纳米ZnO粉体的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别对高分子网络法、溶胶-凝胶法和均匀沉淀法合成纳米氧化锌粉体进行了详细地研究,并研究了离子掺杂对纳米氧化锌粒径、形貌及其光催化性能的影响,分别采用X射线衍射仪、透射电镜、和紫外分光光度计进行了表征。
     实验结果明,采用高分子网络凝胶法、溶胶-凝胶法、均匀沉淀法均能获得结晶良好、纯度高的六方晶系红锌矿型纳米ZnO粉体。但由于工艺条件的限制,这些方法各有其优缺点,高分子网络法制备纳米ZnO的周期比较短(时间为15h左右),但是该方法所用的有机试剂较多,成本较高,而且对反应设备的要求非常严格,实验可重复性差,不易实现工业化。溶胶-凝胶法制备纳米ZnO,虽然原料的成本的低,但是凝胶干燥困难,制备周期很长(时间为38h左右),而且凝胶很容易粘在器壁上难于取出,给后续的处理带来很多不便,亦不易实现工业化生产。均匀沉淀法制备纳米ZnO,工艺相对比较简单,制备周期也比较短(时间为11h左右),但是所制备的粉体粒径分布较宽,团聚比较严重。
     采用高分子网络凝胶法制备的纳米ZnO粒子平均晶粒尺寸在20~60nm范围内。综合衍射峰形态、半高宽、晶粒度、节能考虑,高分子网络法制备纳米ZnO过程中的优化工艺条件为:单体和网络剂比例为5:1、Zn~(2+)浓度为0.35mol/L、引发剂与单体双键的比例为1:20(摩尔比)、溶液pH值的范围在5~6、反应温度80℃、反应时间2h、干燥温度100℃、干燥时间4h、热处理度为650℃。
     采用溶胶-凝胶法在热处理温度为550℃热处理1h时制备的纯纳米ZnO的平均晶粒度最小为28.33nm。随热处理温度的升高,纳米ZnO的平均晶粒尺寸呈现出先减小后增大的趋势,而平均结晶度则呈现出相反的趋势。La~(3+)的掺入可抑制ZnO晶核的生长,当La~(3+)掺入量为0.2%时,纳米ZnO粒子的晶粒尺寸达到最小,为21.27nm。随着La~(3+)掺入量继续增加,晶粒尺寸长大。
     采用均匀沉淀法制备的纯相纳米ZnO粉体和Bi~(3+)掺杂纳米ZnO粉体均为六方晶系红锌矿结构,掺杂并未改变ZnO的晶系结构,但对其晶粒形貌产生了影响,除了球状形貌外,还产生了大量棒状结构,长度在30~200nm不等。
     纳米ZnO的光催化性能研究结果表明:La~(3+)离子的掺杂对纳米ZnO粉末的光催化效果有明显的改善,随着La~(3+)离子掺入量的增加,纳米ZnO的光催化活性呈现先升后降的趋势。当La~(3+)掺杂摩尔比为0.2%时,降解率最高,光照时间15min降解率可达68.31%。而Bi~(3+)离子的掺杂降低了纳米ZnO的光催化活性,光照80minMB的降解率已由68.26%降低到10.02%,但随着Bi~(3+)掺杂量的增加,其光催化活性有所改善,当掺杂量达到3%时,光催化降解率又升高到46.98%。
In this article,the methods of polyacrylamide-gel,sol-gel and homogeneous precipitation in preparation of nanometer ZnO powder were studied in detail.The influence of ion implantation on particle size,appearance and photocatalysis performance of nanometer zinc oxide was researched,which have been separately characterized by X-ray powder diffractometer,transmission electron microscope and ultraviolet spectrophotometer.The experimental result was listed as follows.
     Well-crystallized and high-purity nanometer ZnO powders were all obtained by polyacrylamide-gel method,sol-gel method and homogeneous precipitation method, and the patterns of nano-ZnO particles all belonged to hexagonal system in type of zincite structure.But every method has its advantage and disadvantage respectively as the limit of technological conditions.The production cycle of polymer network method is quite short(it is about 15h),but the cost is much higher due to the using of excessive organic reagents,moreover it is extraordinarily strict to the request of equipment.So polymer network method is difficult to realize industrialization on accout of bad repeatability.Although the cost of raw material is lower in sol-gel method,drying gelatin is quitely hard.The producetion cycle is very long(it is about 38h),and the gelatin is much easy to stick on the vessel wall to bring for a lot of inconvenience in the follwing processing.So sol-gel method is also hard to realize industrialization.The craft of homogenous precipitation is relatively simple,the production cycle is short(it is about 11h),but the grain-size distribution of nanpmeter ZnO powders is quite wide,and the reunion is quite serious.
