NGF/TrkA对大鼠海马TRPM7的调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分NGF对脑缺血大鼠海马TRPM7表达水平的影响
     最近的研究表明transient receptor potential melastatin 7 (TRPM7)通道的活动和缺氧神经元的死亡密切相关,但是TRPM7通道的表达在缺血缺氧损伤过程中如何变化或如何被调节尚未见报导。本研究通过建立脑缺血的在体和离体模型从整体和细胞水平探讨神经生长因子(nerve growth factor NGF)对海马TRPM7表达水平的影响。实验选用SD大鼠,以大脑中动脉栓塞(middle cerebral artery occlusion MCAO)法制备短暂局灶性脑缺血再灌注模型,对原代培养的海马神经元作氧糖剥夺(oxygen-glucose deprivation OGD)处理建立神经元缺血的离体研究模型,利用RT-PCR和Western blot技术检测不同时段海马TRPM7的表达水平和NGF对TRPM7表达水平的影响,利用免疫细胞化学技术结合激光共聚焦观察定位TRPM7蛋白和TrkA受体在海马神经元的分布。
     在体研究显示:
     1)以MCAO法制备短暂局灶性脑缺血再灌注动物模型,大鼠缺血侧海马组织TRPM7 mRNA水平显著升高,与假手术组和正常组相比,差异有显著性(P<0.05);并且在缺血再灌注后15~20小时TRPM7 mRNA表达升高到稳定水平;
     2)对缺血再灌注大鼠侧脑室注射NGF后,缺血侧海马组织TRPM7异常高表达被抑制,其mRNA和蛋白水平与假手术组相比无显著差异(P>0.05),与缺血再灌注组相比有显著性差异(P<0.05),此效应可被TrkA的拮抗剂K252a阻断。
     离体研究显示:
     1) TrkA和TRPM7共存于同一海马神经元的胞体上。
     2)OGD可诱导LDH大量释放及海马神经元大量死亡,与正常对照组相比,差异非常显著(P<0.01)。NGF处理组与未经NGF处理组相比,细胞外LDH浓度和神经元的死亡率显著下降(P<0.05),存活率显著升高(P<0.05);这种保护作用在NGF+K252a一组的细胞中却不明显(P>0.05)。
     3)OGD可诱导海马神经元TRPM7 mRNA和蛋白水平的异常高表达,与正常组相比,两者间有显著升高(P<0.05);NGF处理可抑制OGD神经元TRPM7 mRNA和蛋白的异常高表达,与未经NGF处理组比较,两者之间有显著性差异(P<0.05),此效应可被TrkA受体拮抗剂K252a拮抗。
     4)进一步用Wortmannin抑制phosphatidylinsitol-3 kinase (PI-3K)、U73122抑制phospholipase C (PLC)和Sos inhibitory peptide抑制sos和ras的结合,以观察TrkA下游三条通路对NGF效应的影响。发现:与NGF组相比,NGF和Wortmannin共孵育完全逆转了NGF对TRPM7表达的抑制作用(P<0.05);但是,用U73122或Sos inhibitory peptide均无此效应。这些结果显示PI-3K通路介导了NGF对缺氧缺糖损伤诱导的TRPM7高表达的下调作用。
     以上结果表明缺血缺氧损伤可诱导海马TRPM7的高表达,NGF可通过TrkA来抑制TRPM7的高表达,这种抑制作用是通过TrkA下游的PI-3K信号转导通路介导的。基于TrkA和TRPM7都表达于富含NGF的海马组织中,这些结果为进一步探索NGF和TRPM7在缺血缺氧的海马神经元中所起的作用提供了有用的线索。
     第二部分NGF对大鼠海马CA1区神经元TRPM7电流的调节
     虽然TRPM7通道广泛表达于中枢神经系统,但是对于该通道的功能和调节机制人们仍知之甚少。本研究运用全细胞膜片钳技术探讨NGF对海马CA1神经元TRPM7通道电流的作用。我们首先在急性分离的大鼠(出生后10天)海马CA1区神经元上记录到具有外向整流特征的典型的“TRPM7样电流”;进而发现NGF对这一电流的外向成分有显著的可逆的抑制作用。这种抑制效应具有浓度和时间依赖性。K252a可阻断NGF对“TRPM7样电流”的抑制作用;进一步用TrkA下游效应分子磷脂酶C的拮抗剂U73122也可逆转这种抑制效应。这些结果表明NGF可通过TrkA之PLC信号转导通路抑制海马神经元TRPM7通道的功能。
     第三部分电针通过TrkA通路对脑缺血大鼠海马TRPM7表达的影响
     虽然临床资料表明电针治疗对中风患者有一定疗效,但是人们对此疗效产生的具体机制知之甚少。我们的前期工作表明电针可通过上调缺血脑组织的TrkA受体介导神经元保护作用。本实验通过制备大鼠大脑中动脉栓塞模型,发现电针治疗可减少缺血海马组织TRPM7的高表达。通过使用TrkA信号转导通路的特异的拮抗剂,我们发现PI-3K通路可能介导了电针对缺血海马的TRPM7表达的下调作用。基于TRPM7已被发现在缺氧神经元死亡过程中发挥关键作用,这些结果为临床运用电针治疗中风的机理提供了实验依据。
Part 1 Effect of nerve growth factor on TRPM7 expression in ischemic rat hipppocampus
     Although the activity of transient receptor potential melastatin 7 (TRPM7) channels correlates with anoxic neuronal death in recent reports; the change or regulation of TRPM7 expression in response to ischemic insult has not been documented. Using in vivo (middle cerebral artery occlusion MCAO) and in vitro (oxygen-glucose deprivation OGD) models of cerebral ischemia, we explored the effect of nerve growth factor (NGF) on the expression of TRPM7 in rat hippocampus by means of RT-PCR and Western blot analyses. We also observed the staining pattern of TRPM7 and TrkA in hippocampal neurons by means of confocal laser scanning microscopy.
     The results obtained from in vivo research:
