草地暝围食膜蛋白的分离鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草地螟(Loxostege sticticalis L.)是我国华北、东北和西北地区农牧业生产的重要害虫,建国后,已三次暴发成灾,给农牧业生产造成了巨大的损失。由于草地螟迁飞、滞育和周期性暴发的特点,其基础研究相对比较薄弱。围食膜(PM)作为昆虫体内一道重要的物理屏障,逐渐成为害虫防治的新靶标,同时也是国内外研究的热点。本文即在构建草地螟中肠cDNA文库的基础上,利用围食膜蛋白的多克隆抗体免疫筛选来获得编码相关基因,并进行了初步的分离与鉴定。主要研究结果如下:
     以草地螟中肠为材料,分别采用RNeasy Mini Kit、Oligotex mRNA kit、ZAP-cDNA? synthesis kit和ZAP-cDNA? Gigapack? III Gold Cloning Kit提取草地螟幼虫中肠总RNA,分离纯化mRNA并构建了草地螟中肠cDNA表达文库。测得文库的原始滴度为3.73×106pfu/ml,蓝白斑测定重组率达99.7%,插入片段平均长度约为1.7kb。
     利用甜菜夜蛾围食膜多克隆抗体对草地螟中肠cDNA文库进行免疫筛选,共获得282个阳性克隆,并对其中六个蛋白进行了分离鉴定。其中LstiCBP基因在cDNA文库筛选时5′端缺少部分氨基酸序列,设计适宜的引物结合RACE技术成功克隆了基因全长,其基因序列开放阅读框长为2,403bp,GenBank登录号为FJ408730,编码了801个氨基酸,其中15个氨基酸组成信号肽,蛋白前体分子量为86.2kDa,含8个几丁质蛋白结合功能域CBD,利用pET30载体成功进行原核表达,在围食膜、中肠组织、血淋巴、体壁以及蜕皮等组织均可检测到LstiCBP的存在,但以中肠中的含量最高,M2R能够影响围食膜中LstiCBP的含量;Lsti99和Lsti201在国内外尚属首次发现,在GenBank中不能检索到相似序列,但是在草地螟的头部、围食膜、中肠组织、血淋巴以及体壁等组织检测到了此类蛋白的存在。其中Lsti99基因GenBank登录号为FJ798745,开放阅读框长为1 245 bp,编码415个氨基酸,蛋白前体分子量为47.1 kDa,存在17个氨基酸的信号肽,通过pET30载体在大肠杆菌中成功表达了Lsti99蛋白,尽管此蛋白含有his-tag,但是并不能用镍柱进行纯化;通过GatewayTM技术将Lsti99序列重组到V5-His6标记杆状病毒,得到具有独立转染活性的重组杆状病毒,转染Sf9细胞后成功进行了蛋白的表达。Lsti201基因GenBank登录号为FJ798746,开放阅读框长2 145 bp,编码715个氨基酸,蛋白前体分子量为80.5 kDa,存在17个氨基酸的信号肽,含有59个明显的结构功能域,其中包括1个苏氨酸富集区,通过pET30进行了蛋白的表达;LstiSLC25蛋白为典型的运载蛋白,其基因开放阅读框(ORF)长897 bp,编码299个氨基酸;其蛋白质分子量为32.1 kDa,等电点为9.46,实现了蛋白在原核细胞的表达。羧肽酶为中肠重要消化酶,LstiCPA基因GenBank登录号为EU924506,全序列为1 380 bp,编码434个氨基酸,蛋白前体分子量为49.1 kDa,由信号肽、前肽和酶体三部分组成,具有羧肽酶的典型特征,原核表达后检测酶活力为0.0005 U/mL;羧酸酯酶是中肠主要的解毒酶,LstiCarE基因GenBank登录号为EU339106,开放阅读框长1875 bp,编码625个氨基酸,蛋白前体分子量为69.0kDa,具有羧酸酯酶的典型特征,蛋白在大肠杆菌中获得表达。
     围食膜含有至少19种蛋白质,分子量在94kDa以下,幼虫取食添加光增白剂(M2R)的食物可影响其围食膜中蛋白的种类和含量;正常的围食膜表面光滑致密、无孔洞和缝隙,幼虫取食光增白剂后其围食膜产生了孔洞,随光增白剂浓度的增加和取食时间的延长,则加重对其围食膜结构的破坏;食物添加光增白剂后能够显著缩短Bt对草地螟幼虫的杀虫时间,降低了Bt的使用浓度。
     通过草地螟中肠围食膜蛋白的分离鉴定,为明确草地螟围食膜的靶标蛋白的生理功能提供了研究基础,通过探讨PM与病原微生物相互作用的机理,寻找生物防治新靶标,为开发新型高效生物杀虫剂提供理论依据。
The meadow moth,Loxostege sticticalis L.,is an important agricultural pest in the north (North China; the Northeast; the Northwest) of China. It has broken out three times since 1949,which lead to enormous loss on agricultural and animal husbandry. Because of the properties of periodicity,the fundamental research on Loxostege sticticalis L. is unsubstantial. As the first crucial barrier for insects, peritrophic membrane(PM)has gradually been the hotpoint of the latest research of pest control. Based on the constructed cDNA library of the meadow moth midgut, we used PM proteins polyclonal antibody to isolate and characterize the related coding genes. Main achievements summarized as follows:
     RNeasy Mini Kit、Oligotex mRNA kit、ZAP-cDNA? synthesis kit and ZAP-cDNA? Gigapack? III Gold Cloning Kit were used to extract total RNA from larval midgut, then purify mRNA and construct cDNA library. Original library titer was 3.73×106pfu/ml, the recombinant rates of the blue-white spot screening were up to 99.7%, the average inserted gene fragment length was about 1.7kb.