     Nanometer zinc oxide was synthesized by polyacrylamide-gel method,and the mean particle size of zinc oxide powders was range from 20nm to 60nm.Overall considering the diffraction peak shape,half peak width,mean particle size,average crystallinity and energy conservation,the optimum technological conditions preparing nanometer ZnO by polyacylamide-gel method were that the ratio of monomer and lattice reagent was 5:1,the starting concentration of Zn~(2+)ions was 0.35 mol/L,the ratio of reaction initiator content and the monomer double-bond was 1:20(mol ratio),the range of pH value was 5~6,the reaction temperature was at 80℃,reaction time was for 2h,the dry temperature was at 100℃,the drying time was for 4h,the heat treatment temperature was at 650℃.
     The pure nanometer zinc oxide of smallest grain size was synthesized by sol-gel method,when the heat treatment was for 550℃.The heat treatment temperature had a directly influence on the crystallization and grain size.With the increasing of heat treatment temperature,the mean particle size of nanometer zinc oxide decreased firstly and increased afterwards,while the average crystallininty presented opposite trend.La~(3+)ion dopant would immediately influence the grain size of nanometer zinc oxde.When the La~(3+)ion dopant was 0.2%,the smallest mean particle size of nano-ZnO was acquired,the size of which is 21.27nm.But when the content of La~(3+) ion dopant surpassed the fixed quantity,the grain size of nanometer zinc oxide would increase again.
     The pure nanometer ZnO powder and Bi~(3+)-doped nanometer ZnO powder were synthesized by homogeneous precipitation method.The pattems of them all belonged to hexagonal system in type of zincite structure.Bi~(3+)-doping has not changed the crystal system structure,but had an influence on the grain appearance. Besides spherical appearance,massive clavate strunctrure was arised,the length of which was range from 30nm to 200nm.
     The result of photocatalysis performance of nanometer zinc oxide indicated that La~(3+)ion dopant has a distinct improvement to the photocatalysis performance of nanometer zinc oxide,compared with pure nanometer zinc oxide.With the increasing of La~(3+)ion dopant,the photocatalysis performance of nanometer zinc oxide increased firstly and decreased afterwards.When the La~(3+)ion dopant was 0.2%, light application time was 15min,the degradation ratio of methylene blue reached the highest 68.31%.while Bi~(3+)ion dopant presented opposite trendency,which reduced the photocatalysis performance of nanometer zinc oxide.When the light application time was 80min,the degradation ration of MB decreased from 68.26%to 10.02%.But the photocatalsis activity improved with increasing of Bi~(3+)ion dopant. When the Bi~(3+)ion dopant reached to 3%,photocatalysis degradation ratio rasied to 46.98%again.