     (1) Compared with Sham and Normal groups TRPM7 mRNA expression in ipsilateral hippocampi of MCAO rats significantly increased (P<0.05) and became stable during 15~20 h after reperfusion.
     (2) Compared with Ischemia group, intracerebroventricular injection of NGF significantly reduced mRNA and protein expression of TRPM7 at 20 h after reperfusion (P<0.05), which could be abolished by co-application of TrkA inhibitor K252a.
     The results obtained from in vitro research:
     (1) The co-localization of TRPM7 and TrkA were found in cell bodies of the same hippocampal neurons.
     (2) OGD induced significant increase of LDH release and neuronal death, compared with control group (P<0.01). Pre-incubation of NGF markedly reduced extracellular LDH concentration and neuronal death, compared with OGD-treated cultures without NGF treatment (P<0.05); co-application with K252a fully abolished this protective effect of NGF (P>0.05).
     (3) Compared with control group, TRPM7 expression in hippocampal cultures was significantly increased at 20 h after OGD treatment (P<0.05). In contrast, pre-incubation of NGF markedly reduced TRPM7 expression, compared with OGD-treated cultures without NGF treatment (P<0.05); this inhibitory effect could be abolished by K252a.
     (4) When specific inhibitors were further introduced to selectively block phosphatidylinsitol-3 kinase (PI-3K), phospholipase C (PLC) or ras pathways, only PI-3K inhibitor Wortmannin abolished NGF effect on TRPM7 expression of OGD-treated cultures.
     All above results indicate that cerebral ischemia may induce highly expressed TRPM7 in hippocampus and TrkA, when activated by NGF, may prevent high expression of TRPM7 through PI-3K signal pathway. In light of the abundance of NGF in hippocampus that express both TrkA and TRPM7, these findings offers some clues for further investigation of potential roles of TRPM7 and NGF in hippocampal neurons during cerebral ischemia.
     Part 2 Regulation of a TRPM7-like current by NGF in rat CA1 hippocampal neurons
     TRPM7 channels are widely expressed in the nervous system; however their function and regulation are largely unknown. This study aimed to explore whether the current mediated by TRPM7-like channels in rat CA1 hippocampal neurons could be modulated by NGF. Using whole-cell patch clamp recording techniques, we identified an outward-rectifying TRPM7-like current in CA1 hippocampal neurons freshly isolated from postnatal (10-day-old) rats. Tthe outward component of this current was reversibly reduced by NGF in dose- and time- dependent manners; and this effect was blocked by K252a. In addition, when U73122 was further introduced to inhibit the TrkA downstream effector phopholipase C in the presence of NGF, the reduction of the current was also abolished. These results suggest that NGF, by activing TrkA may regulate the function of TRPM7-like channels in hippocampal neurons via PLC pathway.
