采用AFM加工大范围微纳米聚合物结构的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,人们对AFM(原子力显微镜)的研究越来越多,尤其是AFM从测量领域扩展到加工领域以后,利用AFM进行微纳米结构的加工研究,已经成为微纳米加工中重要的一个研究领域。目前,小范围内基于AFM微纳米结构加工方法的研究已经相对成熟,但是由于AFM自身压电陶瓷具有迟滞性、非线性,限制了它的加工范围,基于此,实验室已经搭建了一套AFM和高精度二维工作台的新型大范围纳米加工系统,利用这套系统进一步研究,以便于可以利用AFM加工更多大范围微纳米规则结构,对进一步扩展AFM的应用具有很大意义。
     本论文就是利用已经搭建起来的新系统,对大范围微纳米聚合物结构的加工进行研究,首先,在小范围内对两种聚合物PMMA(聚甲基丙烯酸甲酯)和PC(聚碳酸酯)的加工,利用单因素实验和正交实验相结合的方法,主要对力、进给量、加工方向和速度几个参数进行参数优化,加工的结构主要是纳米线结构以及微方坑结构。
     然后,针对AFM自身加工的局限性,对AFM自身程序进行开发,并且实现AFM与工作台联合控制。将AFM与二维工作台通过串口通信,并对工作台进行VB编程通过工作台指令实现对工作台的控制,然后将AFM与工作台通过主机利用VB程序联合控制,以实现更多复杂结构的自动化加工。
     最后,进行如何实现更好的一致性加工结果进行研究,通过PID调节等解决工作台振动问题,通过大量大范围实验研究针尖磨损以及针尖对软样品的粘结,并对加工结果进行分析,探索出大范围加工过程中微纳米结构变化的规律和针尖磨损的影响,并针对研究结果在加工过程中进行补偿,最终可以实现一致性很好的大范围微纳米聚合物结构的加工。
In recent years, more and more researchers did some studies on AFM. Especially when the research field spreads from the measurement field to the machining field, machining micro-nanometer structure by AFM had become an important research area in the field of micro-nanometer processing. At present, machining micro-nano structures by AFM within a small scale had been studied in detail. However, the machining scale of the structures is limited because of the hysteresis and nonlinear of the piezoelectric ceramics of AFM. On this basis, a new system with a high precision two-dimensional stage is set up by which researches can go on and many micro-nanometer regular structure in a big scale can be machined. All these play an important role in extending the application of AFM.
     This thesis aims to do some research on micro-nanometer polymer structure machining in a big range by the new system. First, machining the two kinds of polymer PMMA and PC in a small scale, The Taguchi method and single factor analyze method are employed. The main purpose is to optimize force, feed rate, machining direction and speed. The machined structures are nanoline structures and micro square hole structures.
     Then, in view of the machining limitation that AFM had, the software program that AFM itself must be developed and improved. What’s more, combination control of AFM and stages can be realized. AFM and two-dimensional stages get connected through the serial communication. Procedure of the stage is programmed by the program VB. The stage can be controlled by the corresponding instructions. Then, the AFM and stage can be controlled by a host computer through the VB program to realize automatic processing of more complex structures.
     Finally, do some research on how to realize the better consistent processing results. The problem of stage vibration is solved by the PID adjustment, and do some research on tip wear and soft material that adhere to the tip through plenty of machining experiments in a large scale. The law that how the micro-nanometer structures influence the tip wear through the machining result analysis is achieved. Making up some compensation during the processing, at last, micro-nanometer large-scale polymer structures processing with better consistency can be realized.
引文
[1] Ashida K,Morita N,Yoshida Y. Study on Nano-Machining Process Using Mechanism of a Friction Force Microscope [J]. JSME,2001,44(1):244-253
    [2] Schuster R,Kirchner V. Electrochemical Micromachining. Science,2000,289:98-101
    [3]赵保军,等.几种纳米加工技术的原理、特点及其应用[J].纳米科技,2007,4(3):44-59
    [4]张静.大气状态下利用AFM实现纳米加工的研究[D].哈尔滨:哈尔滨工业大学硕士论文,2006:1-7
    [5]赵保军.纳米粒子和碳纳米管的自组装及硅纳米柱阵列的刻蚀[D].上海:上海交通微纳米科学技术研究院硕士学位论文,2008:1-13
    [6]王庆军,陈庆民.超疏水表面的制备技术及其应用[J].高分子材料科学与工程,2005,21(2):6-10
    [7]董正谋.纳米技术在口腔医学领域中的现状和展望[J].牙体牙髓牙周病学杂志,2010,20(2):114-116
    [8] Kawasegi N. Nanomachining of Silicon Surface Using Atomic Force Microscope With Diamond Tip. Journal of Manufacturing Science and Engineering,2006,128:723-729
    [9] Mao Y T,Kuo K C. Research on three dimensional machining effects using atomic force microscope. Review Of Scientific Instruments,2009,80:06-10
    [10]张冬仙.原子力显微镜的新方法研究及新型原子力显微镜系统研制[D].杭州:浙江大学博士学位论文,2004:3-6
    [11]朱吉牧.基于原子力显微镜的纳米加工技术及软件系统研究[D].杭州:浙江大学博士学位论文,2005:02-03
    [12]郑丽芬,胡晓东,胡小唐.基于AFM电场诱导氧化的纳米加工[J].航空精密制造技术,2003,39(05):1-3
    [13]宋晓辉,李艳宁,匡登峰,等.大气状态下AFM阳极氧化加工Si的研究[J].压电与声光,2006,29(02):209-211
    [14]谢逸群.利用探针在金属表面进行单原子操纵的理论研究[D].上海:复旦大学博士学位论文,2008:1-8
