和传动系仿真模型的有效性。
     4.建立了完整的动力传动系统热管理仿真模型。基于整车行驶工况,将传统机械驱动方式与独立风扇驱动方式相比较。结果显示,采用独立风扇驱动方式的热管理系统,热源工作温度相对稳定,发动机寄生功率损失明显降低。
     本文的创新点如下:
     1.传动系统的主要热源液力缓速器,内部流态复杂,且在整个工况下均处于非全充液状态,从计算机资源和两相流的理论发展上看,采用流体力学的方式研究其生热机理并不可行,本研究转换思路建立了缓速器的等效热计算模型。
     2.采用三维流体力学的方法研究“油-空”散热器的热力学特性。本研究采用服务器能处理的最大网格数量的散热器翅片单元为研究点,在充分利用计算机资源的同时,实现散热器热力学特性的研究。
     3.采用行驶工况的方法,从系统角度,在一维整车热管理系统模型中,考虑不同工况条件下各动力传动部件的相互耦合,以热源的温度波动和系统能耗为目标,研究重型汽车动力传动系热管理系统的控制方法。
The economic benefit of the heavy truck is gradually outstanding in the national economy and the heavy truck has been the main force in the highway transportation. The heavy truck which often drives in the mountainous area and the one having special missions has heavy thermal load in the vehicle's driveline. The working temperature region of the driveline is directly related to the vehicle driving stability, and affects the vehicle dynamic performance and fuel economy as well. The heat reject control mode is closly related to the parasitic loss of the power source.
     The thermal research on special vehicle driveline includes:
     1. The driveline dynamical model is built and the construction for the thermal management system is fixed. The detailed engine thermal management model is built. The heat source of the transmission is processed equivalently. And the engineering fluid mechanics (EFD) is adopted to set up the 3-D thermal model of the oil-to-air cooler.
     2. The driveline dynamical simulation provides the boundary conditions for the driveline thermal management system. The stability of the engine thermal management system and the performance characteristics of its components are considered based on the unidimensional simulation of the engine thermal management system. According to the 3-D fluid analysis, the heat-transfer characters of the oil cooler and the flow resistance of its air-side are obtained. The results of the simulation in transmission thermal management system are found out.
     3. The engine and transmission thermal management experiment are carried out respectively. The contents, methods of the two experiments are introduced, and the test data are processed and analyzed. The comparisions of the simulation result and test data verify the validity of the simulation models of the driveline thermal managenment system.
     4. The complete driveline thermal management model is built. On the basis of the same whole vehicle driving cycle, comparing to the traditional mechanical-drive system, the independent-drive system makes the working temperature of the heat source more stable. Meanwhile the parasitic power caused by the radiator fan is decreased markedly on the condition that the heat reject requirement of the heat source is satisfied.
     The main innovation points include:
     1. The heavy truck driveline thermal calculation platform is developed. The driveline thermal characteristics are obtained based on the parameters of the main driveline components and the whole vehicle. The radiator overall dimension, which ascertains underhood layout is calculated according to the design proposal of the thermal management system.
     2. The engineering fluid mechanics (EFD) is adopted to set up the 3-D thermal model of the oil-to-air cooler. The engry point is the radiator's most feasible fin unit which contains the most amount of the calculate cells that the server could process. The research on the thermal characteristic of the cooler is implemented while the computer resource is made full use of.
     3. The heavy vehicle driving cycle for the thermal management system is developed. The intercoupling of the driveline conponents in different working condition is considered in the driveline thermal management model. The control methed of the driveline thermal management system is studied for the aims of reducing the working temperature fluctuation of the heat source and the power consumption for the thermal management.
