西藏冈底斯带驱龙斑岩铜矿床含矿斑岩的地球化学特征及其找矿意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
驱龙斑岩铜(钼)矿床位于西藏墨竹工卡县境内,大地构造位置上处于冈底斯东段陆缘岩浆弧中的“拉萨—日多弧内局限盆地”的南部边缘。矿区出露中朱罗统叶巴组火山次火山沉积岩、古新世黑云母花岗斑岩、中新世二长石英斑岩以及渐新世花岗斑岩。目前该矿床已圈定含矿斑岩体4个,铜矿体5个,矿化深度大于500m,是冈底斯喜山期斑岩型铜钼矿带东段发现的最具找矿潜力的斑岩铜(钼)矿床,也是该带斑岩矿床勘查的重大突破。
     本次研究工作主要针对驱龙斑岩铜(钼)矿床含矿斑岩体,分别从矿物化学特征,主量元素、微量元素、稀土元素以及同位素地球化学特征等几个方面进行详细研究,并通过与冈底斯成矿带其它典型矿床的对比分析,进而研究总结该成矿带斑岩矿床的时空分布特征、矿化蚀变特征、成矿构造背景,并初步探讨其物质来源和成矿机理等。
     驱龙矿区矿化斑岩有二长石英斑岩和黑云母花岗斑岩,呈岩株状产出,浅成侵位于中朱罗统叶巴组火山岩内。黑云母花岗斑岩侵入凝灰岩与流纹斑岩中,而二长石英斑岩侵位于黑云母花岗斑岩和流纹斑岩中。铜(钼)矿(化)体主要产于含矿斑岩体和黑云母花岗斑岩的内外接触带中。
     对驱龙含矿斑岩铜钼矿体中辉钼矿进行Re-Os模式年龄测定,其成矿年龄为15.82±0.19~16.85±0.19Ma。驱龙斑岩铜矿黑云母花岗斑岩SHRIMP锆石U-Pb年龄为15.9±0.7Ma,与Re-Os年龄非常一致,与文献报道的成矿母岩二长石英斑岩侵入年龄为14-20Ma接近,表明驱龙矿床成矿时间与斑岩体的形成基本同时。
     驱龙矿床岩石具有高SiO_2、富K_2O及Na_2O、低CaO和TiO_2的特点:铝饱和指数A/CNK<1;绝大多数岩石的里特曼指数<3.3。含矿斑岩应属于偏铝质高钾钙碱性岩石。岩石明显富集大离子亲石元素:K、Rb、Sr、U;而亏损高场强元素Nb、Ta、Ti和Y;富集轻稀土元素,Eu负异常不明显。驱龙及冈底斯带其它典型斑岩矿床含矿斑岩都具有Ⅱ类埃达克岩特征,但又有其特殊性。
     驱龙铜矿含矿斑岩常见的蚀变为钾长石化、黑云母化、硅化、绢云母化和局部的粘土化等。斑岩体由内到外,大致可划分为钾硅酸岩化带、石英-绢云母化带、青磐岩化带,泥化蚀变不发育。其中钾硅酸盐化蚀变期是最重要的成矿时期,稍晚的石英绢云母化蚀变期次之。
     与世界上大多数斑岩型矿床产在挤压弧系(主要为陆缘弧和岛弧)不同,驱龙及其它冈底斯带斑岩铜矿床的成岩成矿作用发生在西藏陆陆碰撞造山后期的地壳伸展阶段。由此产生的一系列近南北向张性构造,成为冈底斯带含矿斑岩的就位场所。
     通过以上的岩石学特征、微量元素组成以及Pb—Sr—Nd同位素示踪分析,冈底斯带斑岩铜矿床的岩浆起源可能与特提斯俯冲洋壳、玄武质增厚下地壳以及大洋沉积物有关,并经历了与亏损地幔、富集地幔(EMⅡ)的混合以及下地壳部分熔融、上地壳物质混染等多种地质作用,显示其岩浆来源的复杂性。
Qulong porphyry copper (molybdenum) deposit is located in Mozugongka County, Tibet. It situated in the southern margin of Lhasa-Riduo localization basin of the continental margin magmatic arc in east Gangdese belt. The middle Jurassic Yeba formation volcanics, Paleocene biotite granite porphyry, Miocene quartz monzonite and Oligocene granite porphyry could be found in the ore field. Four mineralized porphyry bodies and five copper ore bodys, which locate in the depth over 500 m, have been distinguished in Qulong. It is one of the biggest breakthrough of ore prospecting in Tibet. Qulong also have the potentiality of being a super large porphyry copper (molybdenum) deposit in the eastern Gangdese porphyry copper belt.This research mainly aims at the ore-bearing porphyry bodies, by studying the mineral chemistry, major and the trace element geochemistry, and isotope geochemistry. By comparing to other typical deposits in this metallogenic belt, the characters of spatiotemporal distribution, mineralization, alteration and structural setting, and petrogenesis are also summarized.The ore-bearing biotite granite porphyry and quartz monzonite emplaced in the Jurassic Yeba formation volcanics. The biotite granite porphyry emplaced in the tuff and rhyolite porphyry, and the quartz monzonitic emplaced in the biotite granite porphyry and the rhyolite porphyry. The copper (molybdenum) ore bodies are mainly situated in or out of the contact zone between the mineralized porphyry bodies and the biotite granite porphyry.The Re-Os model ages yielded by molybdenite from the Qulong porphyry deposit range from 15.82±0.19 to 16.85 ± 0.19 Ma. The SHRIMP zircon U-Pb measurement of the biotite granite porphyry