     The 282 positive colonies were obtained by PM proteins polyclonal antibody of Spodoptera exigua immunoscreening from meadow moth midgut cDNA library. Six proteins were isolated and identified. The appropriate primers were employed to clone the full length of LstiCBP gene using RACE technique because of 5’-terminus incompleteness. GenBank accession No. of LstiCBP gene was FJ408730, contained an open reading frame(ORF) 2,403bp and encoded 801 amino acids, 15 of which composed the signal peptide. The precursor of LstiCBP protein was 86.2kDa and contained 8 chitin binding domains (CBDs). The successful prokaryotic expression was performed when LstiCBP recombined into pET30 vector. The Western blotting analysis demonstrated that LstiCBP existed in PM, midgut tissue, hemolymph, integument and ecdysis, especially rich in midgut. The amount of LstiCBP in PM was affected by M2R. Lsti99 and Lsti201 were still unknow proteins until now while the proteins were detected in head, PM, midgut tissue, hemolymph and integument of larvae. GenBank accession No. of gene Lsti99 was FJ798745, contained an ORF of 1,245bp and encodied 415 amino acids. The molecular weight of the precursor, which contained a 17-amino-acid signal peptide, was 47.1kDa. The Lsti99 successfully expressed in Escherichia coli after being recombined with pET30 vector, but couldn’t be purified by Ni-NTA. The gene of Lsti99 was inserted to V5-His6 tagged baculovirus by GatewayTM, then Lsti99 protein was successfully expressed after recombined baculovirus transfecting the cell Sf9. The accession number in GenBank for gene Lsti201 was FJ798746. The cDNA was 2,145bp, and the longest open reading frame coded for 715 amino acids. The predicted precursor protein contained a signal peptide of 17 residues and 59 functional domains with a particular domain of Thr-rich area. The expressed protein was shown as 80.5kDa in E.coli.by SDS-PAGE analysis. The gene LstiSLC25, whose ORF was 897bp, encoded 299 amino acids. LstiSLC25 protein was a typical solute carrier with molecular weight 32.1kDa and realized the protein expression in prokaryotic cell. Carboxypeptidase was an important digestive enzyme in insect midgut, which had three compositions: signal peptide, propeptide and the enzyme. LstiCPA was 1 380 bp in full-length (GenBank accession no. EU924506), and the ORF encoded 434 amino acids, with the predicted MW 49.1kD and pI 9.56 respectively. The activity for Carboxypeptidase was 0.0005 when it expressed in E.coli.. Carboxylesterase was an important detoxificative enzyme of insect midgut. The GenBank accession No. of gene LstiCarE was EU339106. The open reading frame of LstiCarE was 1875bp and encoded 625 amino acids with the precursor’s molecular weight 69.0kDa. It possessed the typical characters of carboxylesterase and had been successfully expressed in E.coli.
     There were at least 19 proteins in PM and most of them were lower than 94kDa. Feeding the larva with M2R could affect the types and the contents of the PM protein. The normal PM surface was smooth without pores and slits while the treated PM had pores and slits. The higher concentration and longer treatment, the more damage could cause to PM. Once M2R were added to Bt, the treated larva not only showed obviously shorter time of Bt toxicity to Loxostege sticticalis, but also reduced Bt using concentration.
     By isolating and identifying the PM proteins of meadow moth, we could get a clear idea of the physiological function toward the target site of PM. Through investigating the interaction mechanism between PM and pathogenic microorganism, we could hunt for novel target site and explore high efficient biological pesticide.
引文
1.草地螟科研协作组.草地螟专刊,病虫测报(增刊),1987.
    2.曹琼.2004.苏云金杆菌杀虫增效作用研究进展.武汉科技学院学报,17(2):44 ~ 48
    3.陈茂华,蓝家样,韩召军,等.禾谷缢管蚜羧酸酯酶基因cDNA片段的克隆与序列分析.麦类作物学报,2006,26 (4):145~148.
    4.程道军,夏庆友,周泽扬,等.家蚕cDNA文库构建及大规模EST测序.蚕业科学,2003,29(4):335 ~ 339.