    [15] Zeppenfeld P,Lutz C P,Eigler D M. Manipulating atoms and molecules with a scanning tunneling microscope. Ultra-microscope,1992,128:42-44
    [16] Eigler D M,Schweizer E K. Positioning Single Atoms with a Scanning Tunneling Microscope. Nature,1990,344(5):524~526
    [17] Cappella B,Sturm H,Weidner S M. Breaking polymer chains by dynamic plowing lithography. Polymer,2002,43 (2):4461–4466
    [18] Kassavetis S , Mitsakakis K , Logothetidis S. Nanoscale patterning and deformation of soft matter by scanning probe microscopy. Materials Science and Engineering,2007,27 (3):1456–1460
    [19] Richard D P,Jin Zhu,Feng Xu. Dip-Pen Nanolithography[J]. Science,1999,283(29):661-663
    [20]蒋洪奎,范真,姚汤伟,等.扫描探针机械刻蚀及DPN新技术[J].机床与液压,2006,2(7):83-86
    [21]闫永达,孙涛,董申.利用AFM探针机械刻划方法加工微纳米结构[J].传感技术学报,2006,19(5):1451-1454
    [22]焦正,吴明红. AFM电化学阳极氧化制备二氧化钛纳米线[J].无机化学学报,2004, 20(11):1325-1328
    [23]蒋洪奎,姚汤伟.蘸水笔刻蚀技术(DPN)的机理与进展[J].中国工程科学,2008,10(7):173-179
    [24]戴长春.多探头扫描探针显微镜系统[J].电子显微学报,2003,22(03):247-251
    [25]吴斌.基于SPM系统的双探针实验研究[D].上海:华中师范大学硕士论文,2007:28-30
    [26] Zhang M, Bullen D,Chung S W,et al. A MEMS nanoplotter with high-density parallel dip-pen nanolithography probe arrays. Nanotechnology, 2002,13:212-217
    [27] Sun S,Brandt M,Dargusch M S. Characteristics of cutting forces and chip formation in machining of titanium alloys[J]. International Journal of Machine Tools & Manufacture, 2009,49:561-568
    [28] Gilmore I S,Seah M P,Johnstone J E. Quantification issues in TOF-SSIMS and AFM co-analysis in two-phase systems,exampled by a polymer blend[J]. Surf. InterfaceAnal,2003,35:888–896
    [29] Dan V N,Duy K P. Tone Reversal of an AFM Lateral Force Image due to Hybridization of Oligonucleotides Immobilized on Polymers[J]. Small,2005,6(1):610–613
    [30] Hiromichi S,Atsushi S. AFM observation of polymer gels incorporated withmicrospheres[J]. Physiochemical and Engineering Aspects, 1999,153:487-493
    [31] JieMing Chen,ShangWei Liao,YuChen Tsai. Electrochemical synthesis of polypyrrole within PMMA nanochannels produced by AFM mechanical lithography[J]. Synthetic Metals,2005,155:11-17
    [32] Rashi Nathawat,Anil Kumar,Acharya N K,et al. XPS and AFM surface study of PMMA irradiated by electron beam[J]. Surface & Coatings Technology,2009,203:2600–2604
    [33] Zuyderhoff M. An AFM,XPS and wet tability study of the surface heterogeneity of PS/PMMA-r-PMAA demixed thin films[J]. Journal of Colloid and Interface Science,2008,319:63–71
    [34] Wang X P, Loy M T, Xiao Xudong. Bundle structure formation on a polymer Film at various temperatures and scanning velocities[J]. Nanotechnology,2002, 13:478–483
    [35] Futoshi Iwata,Tarou Matsumoto,Akira Sasaki. Local elasticity imaging of nano bundle structure of polycarbonate surface using atomic force microscopy[J]. Nanotechnology,2000,11:10–15
    [36] Lemoine P,Laughlin J M. Nanomechanical measurements on polymers using contact mode atomic force microscope[J]. Thin Solid Films,1999,339:258-246
    [37] Khurshudov A G,Kato K,Koide H. Nano-wear of the diamond AFM probing tip under scratching of silicon studied by AFM[J]. Tri- bol.Lett,1996,2:345-354
    [38] Li qiu Guo,Rui Wang,Huaming Xu,Ji Liang. Wear-resistance comparison of carbon nanotubes and Conventional silicon-probe for atomic force microscopy[J]. Wear,2005,258:1836-1839
    [39] Koo Hyun Chung,Yong Ha Lee,Dae Eun Kim. Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip[J]. Ultramicroscopy,2005,102:161–171
    [40]闫永达,尹大勇,费维栋,等. AFM针尖磨损机理研究进展[J].航空精密制造技术,2008,44(3):6-9
    [41] Lantz M A,O’Shea S J,Welland M E. Characterization of tips for conducting atomic force microscopy in ultrahigh vacuum[J]. Rev.Sci.Instrum,1998,69:1757-1764
    [42] Carpick R W,Salmeron M. Scratching the surface:fundamental investigations of tribology with atomic force microscopy[J]. Chem.Rev,1997,97:1163-1195
    [43] Bhushan B,JooKwak K. Noble metal-coated probessliding at up to 100 mm/s against PZT films for AFM probe-based ferroelectric recording technology[J]. J. Phys.: Condens. Matter,2008,20:1-12
    [44] Bhushan B,Palacio M,JooKwak K. Thermally-treated Pt-coated silicon AFM tips for wear resistance in ferroelectric data storage[J]. Acta Materialia,2008,56:4233–4241

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700