yielded the age of 15.9±0.7 Ma.This is very consistent with the published data (14-20Ma) of the quartz monzonite in the whole Gangdese belt.The porphyries characterized by high - SiO_2, K_2O and N_2O and low CaO and TiO_2. The aluminium saturation indexes (A/CNK) are less than 1, the Rittmann Indexes are mostly less than 3.3. So they belong to dominative aluminous high-K cale-alkaline series rocks. The rocks are enriched in LILE (e.g. K, Rb, Sr, U) and LREE, and depleted in HFSE (e.g., Nb, Ta, Ti, Y) and HREE. The Eu negative anomaly is inconspicuous. The porphyries show adakite magmatic affinity with
    particularity, which suggest the complexity of the magma origin.The common alterations are potash feldsparize, biotitize, silicification, sericitization and partial argillation with the mineralized porphyries. The alteration zoning is analogous to the model of Lowell and Guilbert, with typical "face type" feature. The concentric alteration zones from the inner outward are successively the K-silicate zone, the quartz-sericite zone, and the propylitic zone, but the argillatio zone is on rare occasion. The orebodies mostly occur in the K-silicate alteration periods, and the later quartz-sericite periods take second place.Different from the most porphyry deposits which generate in extruding environment (mainly continental margin arc and island arc), the diagenesis and mineralization of the Gangdese porphyry copper belt took place during post-CoUis ional crustal extension period. The mineralized porphyry bodies were locally controlled by the near NS-striking extension tectonics.The characteristics of the geognosy, the rare elements compositions and the signatures of Sr, Nd and Pb isotope of the rocks inferred that the mineralized porphyry related to the tethys subducted oceanic crust, the basaltic lower crust and the oceanic deposit, coupled with the exchange of substance with the depletion mantle and the enrichment mantle II (EM II) as well as the lower crust partial melting and the up-crust contamination. All of that show the complexity of magmatic origin.
引文
陈衍景,陈华勇,刘玉琳等.碰撞造山过程内生矿床作用的研究历史和进展[J].科学通报,1999,44(16):1681-1689.
    程力军,李志,刘鸿飞等.冈底斯东段铜多金属成矿带的基本特征[J].西藏地质,2001,19(1) :43-53.
    从柏林,王清晨.大陆深俯冲作用研究引起的新思维.自然科学进展,2000,10(9):777-782.
    杜安道,何红蓼,殷宁万等.辉钼矿的铼-锇同位素地质年龄测定方法研究.地质学报,1994,68(4)339-347.
    杜安道,赵敦敏,王淑贤等.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,2001,20(4):247-252.
    高合明.斑岩铜矿床研究中存在的问题与复杂性科学.
    高合明.斑岩铜矿床研究综述.地球科学进展.1995,10(1):40-46.
    高和明.1995.斑岩铜矿床研究综述.地球科学进展.10(1)40-46.
    高永丰,候增谦,魏瑞华.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义.岩石学报,2003,019(03):418-428.
    桂林冶金地质研究所同位素地质研究室.怎样应用硫同位素组成判断金属矿床硫源.地质与勘探,1977,4:24-27.
    韩吟文,马振东.地球化学.北京:地质出版社,2003.
    侯增谦,高永丰,孟祥金等.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报.2004,20(2):239~248.
    侯增谦,孟祥金,曲晓明.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束.矿床地质.2005,24(2):108-121.
    侯增谦,莫宣学,高永丰等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩—以西藏和智利斑岩铜矿为例[J].矿床地质,2003,22(1):1~12.