引文
[1]王久亮,刘宽,秦秀娟等.纳米氧化锌的应用研究进展.哈尔滨工业大学学报,2004.36(2):226-230
    [2]潘家祯.纳米材料和纳米科技.化工设备与防腐蚀,2002.5(2):84-91
    [3]丁衡高,朱荣.微纳米科学技术发展及产业化启示.纳米技术与精密工程,2007.5(4):235-241
    [4]程敬泉.纳米氧化锌的性质和用途.衡水师专学报,2001.3(2):42-43
    [5]李明.纳米氧化锌的生产和应用进展.化学文摘,2007.(5):53-56
    [6]舒武炳,李芸芸.纳米材料在涂料中的应用进展.涂料涂装与电镀,2006.4(6):7-11
    [7]郭一萍,董元源.纳米材料的奇异特性及其应用前景.机械研究与应用,2002.15(3):72-75
    [8]杨凤霞,刘其丽,毕磊.纳米氧化锌的应用综述.安徽化工,2006.(139):13-17
    [9]王久亮.纳米氧化锌制备技术研究进展.硅酸盐通报,2004.(5):58-60
    [10]沈茹娟,贾殿赠,王疆瑛等.纳米氧化锌的固相合成及其气敏特性.无机化学学报,2000.16(6):906-910
    [11]俞建群,贾殿赠,郑峰等.纳米氧化镍、氧化锌合成新方法.无机化学学报,1999.15(1).8-10
    [12]Kiwamu Sue,Kazuhito Kimura,Kenji Murata,et al.Effect of cations and anions on properties of zinc oxide particles synthesized in supercritical water.J.of Supercritical Fluids,30,(2004):325-331
    [13]Z.V.Marinkovic,L.Mancic,O.Milosevic.The nature of structural changes in nanocrystalline ZnO powders under linear heating conditions.Journal of the European Ceramic Society,24,(2004):1929-1933
    [14]赵新宇,郑柏存,李春忠等.喷雾热解合成ZnO超细粒子工艺及机理研究.无机材料学报,1996.11(4):611-616
    [15]石礼伟,李玲,薛成山.磁控溅射和热氧化法制备ZnO纳米颗粒.微细加工技术,2004.(3):29-32
    [16]S.D.Skapin,G.Drazic,Z.Crnjak Orel.Microstructure of nanoscale zinc oxide crystallites.Materials Lerrters,(2006):1-6
    [17]J.E.Rodriguez-Paez,A.C.Caballero,M.Villegas,et al.Controlled precipitation methods:formation mechanism of ZnO naoparticles.Journal of the European Ceramic Society,21,(2001):925-930
    [18]辛显双,周百斌,肖芝燕等.纳米氧化锌的研究进展.化学研究与应用,2003.(5):601-606,15
    [19]李斌,杜芳林.沉淀法制备纳米ZnO粉体.青岛科技大学学报,2004.25(1):21-25
    [20]Dezhong Yu,Ruxiu Cai,Zhihong Liu.Studies on the photodegradation of Rhodamine dyes on nanometer-sized zinc oxide.Spectrochimica Acta Part A,60,(2004):1617-1624
    [21]Geun-Hyoung LEE,Noriyuki IWATA,Ssang-Jo KIM,et al.photoluminescence of ZnO fine powders synthesized by sol-gel process.Journal of the Ceramic Society of Japan,113,(2005):64-66
    [22]Marcia C.Neves,Tito Trindade,M.Peres,et al.Photoluminescence of zinc oxide supported on submicron silica partcles.Materials Science and Engineering,C25,(2006):654-657
    [23]丛昱,宁桂玲,黄新等.溶胶-凝胶法合成纳米级ZnO超细粉末.仪器仪表学报,1995.16(1):309-313
    [24]曹建明.溶胶-凝胶法制备ZnO微粉工艺研究.化学工程师,2005.115(4):3-6
    [25]邵忠宝,李国荣.高分子网络凝胶法制备纳米ZnO粉料.材料研究学报,2001.15(6):681-685
    [26]M.Singhal,V.Chhabra,P.Kang,et al.Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol of microemulsion.Materials Research Bulletin,32,(1997):239-247
    [27]Jiaqing Xu,Qingyi Pan,Yu'an Shun,et al.Grain size control and gas sensing properties of ZnO gas sensor.Sensors and Actuators,B66,(2000),277-279
