代用燃料内燃机基础MAP研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着人类对新能源的渴求,代用燃料将成为内燃机的燃料来源,燃料的理化特性决定了内燃机更换燃料必须对压缩比、空燃比及点火提前角等进行优化匹配。用传统试验方法匹配,周期长、费用高。本文以HH465QE1汽油机更换压缩天然气、氢气和乙醇燃料为研究对象,以性能为研究目标,利用GT-POWER内燃机仿真软件,确定不同燃料的压缩比,计算空燃比和点火提前角基础MAP。
     本研究建立了HH465QE1汽油机的仿真计算模型,通过仿真计算,所建的内燃机模型与原型机相比最大功率上升了1.9%,最大转矩下降了2.4%,最低油耗降低了0.5%,仿真结果与原机数据基本符合。
     由于天然气和氢气体积低热值小,标况下动力性能比较差,对其采取增压的方式进行了仿真计算,天然气和氢气的进气压力分别为0.15MPa、0.3MPa。通过比较不同压缩比下代用燃料内燃机的有效功率、有效燃料消耗率,根据内燃机设计时压力升高率和气缸压力的要求,选取压缩天然气内燃机的压缩比为14,氢气内燃机的压缩比为13,乙醇内燃机的压缩比为11。分析了压缩比随负荷、转速变化的可变压缩比的优势。
     对设定典型工况下过量空气系数在0.8-1.1范围内的空燃比动力性和经济性进行了仿真计算。提出了在低负荷、中小负荷、大负荷时,代用燃料内燃机空燃比的设定方案;得到了设定工况下的H_2内燃机空燃比MAP。
     采用先广泛后精确的方法,依据动力性和经济性输出,确定代用燃料内燃机的最佳点火提前角。根据每种代用燃料54种工况下的点火提前角,绘制了点火提前角MAP图,就整体趋势而言,仿真计算的点火提前角符合转速、负荷对点火提前角的影响规律。通过比较三种燃料的点火提前角,其大小还与燃料本身的燃烧速度有关。
Alternative fuel will become internal combustion engine fuel sources because of human desire,replacement fuel physic-chemical properties decide that internal combustion engine must optimize compression ratio, air/fuel ratio and advanced ignition Angle. But,the traditional test methods match long period and high cost. Based on HH465QE1 gasoline internal combustion engine replacement compressed natural gas, hydrogen and ethanol fuel as research object, by performance as the research target, use GT - POWER internal combustion engine simulation software, different fuel compression ratio is defined, air-fuel ratio and advanced ignition Angle basic MAP is calculated.
     HH465QE1 gasoline internal combustion engine simulation calculation model is established, through the simulation calculation, internal combustion engine prototype is rose 1.9% compared the maximum power, the maximum torque is dropped 2.4%, minimum fuel consumption is decreased 0.5%, the simulation results with the original machine basic data.
     Because the natural gas and hydrogen volume low calorific value of small, standard condition dynamic performance is poorer, the way to adopt a pressurization simulated computation, natural gas and hydrogen respectively the inlet pressure 0.15 MPa, 0.3 MPa. By comparing different compression ratio of internal-combustion internal combustion engine alternative fuel effective power, efficient fuel consumption, according to internal combustion internal combustion engine design pressure increase rate and the cylinder pressure requirements, the selection of compressed natural gas compression ratio of internal-combustion internal combustion engine for 14, hydrogen compression ratio of internal-combustion internal combustion engine for 13, ethanol compression ratio for 11. Analysis the compression ratio after load, speed variations of variable the advantage of compression ratio.
     Typical working conditions for setting in excess air coefficient 0.8-1.1, within the scope of the performance and fuel economy of air-fuel ratio is simulated calculation. Alternative fuel of air-fuel ratio setting scheme is put forward in low load, small and medium-sized load, large load of internal combustion engine; And get a set of H_2 internal combustion engine under the conditions of air-fuel ratio MAP.
     After the first widely accurate method, based on the performance and fuel economy of output, make sure the best alternative fuel combustion engine ignition timing. According to each alternative fuel of 54 cases of advanced ignition Angle, painted ignition timing the MAP figure, as a whole, the trend is concerned, simulation ignition timing accord with speed, load to advanced ignition Angle of the influence law. Through comparing three fuel ignition timing, the size also and fuel combustion rate itself concerned.