引文
[1]潘增友.中国重型汽车发展分析[J].商用汽车.2002,(05)
    [2]陈会松.中国重型汽车的海外市场表现[J].专用汽车.2009,(02)
    [3]王涛.《汽车产业调整和振兴规划》对我国重型汽车市场的发展导向分析[J].重型汽车.2009,(03)
    [4]王晶,纪倩.重型汽车市场蓄势待发[J].汽车工业研究.2006,(08)
    [5]吴金奎.从国际竞争力看我国重型汽车的发展[J].汽车研究与开发.2009,(08)
    [6]赫连志巍,李翠玲.我国重型汽车企业现状、问题与决策[J].管理科学.2010,(17)
    [7]霍佩克.载货汽车技术[M].北京:机械工业出版社,2009
    [8]姚仲鹏,王新国.车辆冷却传热[M].北京:北京理工大学出版社,2001
    [9]Martin W. Wambsganss. Thermal Management Concepts for Higher-Efficiency Heavy Vehicles[C]. SAE Paper 1999-01-2240,1999.
    [10]李晗,王毅,李兵.重型汽车发动机冷却系统布置[J].商用汽车.2009,(10)
    [11]Robert W. Page, Wsewolod Hnatczuk, Jeffrey Kozierowski. Thermal Management for the 21st Century-Improved Thermal Control & Fuel Economy in an Army Medium Tactical Vehicle[C]. SAE Paper 2005-01-2068,2005.
    [12]陈家瑞.汽车构造[M].北京:机械工业出版社,2003
    [13]朱经昌,魏寰官等.车辆液力传动[M].北京:国防工业出版社,1983
    [14]马文星.国外乍辆液力传动研究现状及其展望[J].汽车工程,1996,(04)
    [15]罗邦杰.液力机械传动[M].北京:人民交通出版社,1983
    [16]中华人民共和国交通部.JT/T 325-2006营运客车类型划分及等级评定[S].北京:人民交通出版社,2006-09-07.
    [17]时军,过学迅.车用液力减速制动器的现状与发展趋势[J].车辆与动力技术.2001:52-57.
    [18]梁荣亮.车用液力减速器的应用现状与技术发展[J].上海汽车.2008,(2).
    [19]赵新顺,徐军强.电涡流减速器概述[J].汽车运用.2009,(1).
    [20]Timothy J.Cooney, Paulo Roberto Cassoli Mazzali. The MT643R-An Automatic Transmission with Retarder for the Latin American Market [C]. SAE paper 973127,1997
    [21]克柳科夫.运输车辆传动系的热计算[M].北京:国防工业出版社,1965
    [22]周龙保,高宗英.内燃机学[M].北京:机械工业出版社,2003
    [23][s.n.]:Transmatic Technical Manual[M]. Germany:ZF,2003
    [24]Peter White. Cooling System Performance Evaluation[C]. SAE Paper 980431,1998.
    [25]泰莱达因·大陆发动机公司.车辆冷却系统设计手册[M].北京:国防工业出版社,1984
    [26]马特,普林特.发动机实验理论与实践[M].北京:机械工业出版社,2009
    [27]赵军.重型载重车发动机冷却系统设计改进及试验研究[J].柴油机设计与制造,2008,(03)
    [28]张金柱.现代发动机冷却系统的发展趋势[J].汽车制造与装备,2005,(04)
    [29]韩树,蔡锋等.车用发动机冷却系统控制仿真研究综述[J].内燃机,2008,(05)
    [30]Gangfeng Tan, Xuexun Guo, Bin Wang, et al. Heavy Truck Driveline Components Modeling and Thermal Analyzing[C]. SAE Paper 2009-01-2905.
    [31]俞小莉,李婷.发动机热平衡仿真研究现状与发展趋势[J].车用发动机,2005,(05)
    [32]王英,陆新俭.集总参数法在发动机热平衡中的应用[J].机械管理开发,2006,(2)
    [33]Siders J A, Tilley D G. Optimizing Cooling System Performance Using Computer Simulation[C]. SAE Paper 971802,1997.
    [34]Ngy S. Ap, Norman C. Golm. A Simple Engine Cooling System Simulation Model[C]. SAE Paper 1999-01-0237,1999.