     Part 3 Effect of electroacupuncture on TRPM7 expression via TrkA in ischemic rat hipppocampus
     Clinically, electroacupuncture (EA) has been shown to produce beneficial effect on stroke patients. However, the detailed mechanism underlying the beneficial effects of EA on stroke remains poorly understood. Our previous studies have shown that EA may up-regulate TrkA in brain tissues during cerebral ischemia and mediate neuroprotective effects. In this experiment, we found that EA treatment reduced high expression of TRPM7 in ischemic hippocampal tissues in the rat mode of middle cerebral artery occlusion. Using protein kinase inhibitors of specific TrkA signaling pathways, we found that this reduction appears to be mediated through PI-3K pathway. In view that TRPM7 has recently been found to play a key role in the death of anoxic neurons, our results may provide experimental evidence for the clinical application of EA treatment for stroke patients.
引文
1.Lee JM, Grabb MC, Zipfel GJ, Choi DW. Brain tissue responses to ischemia. J Clin Invest 2000; 106: 723–31.
    2.Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 2002; 1: 383–6.
    3.Aarts MM. Tymianski M. TRPM7 and ischemic CNS injury. Neuroscientist 2005; 11:116-23.
    4.Arts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M. A key role for TRPM7 channels in anoxic neuronal death. Cell 2003; 115: 863-77.
    5.Chinopoulos C and Adam-Vizi V. Calcium, mitochondria and oxidative stress in neuronal pathology: Novel aspects of an enduring theme. FEBS J 2006; 273: 433-50.
    6.Runnels LW, Yue L. Clapman DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 2001; 291: 1043-7.
    7.Lillia V, Byazanova MV, Dorovkov AA, Alexey GR. Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptorpotential. J Biol Chem 2004; 279: 3708-16.
    8.Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J General Physiol 2003; 121: 49-60.
    9.Montell C. Mg2+ homeostasis: the Mg2+nificent TRPM chanzymes. Curr Biol 2003; 13: R799–R801.
    10.Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes Aj, et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 2001; 411: 590-5.
    11.Runnels LW, Yue L, Clapman DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 2001; 291: 1043-7.
    12.Runnels LW, Yue L, Clapman DE. The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat Cell Biol 2002; 4: 329- 36.
    13.Marx JL. Nerve growth factor acts in brain. Science 1986; 232:1341-2.
    14.Cellerino A. Expression of messenger RNA coding for the nerve growth factor receptor trkA in the hippocampus of the adult rat. Neuroscience 1996; 70: 613-6.
    15.Culmsee C, Gerling N, Lehmann M, Nikolova-Karakashian M, Prehn JHM, Mattson MP, Krieglstein J. Nerve growth factor survival signaling in cultured hippocampal neurons is mediated through TrkA and requires the common neurotrophin receptor P75. Neuroscience 2002; 115: 1089-108.
    16.施静,刘晓春,张静等.电针对局灶性脑缺血大鼠脑内神经生长因子受体trkA的影响.中国组织化学与细胞化学杂志, 1999, 8: 132-6.
    17.Zhao L, Shi J, Sun N, Tian S, Meng X, Liu X et al. Effect of electroacupuncture on TRPM7 mRNA expression after cerebral ischemia/reperfusion in rats via TrkA pathway. J Huazhong Univ Sci Technolog Med Sci 2005; 25: 247-50.
    1.Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1998; 20: 84-91.
    2.Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 1995; 26: 627–34.
    3.包新民,舒斯云著.大鼠脑立体定位图谱.北京:人民卫生出版社,1991:19-49.
    4.Jiang X, Newell EW, Schlichter LC. Regulation of a TRPM7-like current in rat brain microglia. J Biol Chem 2003; 278: 42867-76.
    5.Yan GM, Lin SZ, Irwin RP, Paul SM. Activation of muscarinic cholinergic receptors blocks apoptosis of cultured cerebellar granule neurons. Mol Pharmacol 1995; 47: 248-57.
    6.Bal-Price A, Brown GC. Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. J Neurochem 2000; 75: 1455-64.
    7.Ginsberg MD, Busto R. Rodent models of cerebral ischemia. Stroke 1989; 20:1627-42.
    8.Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 1985;17: 497-504.