    侯增谦,曲晓明,王淑贤等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限和动力学背景应用.中国科学(D辑),2003,33(7):609-618.
    黄志英,李光明.2004.西藏雅鲁藏布江成矿区斑岩型铜矿基本特征与找矿潜力.地质与勘探,40(1),1-6.
    简平,刘敦一,张旗等.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年.地学前缘.2003,10(4):439-455.
    江万,莫宣学,赵崇贺等.青藏高原冈底斯带中段花岗岩及其中铁镁质微粒包体地球化学特征[J].岩石学报,1999,15(1):89-97.
    金章东,朱金初,李福春.德兴斑岩铜矿成矿过程的氧、锶、钕同位素证据.矿床地 质,2002,21(4):341-349.
    金章东,朱金初,倪培等.再论德兴斑岩铜矿成矿物质来源[J].地质论评,2000,46:255~262.
    康亚龙,王随中,尹利君.西藏自治区驱龙斑岩型铜矿床地质特征及找矿方向.甘肃冶金,2004,26(1):25-27.
    李光明,冯孝良,黄志英等 西藏冈底斯构造带中段多岛弧—盆系及其演化[J].沉积与特提斯地质,2000,20(4),38-46.
    李光明,芮宗瑶.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.大地构造与成矿学,2004,28(2),165-170.
    李光明,芮宗瑶.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.大地构造与成矿学,2004,28(2):165-170.
    李光明,王高明.西藏冈底斯铜矿资源前景与找矿方向[J].矿床地质,2002,21(增刊):144-147.
    李光明,杨家瑞,丁俊.西藏雅鲁藏布江成矿区矿产资源评价新进展[J].地质通报,2003,22(9):699-703.
    梁华英.青藏高原东南缘斑岩铜矿成岩成矿研究取得新进展[J].矿床地质,2002,21(4):365.
    林培英,田成.晶体光学与造岩矿物-含宝石、玉石矿物.北京:中国地质大学(北京)岩矿教研室,北京市东城商业学校 宝玉石鉴定与营销专业.1999.
    林武,梁华英,张玉泉等.冈底斯铜矿带冲江含矿斑岩的岩石化学及锆石SHRIMP年龄特征.地球化学,2004,33(6):585-592.
    马鸿文.西藏玉龙斑岩铜矿带花岗岩类与成矿[M].武汉:中国地质大学出版社,1990.
    孟祥金,侯增谦,高永丰等.西藏冈底斯东段斑岩铜铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re-Os年龄及成矿学意义.矿床地质,2003,22(3):246-252.
    孟祥金,候增谦,高永丰等.碰撞造山带斑岩铜矿蚀变分带模式-以西藏冈底斯斑岩铜矿带为例.地学前缘.2004,11(1):201-214.
    孟祥金.西藏碰撞造山带冈底斯中新世斑岩铜矿成矿作用研究:[博士学位论文].北京:中国地质科学院,2004.
    莫宣学,董国臣,赵志丹等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息,高校地质学报.2005,11(3):281-290.
    莫宣学,赵志丹,邓晋福等.印度—亚洲大陆主碰撞过程的火山作用响应.地学前缘,2003,10(3):135-148.
    聂凤军,江思宏,赵省民.斑岩型铜金矿床研究新进展.内蒙古地质,2000,02:1-11.
    潘桂棠,陈智梁等.东特提斯地质构造形成演化[M].北京:地质出版社,1997,65-1011.
    曲晓明,侯增谦,黄卫.冈底斯斑岩铜矿(化)带:西藏第二个“玉龙”铜矿带?[J].矿床地质,2001,20(4):355-366.
    曲晓明,侯增谦,国连杰等.冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、Sr、Pb、0同位素约束.地质学报,2004,78(6):813-821.
    曲晓明,侯增谦,李佑国.S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示.地质通报,2002,21(11):768-776.
    曲晓明,侯增谦,李佐国.冈底斯碰撞造山带发现艾达克岩.矿床地质,21(增刊),2002,215-218.
    屈文俊,杜安道.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼—锇地质年龄.岩矿测试,2003,22(4):254-257.
    任云生,张金树,范文玉等,西藏甲马铜多金属矿床远景预测.地质与勘探,2002,385):30-32.
    任云生,张金树等,2002.西藏甲马铜多金属矿床远景预测.地质与勘探,38(5):30-32.
    芮宗瑶,侯增谦,曲晓明.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质,2003,22(3):217-225.
    芮宗瑶,黄崇轲,齐国明等.中国斑岩铜(钼)矿床[M].北京:地质出版.1984.