引文
[1]边耀璋等.汽车新能源技术[M].北京:人民交通出版社,2003,23-35.
    [2]黄雄健.我国未来汽车新能源发展研究[J].内燃机与动力装置,2006,5: 36-39.
    [3]孙志军等.世界及中国能源概况和气体燃料资源[J].中国天然气汽车,2004,(10): 12-16.
    [4]胡志平,李如贤,彭一帆.压缩天然气(CNG)汽车及其内燃机系统的研究[J].内燃机学报,2006,(06).
    [5] A.E.Catania, D.Misul, E.Spessa, G.Martorana. Conversion of a multivalve gasoline internal combustion engine to run on CNG[J]. SAE 2000 World Congress. 2000-01-0673.
    [6] Mauro Berti Giroldo, Makant William, Eard Werninghaus, P.D.Coelho Eugenio. Development of 1.6L Flex Fuel Internal combustion engine for Brazilian Market[J]. SAE 2005-01-4130.
    [7] Rogerio Jorge Amorim, Ramon Molina Valle, Jose Guilherme, CoelhoBaeta, Jose Eduardo Mautone Barros, Remo Dias Bahia de Carvalho. The Influence of Different Compression Ratios on the Performance of a CNG-Fuelled Flex Internal Combustion Internal combustion engine[J]. SAE 2005-01-4141.
    [8] Micheele Pennesse,Alberto Bucci, Fernando Damasceno, Gino Montanari. Sigma on Knock Phenomenon Control of Flex fuel Internal combustion engines[J]. SAE 2005-01-3990.
    [9] L.Gray.harles.Jr, Environmental Protection Agency.
    [10]深川正美.本田小型天然气汽车及其内燃机的研制[J].国外内燃机, 1993(3) .
    [11]钟睿.基于GT-POWER的CNG摩托车性能优化研究[D].重庆:重庆交通大学,2010:8-9.
    [12]王威.再生能源战略的成功典范之巴西乙醇发展战略.国土资源情报, 2007 (7): 36-39.
    [13]李岳林,杜宝杰,李薛等.汽油机燃用乙醇汽油混合燃料的研究进展.小型内燃机与摩托车,2009 (2):85-87 .
    [14] Guerrieri D A, Caffrey P J. Investigation into the vehicle exhaust emissions of high percentage ethanol blends. SAE paper 950777.
    [15] Hakan Bayraktar. Theoretical investigation of flame propagation process in an SI internal combustion engine running on gasoline-ethanol blends. Renewable Energy, 2007(32):758-771 .
    [16] Blizard NC, Keck JC. Experimental and theoretical investigation of turbulent burning model for internal combustion internal combustion engines. SAE paper 740191 .
    [17] May H, Gwinner D. Possibilities of improving exhaust emissions and energy consumption in mixed hydrogen-gasoline operation [J]. International Journal of Hydrogen Energy, 1983, (2):21-129.
    [18] Apostolescu N, Chiriac R. A study of combustion of hydrogen-enriched gasoline in a spark ignition internal combustion engine[C]. SAE paper 1996, 960603 .
    [19] Andea T D, Henshaw P F. Investigating Combustion Enhancement and Emissions Reduction with the Addition of 2H2 +O2 to a SI Internal combustion engine[C]. SAE Technical Paper, 2003-32-0011.
    [20] Maher Abdul-Resul Sadiq Al-baghdadi, Haroun Abdul-Kadim Shahad. Improvement of performance and reduction of pollutant emission of a four stroke spark ignition internal combustion engine fueled with ydrogen-gasoline fuel mixture[J]. Energy conversion & management, 2000(41):77-91.
    [21] Yu, Constantin Pana. Analysis of In-Cylinder Combustion of Hydrogen Fueled Internal combustion engine[J]. International Journal of Hydrogen Energy. 2003, 28:569-577.
    [22] Law CK, Kwon OC. Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation[J]. International Journal of Hydrogen Energy 2004, 29(8):867-879.
    [23] Halter F, Chauveau C, Djebaili-Chaumeix N, Gokalp I.Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen-air mixtures. Proceedings of the Combustion Institute 2005, 30(1):201-8.
    [24] Natkin R J, Tang X G, Whipple K M, et al.Ford hydrogen-internal combustion engine laboratory testing facility[C]. SAE 2002-01-0241.