    9 10.Barber PA, Davis SM, Infeld I, Baird AE, Donnan GA, Jolley D, Lichtenstein M.Spontaneous reperfusion after ischemic stroke is associated with improved outcome. Stroke 1998; 29: 2522-8.
    10.刘黎清、王世军、卢岩、孙成栋.大鼠局灶性脑缺血实验指标及评价.山东生医学工程. 2002;3:58-61.
    11.肖学宏、童萼塘、王耀明.MRI评价改进的大鼠可逆性局灶性脑缺血模型.卒中与神经疾病. 1999;6:l7l-3.
    12.Reglodi D, Somogyvari-Vigh A, Vigh S, Maderdrut JL, Arimura A. Neuroprotective effects of PACAP38 in a rat model of transient focal ischemia under various experimental conditions. Ann NY Acad Sci 2000; 921: 119-28.
    13.Roof RL, Schielke GP, Ren X, Hall ED. A comparison of long-term functional outcome after 2 middle cerebral artery occlusion models in rats. Stroke 2001; 32: 2648-57.
    14.Shimizu K, Lacza Z, Rajapakse N, Horiguchi T, Snipes J, Busija DW. MitoKATP opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. Am J Physiol Heart Circ Physiol 2002; 283: H1005-11.
    15.Belayev L, Khoutorova L, Deisher TA, Belayev A, Busto R, Zhang Y, Zhao W, Ginsberg MD. Neuroprotective effect of SolCD39, a novel platelet aggregation inhibitor, on transient middle cerebral artery occlusion in rats. Stroke 2003; 34: 758-63.
    16.周飞.电针抗脑缺血效应的影响因素及其与脑血流的关系的研究[博士后学位论文],复旦大学,2005.
    17.Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79:1431-568.
    18.Harata N, Jie W, Ishibashi H, Ono K, Akaike N. Run-down of GABA-A response under experimental ischemia in acutely dissociated CA1 pyramidal neurones of the rat. J Physiol 1997; 500: 673-88.
    19.Choi DW, Koh JY, Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci 1988; 8:185-96.
    20.Gebhardt C, Heneimann U. Anoxic decrease in potassium outward currents ofhippocampal cultured neurons in absence and presence of dithionite. Brain Res 1999; 837: 270-6.
    21.Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS, Bai JZ. Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res 2006; 1077:187-99.
    22.Choi DW, Rothman SM. The role of glutmate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 1990; 13: 171-82.
    23.Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature 1999; 399 (6738 Suppl): A7-14.
    24.Tanabe M, Mori M, Gahwiler BH. Apamin-sensitive conductance mediates the K(+) current response during chemical ischemia in CA3 pyramidal cells. J Neurophysiol 1999; 82: 2876-82.
    25.Erdemli G, Xu YZ, Krnjevic K. Potassium conductance causing hyperpolarization of CA1 hippocampal neurons during hypoxia. J Neurophysiol 1998; 80: 2378-90.
    26.Patel AJ, Honore E. Molecular physiology of oxygen-sensitive potassium channels. Eur Respir J 2001; 18: 221-7.
    27.Erdemli G, Xu YZ, Krnjevic K. Potassium conductance causing hyperpolarization of CA1 hippocampal neurons during hypoxia. J Neurophysiol 1998; 80: 2378-90.
    28. Klusa V, Klimaviciusa L, Duburs G, Poikans J, Zharkovsky A. Anti-neurotoxic effects of tauropyrone, a taurine analogue. Advances in Experimental Medicine and Biology. Springer , NY 2006, 583. Taurine 6, 499-508.
    29.Arts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, et al. A key role for TRPM7 channels in anoxic neuronal death. Cell 2003; 115: 863-77.
    30.Pittsa F, Miller MW. Expression of nerve growth factor, brain derived neurotrophicfactor,and neurotrophin-3 in the somatosensory cortex of the mature rat:coexpression with high-affinity neurotrophin rexeptors. Comp Neurol 2000; 418:241-54.
    31.Large TH, Bodary SC, Clegg DO, Weskamp G, Otten U, Reichardt LF. Nervegrowth factor gene expression in the developing rat brain. Science 1986; 234: 352-5.
    32.Marx JL. Nerve growth factor acts in brain. Science 1986; 232: 1341-2.
    33.Pan Z, Perez-Polo R.Role of nerve growth factor in oxidant boneostasis: glutathion metabolism. J Neurochem 1993; 61:1713-21.