    芮宗瑶,李光明,王龙生等.西藏斑岩铜矿[J].西藏地质,2002,21(1):3~12.
    芮宗瑶,李光明,张立生等.西藏斑岩铜矿对重大地质事件的响应.地学前缘,2004,11(1):145-152.
    芮宗瑶,张立生,陈振宇等.斑岩铜矿的源岩或源区探讨.岩石学报,2004,20(02):229-238.
    芮宗瑶.西北、华北、东北斑岩铜矿床研究.见:涂光炽等中国超大型矿床.北京:科学出版社,397-425,2000.
    宋彪,张玉海,万渝生等.锆石SHRIMP样品靶制作,年龄测定及有关现象讨论.地质论评,2002,48(Sup.):26~30.
    王奖臻,李朝阳,胡瑞忠。斑岩铜矿研究的若干进展.地球科学进展.2001,16(4):514-519.
    王强,许继锋,赵振华.一种新的火成岩—埃达克岩的研究综述.地球科学进展.2001,16(2):201-208.
    王全海,王保生,李金高等.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估[J].地质通报,2002,21(1):35-40.
    王小春,晏子贵,周维德等.初论西藏冈底斯带中段尼木西北部斑岩铜矿地质特征.地质与勘探,2002,38(1):05-08.
    王焰,张旗,钱青.埃达克岩(adakite)的地球化学特征及其构造意义[J].地质科学,2000,35(2):251-256.
    夏代祥,张平,周详,等,1993.西藏自治区区域地质志.北京:地质出版社.
    肖龙,Robert P RAPP,许继峰.深部过程对埃达克质岩石成分的制约.岩石学报,2004,20(02):219-228.
    杨学明,杨晓勇,陈双喜译.岩石地球化学.合肥:中国科学技术大学出版社.2000.
    姚鹏,王全海,李金高。西藏甲马—驱龙矿集区成矿远景.中国地质,2002,29(2):197-202.
    姚鹏,郑明华,彭勇民等.西藏冈底斯岛弧带甲马铜多金属矿床成矿物质来源及成因研究.地质评论,2002,48(5):468-479.
    冶金工业部地质研究所.中国斑岩铜矿.北京:科学出版社.1984.
    叶天竺等.国内外斑岩型铜矿研究进展[M].北京:地质出版社,2002.1.
    张连昌,秦克章,英基丰等.东天山土屋-延东斑岩铜矿带埃达克岩及其与成矿作用的关系.岩石学报,2004,20(02):259-268.
    张玉泉,谢应雯,邱华宁等.钾玄岩系列:藏东玉龙铜矿带含矿斑岩Sr、Nd、Pb同位素组成. SCIENTIA GEOLOGICA SINICA,1998,33(3):359-366.
    赵振华,熊小林,王强等.新疆西天山莫斯早特石英钠长斑岩铜矿床-一个与埃达克质岩石有关的铜矿实例.岩石学报,2004,20(02):249-258.
    郑有业,高顺宝,程力军等.西藏冲江大型斑岩铜(钼金)矿床的发现及意义.地球科学,2004,29(3):333-339.
    郑有业,王保生,樊子珲,等,2002.西藏冈底斯东段构造演化及铜金多金属成矿潜力分析.地质科技情报,21(2):55-60.
    郑有业,薛迎喜,程力军等,2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学—中国地质大学学报,29(1):103-108.
    钟汉.斑岩型铜矿概论.长春:吉林科学技术出版社.1986.
    周肃,方念乔,董国臣等.西藏林子宗群火山岩的氩氩同位素测年[J].矿物学岩石学地球化学杂志,2001,20:317-319.
    朱弟成,段丽萍,廖忠礼等.两类埃达克岩(Adakite)的判别。矿物岩石,2002,22(3):5-9.
    Amelin, Y.V., and Semenov, V.S. Nd and Sr isotope geochemistry of mafic layered intrusions in the eastern Baltic Shield: Implications for the sources and contamination of Paleoproterozoic continental mafic magmas: Contributions to Mineralogy and Petrology, 1996, v. 124, p:255-272.
    Andrew, A., and Godwin, C. I. Lead- and strontium-isotopegeochemistry of Paleozoic Sicker Group and Jurassic Bonanza Group volcanic rocks and island intrusions, Vancouver Island, British Columbia: Canadian Journal of Earth Sciences, 1989,v. 26, p:894-907.
    Burg J. P. and G. M. Chen. Tectonics and structural zonation of southern Tibet, China. Nature,1984,311 (5983):219-223.