    [35]赵以贤,毕小平,刘西侠.基于集总参数法的车用内燃机传热计算机仿真研究[J].内燃机学报,2003,21(4)
    [36]王贤海,杜传进.汽车热管理研究现状及新进展[J].拖拉机与农用运输车,2005,(10)
    [37]王贤海.汽车散热器发展现状及新技术[J].重型汽车,2007,(06)
    [38]陈铮铮,翟十勇.汽车液力减速器的使用与维护[J].拖拉机与农用运输车,2007,(10)
    [39]齐斌.液力变矩器油温过高的原因及控制[J].柴油机设计与制造,2008,(03)
    [40]唐俊杰.汽车自动传动液[J].石油科技,2000,(02)
    [41]吴望一.流体力学[M].北京:北京大学出版社,2004
    [42]董元虎,尹兴林.汽车油料选用手册[M].北京:化学工业出版社,2007
    [43]陈见.基于三维流动的液力减速器性能仿真研究[D].武汉理工大学,2008.
    [44]郭柏灵,林国广等.非牛顿流动力系统[M].北京:国防工业出版社,2006
    [45]戴锅生.传热学[M].北京:高等教育出版社,2003
    [46]L·鲁道夫编,张蔚林,陈名智译.汽车制动系统的分析与设计.机械工业出版社,1985.12
    [47]柳长立.现代轿车制动系统发展的趋势.汽车与配件,1998.27
    [48]埃恩霍克.汽车制动系统.机械工业出版社,1998
    [49]Uwe Bergmann, Gerhard E.Kahlau, Klaus Vogelsang. et al State of Development and Future Prospects of Hydrodynamic Brakes for Trucks and Buses SAE Paper 922454, 1992
    [50]侯红伟,史志.防爆型液力制动系统原理.煤矿机械,1999.5
    [51]罗邦杰主编.工程机械液力传动.北京:机械工业出版社,1991
    [52]Bengt Jacobson, Sixten Berglund. Optimization of gearbox ratios using techniques for dynamic systems. SAE Paper 952604,1995
    [53]过学迅,郑慕侨.液力变矩器流场研究的方法和进展[J].汽车工程,1995,(03)
    [54]李雪松,马文星.车辆液力减速器三维流场分析与特性计算.[D],2005
    [55]Yu Dong, Vamshi Korivi, Pradeep Attibele, Yiqing Yuan. Torque Converter CFD Engineering Part I:Torque Ratio and K Factor Improvement through Stator Modifications[J]. SAE 2002-01-0883.
    [56]Yan Qing-dong, Wei wei. Numeric Simulation of Single Passage Ternary Turbulence Model in Hydraulic Torque Converter[J]. Journal of Beijing Institute of Technology,2003. 12(2):172-175
    [57]王福军.计算流体动力学分析.CFD软件原理与应用[M].北京:清华大学出版社,2004
    [58]马文星.液力变矩器三维流动计算——流线曲率法[J].建筑机械,1991,(01)
    [59]罗邦杰.液力机械传动[M].北京:人民交通出版社,1983
    [60]吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001.2
    [61]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998
    [62]马文星,张斌,罗邦杰.液力变矩器三维粘性流动的计算[J].吉林大学学报(工学版),1992,(03)
    [63]郭鸿志.传输过程数值模拟.北京:冶金工业出版社,1998
    [64]Dong Y, Lakshminarayana B. Rotating Probe Measurement of the Pump Passage Flow Field in an Automotive Torque Converter(C). Journal of Fluids Engineering, ASME, 2001,123(3)
    [65]余志生.汽车理论[M].北京:机械工业出版社,1990
    [66]周龙保,高宗英.内燃机学[M].北京:机械工业出版社,2003
    [67]Tan Gangfeng, Guo Xuexun, Hu Ping, et al. EREV Driveline Thermal Management System Design(C). International Workshop of Automobile Power and Energy Engineering (APEE 2011)
    [68]蔡增基,龙天渝.流体力学泵与风机[M].北京:中国建筑工业出版社,1999
    [69]陈听宽.两相流与传热研究[M].西安:西安交通大学出版社,2004
    [70]李海滨,杨义虎.以CATIA为平台的起落架零件参数化建模技术研究[J].现代制造工程,2009,(07)
    [71]严军.大功率液力减速器设计及制动力矩控制算法研究[D].武汉理工大学,2010
    [72]谢岳峰,余雄庆.基于CATIA二次开发的匕机外形参数化设计[J].计算机工程与设计,2008,(07)
    [73]王智明,杨旭,平海涛.知识工程及专家系统[M].北京:化学l:业出版社,2006
    [74]陈靖芯,徐晶,陆国民.基于CATIA的三维参数化建模方法及其应用[J].机械设计,2003,(08)
    [75]德国BOSCH公司.汽车工程手册[M].北京:北京理工大学出版社,2009
    [76]库潘.换热器设计手册[M].北京:中国石化出版社,2004
    [77]史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社,2009
    [78]余建祖.换热器原理与设计[M].北京:北京航空航天大学出版社,2006
    [79]杨文霞.工程机械电液混合驱动冷却系统液压驱动装置的研究[D].山东农业大学,2008
    [80]周洪清,杨小强,赵立强等.工程机械热管理技术研究与应用[J].矿山机械.2006,(8).