    34.Frim DM, Shot MP, Rosenberg WS, et al. Local protective effects of nerve growhth factor-secerting fibroblsasts against excitotoxic lesions in the rat striatum. J Neurosurg 1993; 78: 267-73.
    35.Cheng B, Mattson MP. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron 1991;7:1031-41.
    36.Mattson MP, Lovell MA, Furukawa K, Markesbery WR. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J Neurochem 1995; 65: 1740–51.
    37.Frim D, Short P, Rosenberg W, Simpson J, Breakefield X, Isacson O. Local protective effects of nerve growhth factor-secerting fibroblsasts against excitotoxic lesions in the rat striatum. J Neurosurg 1993, 78: 267-73.
    38.Cheng B, McMahon DG, Mattson MP. Modulation of calcium current, intracellular calcium levels and cell survival by glucose deprivation and growth factors in hippocampal neurons. Brain Res 1993; 607: 275-85.
    39.Guegan C, Ceballos-Picot I, Chevalier E, Nicole A, Onteniente B, Sola B. Reduction of ischemic damage in NGF-transgenic mice: correlation with enhancement of antioxidant enzyme activities. Neurobiol Dis 1999; 6: 180-9.
    40.Lam HH, Bhardwaj A, O'Connell MT, Hanley DF, Traystman RJ, Sofroniew MV. Nerve growth factor rapidly suppresses basal, NMDA-evoked, and AMPA-evoked nitric oxide synthase ctivity in rat hippocampus in vivo. Proc Natl Sci USA 1998; 95:10926-31.
    41.Berg MM, Sternberg DW, Parada LF, Chao MV. K-252a inhibits nerve growthfactor-induced trk proto-oncogene tyrosine phosphorylation and kinase activity. J Biol Chem 1992; 267: 13–6.
    42. Heather M, Rosalind A. A spatial view of neurotrophin signal transduction. Trends Neurosci 2002, 25:160-5.
    43.Kaplan DR, Stephens RM. Neurotrophin signal transduction by the trk receptor. J Neurobiol 1994, 25:1404-17.
    44.Obermeier A, Bradshaw RA, Seedork K, Choidas A, Schlessinger J, Ullrich A. Neuronal differentiation signals are controlled by nerve growth factor receptor/trk binding sites for SHC and. PLCγ. EMBO J 1994; 13:1585-90.
    45.Obermeier A, Halfter H, Wiesmuller KH, Jung G, Schlessinger J, Ullrich A. Tyrosine 785 is a major determinant of Trk–substrate interaction. EMBO J 1993;12: 933-41.
    46.Yamashita H, Avraham S, Jiang S, Dikic I, Avraham H. The Csk Homologous Kinase Associates with TrkA Receptors and Is Involved in Neurite Outgrowth of PC12 Cells J Biol Chem 1999; 274: 15059-65.
    47.Christopher LC, Lewis CC. Phosphoinositide 3-kinase and the regulation of cell growth. Biochim Biophys Acta 1996;1288: M11-6.
    48.Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231-41.
    49.Du K, Montminy M. CREB is a regulatory target for the protein kinase. Akt/PKB. J Biol Chem 1998; 273:32377-9.
    50.Saito A, Narasimhan P, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH. Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factor. J Neurosci 2004; 24: 1584-93.
    1. Runnels LW, Yue L, Clapman DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 2001; 291: 1043-7.
    2. Jiang X, Newell EW, Schlichter LC. Regulation of a TRPM7-like current in rat brain Microglia. J Biol Chem 2003; 278: 42867-76.
    3. Moran MM, Xu H, Clapham DE. TRP ion channels in the nervous system. Curr Opin Neurobiol 2004; 14: 362–69.
    4. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes Aj, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 2001; 411: 590-5.
    5.王平宇主编.大白鼠中枢神经系统解剖学.北京:人民卫生出版社,1986:152.
    6. Arts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M. A key roleor TRPM7 channels in anoxic neuronal death. Cell 2003; 115: 863-77.
    7. Gwanyanya A, Amuzescu B, Zakharov SI, Macianskiene R, Sipido KR, Bolotina VM, Vereecke J, Mubagwa K. Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation. J Physiol 2004; 15: 761–6.
    8. Kerschbaum HH, Kozak JA, Cahalan MD. Polyvalent Cations as Permeant Probes of MIC and TRPM7 Pores. Biophys J 2003; 84: 2293-305.