    Carlier G., J.P. Lorand, J.P. Lie'geois et.ai. Potassic-ultrapotassic mafic rocks delineate two lithospheric mantle blocks beneath the southern Peruvian Aitiplano. Geological Society of America. 2005,33(7):601-604.
    Chen J F, Jahn B M. Crustal evolution of southeastern China:Nd and Sr evidence [ J ]. Tectonophysics. 1996, 255(2): 103 -108.
    Conticelli, S., D'Antonio, M, Pinarelli, L., and Civetta,.L. Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr-Nd-Pb isotope data from Roman Province and southern Tuscany: Mineralogy and Petrology, 2002, v. 74, p: 189-222.
    Denis Thieblemont, G. Stein, and J. L. Lescuyer. Gisements epithermaux et porphyriques;la connexion adakite. Sciences de la Terre et des Planetes, 1997,325(2): 103-109.
    DePaolo, D.J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization: Earth and Planetary Science Letters, 1981, v. 52, p: 177-184.
    Du Andao, Shuqi Wu, Dezhong Sun et al. Preparation and Certification of Re-Os Dating Reference Materials: Molybdenite HLP and JDC, Geostandard and Geoanalytical Research, 2004, 28(1): 41-52.
    Fred W. McDowell, Todd B. Housh and David A. Wark. Nature of the crust beneath west-central Chihuahua, Mexico, based upon Sr, Nd, and Pb isotopic compositions at the Tomóchic volcanic center. Geological Society of America Bulletin, 1999,111(6): 823-830.
    Ling Shengrong, DengJun,Hou Zeng qian et al.. Regional fractures and denudation of gold ore deposits in Gangdise block, Tibet:Evidence of Ag/Au values. Science in China. 2001,4:121-127.
    Ren ,Y. S.,Zhang ,J . S., Fan ,W. Y. ,et al., Prospective for recasting of Jiama copper polymetallic ore deposit, Tibet. Geology and Prospecting, 2002, 38(5):30-32
    S. F. Foley, M. Tiepolo. Trace element partitioning evidence for growth of early continental crust from amphibolites, noteclogites. Geochimica et Cosmochimica Acta, 2002,66(15A):238.
    Schares E, Xu R H and Allegre C J. U- Pb geochronology of the Gangdese (Tran Himalaya) plutonism in the Lhasa-Xizang region, Tibet [J]. Earth Planet. Sci. Lett., 1984,69 :311~320.
    Searle M. P. . Continental crust subduction during ophiolite obduction, Oman, and continental collision, Himalaya, in Sixth meeting of the European Union of Geosciences, Anonymous. March 1991, 3(1):257.
    Shirey S.B., Walker R. J., Carius tube digestion for low-blank rhenium- osmium analysis, Anal. Chem., 1995,67:2136-2141.
    Sillitoe, R. H., 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum Pacific region. Australian Journal of Earth Sciences, 44:373-388.
    Sillitoe.R. H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum Pacific region. Australian Journal of Earth Sciences .1997,44: 373-388.
    Streck. J. M. Dille. J. H.. Sulfur evolution of oxidized arc magmas as recorded in apatite from aporphyry copper batholiths. Geology. 1998,26:523-526.
    Tarkian, M., Stridmy, B. Platinum group elements in porphyry copper deposit, a reconnaissance study. Mineralogy and Petrology. 1999, 65:161-183.
    Yao Cui, J. K. Russell. Nd-Sr-Pb isotopic studies of the southern Coast Plutonic Complex, southwestern British Columbia. Geological Society of America Bulletin, 1995, 107(2): 127-138.
    Yin A and Harrison T M. Geologic evolution of the Himalayan- Tibetan orogen [J]. J .Ann. Rev. Earth Planet. Sci., 2000, 28:211~280.
    Yuri Amelin, Chusi Li, Oleg Valeyev, and A. J. Naldrett. Nd-Pb-Sr Isotope Systematics of Crustal Assimilation in the Voisey's Bay andMushuau Intrusions, Labrador, Canada. Economic Geology, 2000,95:815-830.
    Zhang S Q. Mesozoic and Cenozoic Volcanisms in CentralGangdese: Implications for Lithosphere Evolution of the Tibet Plateau[D]. Beijing:China University of Geosciences, 1996
    Zheng, Y. Y., Wang, B. S., Fan, Z. H., et al. Analysis of tectonic evolution in the eastern section of the Gangdise Mountains. Tibet and the metallogenic potentialities of copper2gold polymetal. Geological Sciences and Technology Information, 2002.21 (2):55-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700