    [81]中国机械工程联合会.QC-T 2881.2-2001汽车发动机冷却水泵试验方法[S].北京:中国计划出版社2001-12-30.
    [82]李庆宜.通风机[M].武汉:华中工学院出版社,1981
    [83]Society of Automotive Engineers. Test Method for Measuring Performance of Engine Cooling Fans[M]. SAE Standard J1339,2002
    [84]中华人民共和国工业和信息化部.QC/T 29033-1991.汽车液力变速器台架性能试验方[S].北京:机械工业出版社,2005
    [85]DALLAS SEMICONDUCTOR. DS18B20 Programmable Resolution 1-Wire Digital Thermalmeter Manual[M]. Sunnyvale: Maxim Integrated Products,2008
    [86]Cooling Flow Measurement Techniques[M]. SAE Standard J2082,1992
    [87]周杏鹏,仇国富,王寿荣等.现代检测技术[M].北京:高等教育出版社,2004
    [88]Henry E. Beamer, Lin-Jie Huang, Kevin D. Bellows. Applied Cfd and Experiment for Automotive Compact Heat Exchanger Development. SAE Paper 980426,1998
    [89]Kanomax. MODEL KA41 Anemobiagraph Manual, Osaka: [s.n.], c2009
    [90]优利德.UT372使用说明书[M].东莞:优利德科技有限公司,c2007
    [91]Society of Automotive Engineers. Application Testing of Oil-to-Air Oil Coolers for Heat Transfer Performance. SAE Standard J 1468,2006
    [92]Society of Automotive Engineers. Heavy-Duty Nonmetallic Engine Cooling Fans--Material, Manufacturing, and Test Considerations[M]. SAE Standard J1474,1995
    [93]中华人民共和国国家发展和改革委员会.JB/T 1050-2005.内燃机机油散热器技术条件[S].北京:机械工业出版社,2005-02-14.
    [94]中华人民共和国交通部.JTG B01-2003.公路工程技术标准[S].北京:人民交通出版社,2004-03-01.
    [95]周荣贵,邢惠臣.关于纵坡与汽车运行速度和油耗之间关系的研究[S].公路交通科技,1993,(1).
    [96]交通部公路科学研究院.公路纵坡坡度与坡长限制[S].北京:[出版者不详],2006-03-13.
    [97]中华人民共和国交通部.JTG D20-2006.公路路线设计规范[S].北京:人民交通出版社,2006-10-01.
    [98]中华人民共和国建设部.CJJ37-90.城市道路设计规范[S].北京:[出版者不详],2004-06.
    [99]Society of Automotive Engineers. Heavy Duty Vehicle Cooling Test Code[M]. SAE Standard J1393,2004
    [100]Society of Automotive Engineers. Heavy Truck and Bus Retarder Downhill Performance Mapping Procedure[M]. SAE Standard J1489,2000
    [101]Society of Automotive Engineers. Test Method for Determining Power Consumption of Engine Cooling Fan-Drive Systems[M]. SAE Standard J1342,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700