    9. Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge M J, Peppiatt C M. 2-Aminoethoxydiphenyl. borate (2-APB) is a reliable blocker of store-operated Ca2+. entry but an inconsistent inhibitor of InsP3-induced Ca 2+ release. FASEB J 2002;16:1145–50.
    10. Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ. 2-Aminoethoxydiphenyl Borate Activates and Sensitizes the Heat-Gated Ion Channel TRPV3. J Neurosci 2004; 24: 5177-82.
    11. Hermosura MC, Monteilh-Zoller MK, Scharenberg AM, Penner R, Fleig A,Dissociation of the store-operated calcium current ICRAC and the Mg-nucleotide-regulated metal ion current MagNuM. J Physiol 2002; 539: 445–58.
    12. Jiang X, Newell EW, Schlichter LC. Regulation of a TRPM7-like current in rat brain Microglia. J Biol Chem 2003; 278: 42867-76.
    13. Li M, Jiang J, Yue L. Functional Characterization of Homo- and Heteromeric Channel Kinases TRPM6 and TRPM7. J Gen Physiol 2006;127: 525-37.
    14. Kozak JA, Cahalan MD. MIC channels are inhibited by internal divalent cations but not ATP. Biophys J 2003; 84: 922-7.
    15. Runnels LW, Yue L, Clapman DE. The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat Cell Biol 2002; 4: 329-36.
    16. Xiong ZG, Lu W, MacDonald JF. Extracellular calcium sensed by a novel cation channel in hippocampal neurons. Proc Natl Acad Sci U S A 1997; 94: 7012-7.
    17. Xiong ZG, Chu XP, MacDonald JF. Effect of lamotrigine on the Ca(2+)-sensing cation current in cultured hippocampal neurons. J Neurophysiol 2001; 86: 2520-6.
    18. Chinopoulos C, Connor JA, Shuttleworth CW. Emergence of a spermine-sensitive, non-inactivating conductance in mature hippocampal CA1 pyramidal neurons upon reduction of extracellular Ca(2+): Dependence on intracellular Mg(2+) and ATP. Neurochem Int 2007; 50: 148-58.
    19. Fleig A, Penner R. The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 2004; 25: 633-8.
    20. Mori Y, Takada N, Okada T, Wakamori M, Imoto K, Wanifuchi H, Oka H, Oba A, Ikenaka K, Kurosaki T. Differential distribution of TRP Ca2+ channel isoforms in mouse brain. Neuroreport 1998; 9:507-15.
    21. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology, Nature 2001; 411:595-9.
    22. Clapham DE. TRP channels as cellular sensors. Nature 2003; 426:517–24.
    23. Struebing C, Krapivinsky G, Krapivinsky L, Clapham DE. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 2001; 29: 645-55.
    24. Moran MM, Xu H, Clapham DE. TRP ion channels in the nervous system. Curr Opin Neurobiol 2004;14: 362-9.
    25. Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS, Bai JZ. Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res 2006; 1077:187-99.
    26. Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE. The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron 2006; 52: 485-96.
    27. Oancea E, Wolfe JT, Clapham DE, Functional TRPM7 Channels Accumulate at the Plasma Membrane in Response to Fluid Flow, Circ Res 2006; 98: 245-53.
    28. Takezawa R, Schmitz, C Demeuse P, Scharenberg AM, Pemner R, Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc. Natl. Acad. Sci. USA 2004; 101: 6009-14.
    29. Langeslag M., Clark K., Moolenaar W.H., Leeuwen F.N., Jalink K. Activation of TRPM7 channels by PLC-coupled receptor agonists, J. Biol. Chem. 2007; 282: 232-9.
    30. Leis JA, Bekar LK, Walz W. Potassium homeostasis in the ischemic brain. Glia 2005; 50: 407-16.
    31. Sick TJ, Tang RX, Perez-Pinzon MA. Cerebral blood flow does not mediate the effect of brain temperature on recovery of extracellular potassium ion activity after transient focal ischemia in the rat. Brain Res 1999; 821: 400-6.
    32. Yamaguchi T. Cerebral extracellular potassium concentration change and cerebral impedance change in short-term ischemia in gerbil. Bull Tokyo Med Dent Univ 1986; 33: 1-8.