    [25] Tang X G, Kabat D M, Natkin R J. Ford P2000 hydrogen-internal combustion engine dynamometer development[C]. SAE 2002-01-0262 .
    [26]杨振中,王丽君,熊树生.氢经济时代的车用H2燃料内燃机的研究与展望[J].车用内燃机,2005,156(2): 1-5.
    [27] L.M.Das. Near-term introduction of hydrogen internal combustion engines for automotive and agricultural application[J]. International Journal of Hydrogen Energy. 2002, 27(5): 479-487.
    [28] S.C.Sorenson et al.,Performance and Emissions of a 0.273 Liter Direct Injection Diesel Internal combustion engine Fuelled with Neat Dimeth1 Ether, SAE Paper 950064.
    [29]吴君华.增压二甲醚内燃机燃烧和排放控制实验研究[D].上海:上海交通大学, 2005:11-13.
    [30] Z L Chen, Kajitani, M Konno, K T Rhee. Internal combustion engine Performance and Exhaust Characteristics of Direct-injection on Diesel Internal combustion engine Operated with DME. SAE Paper 972973.
    [31]黄震.超低排放二甲醚内燃机及其研究动态[J].上海汽车, 1998(7):20-23 .
    [32]刘宝山等.两用燃料汽车的开发与应用[J].黑龙江交通科技,2004(10).
    [33]张智力,李茂德.几种汽车替代燃料的技术经济比较[J].能源研究与信息, 2002, 18 ( 2 ):80-85.
    [34]张正芳,黄海波. CNG/汽油两用燃料内燃机排放实验研究[J].西华大学学报(自然科学版),2005,(03).
    [35]董元虎,尹兴林,吕浩. CNG/汽油两用燃料内燃机低温性能试验研究[J].润滑与密封,2006,(08).
    [36]阮登芳,邓兆祥.恢复改装天然气内燃机动力性能的措施[J].重庆大学学报(自然科学版),2005,(05).
    [37]李西秦,黎苏,黎晓鹰. CNG汽车内燃机电控系统开发及匹配研究[J].车用内燃机,2005,(02).
    [38]李国岫张欣,夏渊,周希德.电控喷射天然气空燃比控制策略研究[J].内燃机学报,2004,(05).
    [39]简林莎,边耀璋,张春化.天然气/汽油两用燃料汽车点火提前角适应性优化设计[J].中国公路学报,2004,(01).
    [40]刘胜华.甲醇对电控汽油机排放性能的影响[D].杭州:浙江大学,2006:7-9.
    [41]黄钰.甲醇—柴油混合燃烧的控制策略及试验研究[D].天津:天津大学, 2008:5.
    [42]李智峰.乙醇汽油掀起替代能源新浪潮[J].中国汽车报,2004,10-25(1).
    [43]杜宝国.乙醇—汽油混合燃料在内燃机上的应用研究[D].大连:大连理工大学,2003:9.
    [44]何邦全,张武高,杨剑光等.十六烷值改进对乙醇内燃机放热率与排放的影响[J].燃料科学与技术,2005,11(1):56-61.
    [45]刘小慧.开环控制时汽油-乙醇混合燃料对发动机性能的影响[J].山东交通学报,2007,9.
    [46]周启德,李厚生,包铁成等.汽油机掺氢的试验研究[J].内燃机学报,1996,14(1):64-71.
    [47]刘福永,郝利君.氢燃料内燃机技术现状与发展展望[J].汽车工程,2006,28 (7):621-625.
    [48]张红鹏.掺H内燃机燃烧特性[J].内燃机学报,1998,4(1):23-25.
    [49]秦明华.点氢之笔.中国汽车画报,2007,127(3):156-157.
    [50] Ma Fan-hua Study on the extension of lean operation limit through hydrogen enrichment in a natural gas spark-ignition internal combustion engine[J]. International Journal of Hydrogen Energy 2008, 33:1416-1424.
    [51]杨振中.氢燃料发动机燃烧与优化控制[D] .杭州:浙江大学,2001:9.
    [52]牛钊文,周斌等.可变压缩比技术的研究与展望[J].内燃机,2010(4):44-46.
    [53]张晓文.内燃机不同工况对混合气浓度的要求[J].森林工程,2004(2):8-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700