    [28]崔若梅,庞海龙,张文礼等.微乳液中制备ZnO、CuO超微粒子.西北师范大学学报(自然科学版),2000.36(4):46-49
    [29]冯悦兵,卢文庆,曹剑瑜等.纳米氧化锌的微乳液法合成和吸收性能.南京师范大学学报(工程技术版),2002.2(4):23-25
    [30]何秋星,杨华,陈权启等.微乳液法制备纳米ZnO粉体.甘肃工业大学学报,2003.29(3):72-75
    [31]Seung Bin Park,Yun Chan Kang.Photocatalytic activity of nanometer size ZnO particles prepared by spray pyrolysis.J.Aerosol Sci,28,(1997):S473-S474
    [32]Yang Yang,Huilan Chen,Bin Zhao,et al.Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives.Journal of Crystal Growth,263,(2004):447-453
    [33]Anil Vithal Ghule,Bertand Lo,Shin-Hwa Tzing,et al.Simultaneous thermogravimetric analysis and in situ thermo-Raman spectroscopic investigation of thermal decomposition of zinc acetate dihydrate forming zinc oxide nanoparticles.Chemical Physis Letters,381,(2003):262-270
    [34]Takeshi Sato,Hitoshi Suzuki,Osamu Kido,et al.Production of transition metal-doped ZnO nanoparticles by using RF plasma field.Journal of Crystal Growth,275,(2005):e983-e987
    [35]Hao-Ying Lu,Sheng-Yuan Chu,Soon-Seng Tan.The characteristics of low-temperature-synthesized ZnS and ZnO nanoparticles.Journal of Crystal Growth,269,(2004):385-391
    [36]杨秀培.纳米氧化锌的制备及其研究进展.西北师范大学学报(自然科学版),2003.24(3):347-351
    [37]杨健.纳米国家标准实施:别把“纳米”炒煳了[N].人民日报,2005-04-07(11)
    [38]魏绍东,王玉倩,程巨等.纳米氧化锌制备技术与工业生产.化工科技市场,2006.29(4):45-49
    [39]邵金璐,卢秀萍.纳米ZnO的应用研究进展.浙江化工,2005.(10):21-24,36
    [40]郭伟,詹自立,钟克创等.高灵敏度酒敏元件的研制.郑州轻工业学院学报(自然科学版),2004.14(4):46
    [41]戴护民,桂阳海.氧化锌光、气敏性能研究.材料导报,2006.(5):21
    [42]Zhu B L,Xie C S,Wang W Y,et al.Improvement in gas sensitivity of ZnO thick film to volatile organic compounds(VOCs)by adding YiO_2[J].Mater Lett,2004,58:624-629
    [43]徐甲强,胡平,秦建华等.Ru-ZnO气敏材料的敏感特性研究[J].功能材料,1998.29(3):281-283
    [44]沈茹娟,贾殿赠,梁凯等.纳米氧化锌的固相合成及其气敏特性.无机化学学报,2000.16(6):906-910
    [45]杨勇,柏自奎,张顺平等.纳米ZnO基掺杂气敏元件阵列的制备与特性.电子元件与材料,2007.26(2):47-51
    [46]牛新书,杜卫平,杜卫民等。纳米ZnO的制备及其气敏性能.应用化学,2003.20(10):968-971
    [47]Baratto C,Sberveglieri G,Onischuk A,et al.Low temperature selective NO_2 sensors by nanostructured fibres of ZnO.Sensors and Actuators B,2004,100(1):261
    [48]井立强,徐自立,孙晓君等.ZnO和TiO_2粒子的光催化活性及其失活与再生.催化学报,2003.24(3):175-180
    [49]杜波,邵忠宝,王成艳.固相法制备纳米ZnO/La_2O_3及其光催化性能研究.中国稀土学报,2006.24:347-349
    [50]程刚,周孝德,李艳等.纳米ZnO-TiO_2复合半导体的La~(3+)改性及其光催化活性.催化学报,2007.28(10):885-889
    [51]邵忠宝,王成艳,陈雪冰等.纳米ZnO/Ag的制备及其光催化性能.材料研究学报,2005.19(1):59-63
    [52]潘吉浪,尹荔松,高松华等.纳米ZnO光催化降解有机物研究进展.纳米材料与应用,2006 3(5).18-21
    [53]Kang Huiming,Kang Xihu.The Investigation on Photocatalytic Treatment of Waste Water Containing Phenol Over ZnO.Transaction of Tianjin University,1996,11(2):2