    33. Walz W. Role of astrocytes in the clearance of excess extracellular potassium.Neurochem Int 2000; 36: 291-300.
    34. Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 1997; 278: 114-7.
    35. Wei L, Yu SP, Gottron F, Snider J, Choi DW. Potassium channel blockers attenuate hypoxia- and ischemia-induced neuronal death in vitro and in vivo. Stroke 2003; 34: 1281-6.
    36. McLaughlin B, Pal S, Tran MP, Parsons AA, Barone FC, Erhardt JA, Aizenman E. p38 Activation Is Required Upstream of Potassium Current Enhancement and Caspase Cleavage in Thiol Oxidant-Induced Neuronal Apoptosis. J Neurosci 2001; 21: 3303-11.
    37. Remillard CV, Yuan JXJ. Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 2004; 286: L49-67.
    1.施静,刘晓春,张静等.电针对局灶性脑缺血大鼠脑内神经生长因子受体trkA的影响.中国组织化学与细胞化学杂志, 1999, 8: 132-6.
    2. Han BH, Holtzman DM. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 2000; 20: 5775-81.
    3.周飞.电针抗脑缺血效应的影响因素及其与脑血流的关系的研究[博士后学位论文],复旦大学,2005.
    4.陈英辉,黄显奋.电针对MCAO大鼠皮层神经营养因子表达的影响.中风与神经疾病杂志.2000;17:139-41.
    5.骆仲达,骆仲逵,许能贵,赖新生,尹利华.电针对局灶性脑缺血大鼠神经细胞凋亡及神经生长因子的影响.中国临床康复. 2004;7:1382-3.
    6.Zhao L, Shi J, Sun N, Tian S, Meng X, Liu X et al. Effect of electroacupuncture on TRPM7 mRNA expression after cerebral ischemia/reperfusion in rats via TrkA pathway. J Huazhong Univ Sci Technolog Med Sci 2005; 25: 247-50.
    1. Fleig A, Penner R. The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 2004; 25: 633-8.
    2. Xu XZ, Moebius F, Gill DL, Montell C. Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci USA 2001, 98: 10692-7.
    3. Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, Tepper RI, Shyjan AW. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res. 1998; 58:1515-20.
    4. Clapham DE, Runnels LW, Strubing C. The TRP ion channel family. Nat Rev Neurosci 2001; 2: 387-96.
    5. Clapham DE. TRP channels as cellular sensors. Nature 2003; 426: 517-24.
    6. Moran MM, Xu HX, Clapham DE. TRP ion channels in the nervous system. Current opinion in neurobiology. 2004; 14:362-9,.
    7. Montell. The TRP Superfamily of Cation Channels. Science's STKE 2005; 272: re3.
    8. Schlingmann KP, Gudermann T. A critical role of TRPM channel-kinase for human magnesium transport. J Physiol 2005; 566: 301-8
    9. Runnels LW, Yue L, Clapman DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 2001; 291: 1043-7.
    10. Drennan D, Ryazanov, AG.. Alpha-kinases: analysis of the family and comparison with conventional protein kinases. Progress Biophys Mol Biol 2003; 85:1-32
    11. Ryazanova LV, Pavur KS, Petrov AN, Dorovkov MV, Ryazanov AG.. Novel type of signaling molecules: protein kinases covalently linked to ion channels. Mol. Biol (Moscow) 2001; 35:321–2.
    12. Montell, C. Mg2+ homeostasis: the Mg2+nificent TRPM chanzymes. Curr Biol 2003; 13: R799- R801.
    13. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S. Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 2006; 26:159-78.
    14. Touyz RM, Montezano AC, Yao G, Chubanov V, Gudermann T, Callera GE. Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by ANG II in vascular smooth muscle cells from spontaneously hypertensive rats. Am. J. Physiol. 2006; 290: R73-R78
    15. Arts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M. A key role for TRPM7 channels in anoxic neuronal death. Cell 2003; 115: 863-77.
    16. Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KKH, Freestone PS, Bai JZ. Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res 2006; 1077:187-99.
    17. Jiang X, Newell EW, Schlichter LC. Regulation of a TRPM7-like current in ratbrain microglia. J Biol Chem 2003; 278: 42867-76.
    18. Yamaguchi H, Matsushita M, Nairn AC, Kurigan J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 2001; 7: 1047-57.
    19. Runnels LW, YueL, Clapman DE. The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat Cell Biol 2002; 4: 329-36.
    20. Matsushita M, Kozak JA, Shimizu Y, McLachlin DT, Yamaguchi H, Wei FY, Tomizawa K, Matsui H, Chait BT, Cahalan MD, Nairn AC. Channel Function Is Dissociated from the Intrinsic Kinase Activity and Autophosphorylation of TRPM7/ChaK1. J Biol Chem 2005; 280: 20793-803.
    21. Dorovkov MV, Ryazanov AG. Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem 2004; 279: 50643-6.
    22. Lillia V, Byazanova MV, Dorovkov AA, Alexey GR. Characterization of the protein Kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential. 2004, J Biol Chem 279, 3708-16.
    23. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 2001; 411: 590-5.
    24. Gwanyanya A, Amuzescu B, Zakharov SI, Macianskiene R, Sipido KR, Bolotina VM, Vereecke J, Mubagwa K. Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation. J Physiol2004; 15: 761-76.
    25. Kozak JA, Cahalan MD. MIC channels are inhibited by internal divalent cations but not ATP. Biophys J 2003; 84: 922-7.
    26. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 2003; 114: 191-200.
    27. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, FleigA. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J General Physiol 2003; 121: 49-60.
    28. Montell C. An exciting release on TRPM7. Neuron. 2006; 52: 395-7.
    29. Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE. The TRPM7 Ion Channel Functions in Cholinergic Synaptic Vesicles and Affects Transmitter Release. Neuron 2006; 52: 485-96.
    30. Su LT, Agapita MA, Li M, Simonson WTN, Huttenlocher A, Habas R, Yue L, Runnels LW. TRPM7 Regulates Cell Adhesion by Controlling the Calcium-dependent Protease Calpain. J. Biol. Chem. 2006; 281:11260-70.
    31. Zimmerman AW, Joosten B, Torensma R, Parnes JR, van Leeuwen FN, Figdor CG. TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J, 2006; 25: 290-301.
    32. Hanano T, Hara Y, Shi J, Morita H, Umebayashi C, Mori E, Sumimoto H, Ito Y, Mori Y, Inoue R J. Involvement of TRPM7 in Cell Growth as a Spontaneously Activated Ca2+ Entry Pathway in Human Retinoblastoma Cells.Pharmacol. Sci. 2004; 95: 403-19.
    33. Matsushita M, Kozak JA, Shimizu Y, McLachlin DT, Yamaguchi H, Wei FY, et al. Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/CHAK1. J Biol Chem 2005; 280: 20793–803.
    34. Takezawa R, Schmitz C,Demeuse P, Scharenberg AM, Pemner R. Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci U S A 2004; 101: 6009-14.
    35. Langeslag M., Clark K., Moolenaar W.H., Leeuwen F.N., Jalink K. Activation of TRPM7 channels by PLC-coupled receptor agonists, J. Biol. Chem. 2007; 282: 232-239.
    36. Chubanov V, Waldegger S, Mederos M, Schnitzler Y, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A 2004; 101, 2894-9.
    37. Chubanov V, Gudermann T, Schlingmann KP. Essential role of TRPM6 for epithelial magnesium transport and body magnesium homeostasis. Pflügers Arch 2005; 451:228-34.
    38. Chubanov V, Schnitzler MMY, Waring J, Plank A, Gudermann T. Emerging roles of TRPM6/TRPM7 channel kinase signal transduction complexes. Naunyn Schmiedebergs Arch Pharmacol 2005;371:334-41.
    39. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79:1431-568.
    40. Choi DW. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 1988; 11: 465–9.
    41. Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 2002; 1: 383–6.
    42. Ekholm A, Kristian T, Siesjo BK. Influence of hyperglycemia and of hypercapnia on cellular calcium transients during reversible brain ischemia. Exp Brain Res 1995; 104: 462-6.
    43. Xiong ZG, Lu W, MacDonald JF. Extracellular calcium sensed by a novel cation channel in hippocampal neurons. Proc Natl Acad Sci U S A 94; 1997: 7012-7.
    44. Xiong ZG, Chu XP, MacDonald JF. Effect of lamotrigine on the Ca(2+)-sensing cation current in cultured hippocampal neurons. J Neurophysiol 86; 2001: 2520-6.
    45. Aarts MM, Tymianski M. TRPMs and neuronal cell death. Pflugers Arch– Eur J Physiol 2005b; 451: 243–9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700