    [54]Hoffmann M R,Matrin S T,Bahnemann D W.Environmental Application of Semiconductor Photocatalysis.Chem.Rev.1995,95:69-96
    [55]A.Akyol,M.Bayramoglu.Photocatalitic Degradation of Remazol Red F3B Using ZnO Catalyst.J.Hazardous Materials B:124,2005,241-246
    [56]刘儒平,俞康泰,刘玉军等.稀土氧化物对纳米抗菌陶瓷釉料性能的影响.陶瓷学报,2005.26(3):149-152
    [57]王黔平,吴卫华,付伟等.自洁抗菌陶瓷技术的现状和发展.陶瓷,2006.(4):45-48
    [58]卢维奇,刘金云.我国抗菌陶瓷及其研究.佛山科学技术学院学报(自然科学版),2005.23(2):67-70
    [59]周桂欣.无机抗菌剂及抗菌陶瓷制品.陶瓷研究与职业教育,2003.(3):46-48
    [60]王淑英.无机抗菌剂和纳米抗菌陶瓷的开发和应用.邢台学院学报,2006.21(2):115-117
    [61]李玲.纳米抗菌剂在陶瓷中的应用.机械工程材料,2004.28(5):44-45
    [62]刘曙光,魏伟,郑庆新.抗菌、自清洁陶瓷的制备及性能表征.硅酸盐通报,2006.25(6):182-186
    [63]沈毅,周明.光催化自洁净陶瓷的研究与发展.陶瓷学报,2003.24(3):185-188
    [64]王艳芹,程虎民,马季铭.半导体复合纳米粒子的制各、性质及在光电转换方面的应用.化学通报,1999.(8):20-25
    [65]Tamas Szabo,Jozsef Nemeth,Imre Dekany.Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties.Colloids and Surface A:Physicochem.Eng.Aspects,230,(2004):23-25
    [66]J.F.Li,L.Z.Yao,C.H.Ye,et al.Photoluminescence enhancement ofZnO nanocrystallites with BN capsules.Journal of Crystal Growth,223,(2001):535-538
    [67]Chris G.Van de Walle.Defect analysis and engineering in ZnO.Physica,B308-310,(2001):899-903
    [68]胡幸鸣,袁国栋.ZnO基纳米电子材料研究进展.材料科学与工程学报,2005.23(4):621-624
    [69]李占双,李芳.纳米半导体的合成现状.化学工程师,2005.122(11):35-37
    [70]段永华,竺培显.纳米氧化锌粉体制备技术及其应用的研究.中国粉体技术,2006.(4):44-47
    [71]徐龙贵,刘娅莉,王丰等.无机纳米材料在涂料中的应用.无机盐工业,2003.35(1):46-49
    [72]路国忠,兰永清,胡学香等.无机抗菌剂在建筑涂料中的应用研究.环境污染治理技术与设备,2005.6(10):29-31
    [73]陈国新,赵石林.溶剂型纳米紫外屏蔽透明涂料.化学建材,2003.(6):8-10
    [74]周丽玲,付政,李有秋等.纳米氧化锌在氯丁橡胶中的应用研究.特种橡胶制品,2003.24(2):1-4
    [75]武卫莉.纳米复合材料在橡胶工业的应用.高师理科学刊,2002.22(3):54-57
    [76]李镇江,岑伟,郭峰等.抗菌天然橡胶纳米复合材料的研制.化工新型材料,2008.36(1):66-68
    [77]王学川,任龙芳,强涛涛.纳米材料在化妆品中的应用.日用化学品科学,2006.29(4):15-17
    [78]杨凤霞,刘其丽,毕磊.纳米氧化锌的应用综述.安徽化工,2006.(139):13-17
    [79]刘华.纳米材料在化工生产领域中的应用.潍坊教育学院学报,2007.20(3):37-39
    [80]黄惠忠.纳米材料分析。北京:化学工业出版社,2004.240-254
    [81]Douy A,Odier P.Preparation of nanoscale YBa_2CuaO_(7-x)powder by the polyacrylamide gel method nanostructured materials.Materials Research Bulletin,1989,24(10):119-123
    [82]刘胜峰,吴春艳,韩效钊.高分子网络法制备纳米NiO超细粉的研究.无机化学学报,2003.19(6):624-626
    [83]邵忠宝,秦国荣.高分子网络凝胶法制备纳米ZnO粉料.材料研究学报,2001.15(6):681-685
    [84]全建峰,陈大明,刘晓光等.水性聚合物网络凝胶法制备纳米镁铝尖晶石粉末.材料工程,2004.(4):40-42
    [85]周健,王河锦.X射线衍射峰五基本要素的物理意义与应用.矿物学报.2002.23(2):95-100
    [86]刘建路,张其春,林金辉.纳米粒子晶格畸变率的数量级研究.材料导报.2002.16(6):71-73
    [87]殷海荣,王明华,刘岗.聚丙烯酰胺凝胶法在纳米粉体制备中的应用.陶瓷,2006.(8).10-12
    [88]吴挡兰,方熠,郑曦.水溶液聚合高分子聚丙烯酰胺的研究.当代化工,2005.34(3):183-187
    [89]刘继泉,秦娟妮.聚丙烯酰胺的合成及其动力学研究.河南化工,2006.23(8):12-14
    [90]单英敏,木尼热·阿布都颗力木,曹瑞秀.可控分子质量丙烯酰胺溶液聚合研究.热固性树脂,2007.22(4):6-9
    [91]黄福堂,周云霞,于占涛等.丙烯酰胺单体质量与聚合性能的评价研究.国外油田工程,2000.(8):30-33
    [92]赵倩,李怀祥.溶胶.凝胶法制备无机纳米材料的研究现状.纳米材料与结构,2005.(11):500-505
    [93]洪新华,李保国.溶胶-凝胶方法的原理与应用.天津师范大学学报(自然科学版),2001.(3):5-8
    [94]陈怀杰.溶胶-凝胶法制备纳米氧化锌粉体及纳米氧化锌粉体的表征:[硕士学位论文].重庆:重庆大学工程热物理,2006
    [95]郑仕远,陈健,潘伟.湿化学方法合成及应用.材料导报,2004.14(9):25-27
    [96]张立德,牟季美.纳米材料和纳米结构[M].北京:科学技术出版社,2001,135-181
    [97]严群,陈家钊,涂铭旌.La_2O_3掺杂氧化锌压敏阀片压敏电位梯度与显微组织的研究.中国稀土学报,2003.21(12):130-133
    [98]Eric A.Meulenkamp.Synthesis and growth of ZnO nanoparticles.J.Phys.Chem.B,102,(1998):5566-5572
    [99]Apurba Dev,Subhendu K.Panda,Soumitra Kar,et al.Surfactant-assisted route to synthesize well-alligned ZnO nanorod arrays on sol-gel-derived ZnO thin films.J.Phys.Chem.B,110,(2006):14266-14272
    [100]傅献彩.大学化学(上).[M].北京:高等教育出版社,1999.310
    [101]M.Andre-verges,M.Martinez-Gallego et al.Spherical and rod-like zinc oxide microcrystals:morphological characterization and microstructural evolution with temperature.Journal of Materials Science.1992,27(14):3756-3762
    [102]刘超峰,胡行方,祖庸.以尿素为沉淀剂制备纳米氧化锌粉体.无机材料导报,1999.14(3):391-396
    [103]王赛.纳米ZnO的制备:[硕士学位论文].长沙:中南大学冶金物理化学,2003
    [104]尹利君,孙志文,王晓刚等.ZnO晶体的功能梯度分析.人工晶体学报,2006.35(3):497-500
    [105]罗电宏,马荣骏.湿法制备纳米级粉末的晶体生长理论探讨.湿法冶金,2002.21(4):169-174
    [106]张绍岩,丁士文,刘淑娟等.均匀沉淀法合成纳米ZnO及其光催化性能研究.化学学报,2002.60(7):1225-1227
    [107]Li D,Haneda H.Photocatalysis of sprayed nitriogen-containing Fe_2O_3-ZnO and WO_3-ZnO composite powders in gasphase acetaldehyde decomposition.J Photochem Photobio A:Chem,2003,160(3):203-207
    [108]Sakthivela S,Neppolianb B,Shankar M V.Solar photocatalytic degradation of azo dyes:comparison of photocatalytic efficiency of ZnO and TiO_2.Solar Energy Mater & Solar Cells,2003,77(1):65-71
    [109]Edwards A J,Slykhouse T S,Drickamer H G.The Effect of Pressure on Blende and Wurtzite Structures.[J]Phys Chem Solids,1959,11:140
    [110]刘文斌,徐光亮,刘桂香.添加剂在ZnO压敏陶瓷中作用机理的综述.南方金属,2004.137:1-4
    [111]Yu C,Fan J,Tian B,et al.High-yield synthesis of periodic mesoporous carbon rods.Adv Mater,2002,14(23):1742
    [112]Li D,Haneda H.Photocatalysis of sprayed nitrogen-containg Fe_2O_3-ZnO composite powders in gas-phase acetaldehyde decomposition.J Photochem Photobio A:Chem,2003,160(3):203
    [113]李凤生,崔平,杨毅等.微纳米粉体后处理技术及应用.国防工业出版社,2005
    [114]戴护民,桂阳海.气、光敏材料ZnO的掺杂改性研究.材料导报,2006.20(6):21-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700