    5.崔永兰,黄敏仁,王明庥.忽地笑叶片cDNA文库的构建与分析.南京林业大学学报(自然科学版),2004,28(3):86 ~ 88.
    6.董志敏,张宝石,关荣霞,等.全长cDNA文库的构建方法.中国农学通报,2006,22(2):51~55.
    7.董志敏,李英慧,张宝石,等.大豆叶片全长cDNA文库的构建与鉴定.作物杂志,2006(5):1~4.
    8.高贵田,陈克平,姚勤,等.家蚕羧酸酯酶基因克隆及差异表达.昆虫学报,2006,49(6):930~937.
    9.高贵田,陈克平,姚勤,等.抗浓核病毒中国株家蚕品系中肠羧酸酯酶活力变化和基因表达差异的研究.中国农业科学,2007,40(5):1042~1049.
    10.高金亮,罗建勋,樊瑞泉,等.青海血蜱cDNA表达文库的免疫学筛选和阳性克隆的鉴定.中国兽医学报, 2006,27(6):461~ 464.
    11.顾成玉,梁艳春,张广芝.1987.草地螟发生为害特点与防治策略的探讨.病虫测报,增刊:32~ 34.
    12.郭惠琳,高希武.棉蚜抗氧化乐果品系的羧酸酯酶基因突变.昆虫学报,2005,48 (2):194~ 202.
    13.何东苟,余新炳,吴忠道.全长cDNA文库的构建和新基因全长cDNA克隆的策略.热带医学杂志,2003,3(4): 473~476.
    14.黄剑,吴文君.小菜蛾抗药性研究进展.贵州大学学报,2004,21(2):163~171.
    15.黄瑶,乔传令,王靖,等.抗性家蝇cDNA文库的构建(英文).Entomologia Sinica, 1994(02).
    16.黄英,张宗玉.cDNA文库构建策略.国外医学分子生物学分册,1999,21(6):337~ 340.
    17.吉洪湖,袁哲明.围食膜:害虫生物防治的潜在靶标.昆虫学报,2005,48(6):968 ~ 974.
    18.金东雁,黎孟枫,等译.分子克隆实验指南(第二版) .北京:科学出版社,1999.
    19.金亮,罗建勋,樊瑞泉,等.青海血蜱cDNA表达文库的免疫学筛选和阳性克隆的鉴定.中国兽医学报,2006,27(6):461~464.
    20.康爱国,樊荣贤,张玉慧,等.草地螟第三个暴发周期的发生特点、成因及防治对策.昆虫知识,2003,40(1):75~79.
    21.李斌,李淑文,李长友,等.害虫生防新靶标—昆虫中肠围食膜的研究进展.东北农业大学学报,2007,38(1):130~135.
    22.李典谟,戈峰,王琛柱,等.我国农业重要害虫成灾机理和控制研究的若干科学问题.昆虫知识,1999,36(6):373-376.
    23.李金杰,李有全,刘军龙,等.青海血蜱成蜱cDNA表达文库的免疫学筛选及阳性克隆分析.中国兽医科学,2008,38(09):743~746.
    24.李鑫,章涛.新基因的克隆策略和方法.海峡药学,2004,16(3):19~23.
    25.李绪友,彭建新,洪华珠.荧光增白剂对杆状病毒的增效机理研究概况.生物学杂志,2006,23(4):4~7.
    26.梁勤,张立卿,范如君,等.蜜蜂中肠个酪素酶与孢子虫病的关系.中国养蜂,1994,(1):9~10.
    27.林青.柔嫩艾美耳球虫cDNA文库的构建及其主要抗原基因的克隆与表达.博士论文,2006,105~107.
    28.刘光涛,郭向东,张金,等.草地螟的生物学特性及其发生与环境条件的关系.病虫测报(增刊),1987,59~64.
    29.刘建喜,林爱星,李雪辉,等.用PCR法从cDNA文库中快速克隆基因.农业生物技术学报,2001,9(3):279~281.
    30.刘志刚,黄炯烈,朱狐芹,等.美洲大蠊若虫cDNA表达文库的构建及初步鉴定.中华微生物和免疫学杂志,2001,21(Suppl):4~6.
    31.刘志刚,济坤美,高波,等.篙属花粉cDNA文库的构建和初鉴定.热带医学杂志,2004,4(4):361~ 363.
    32.卢圣栋.现代分子生物学实验技术(第二版).北京:中国协和医科大学,1999,319 ~ 328.
    33.陆秀君,王勤英,李国勋.昆虫围食膜的研究进展.河北农业大学学报,2003,26:205 ~ 207.
    34.罗礼智,李光博,曹雅忠.草地螟第3个猖獗为害周期已经来临.植物保护,1996,22 (5):50~51.
    35.罗礼智,张红杰,康爱国.张家口1997年一代草地螟幼虫大发生原因分析.自然灾害学报,1998,7(3):158~164.
    36.牟吉元,徐洪富,荣秀兰.普通昆虫学(第二版).北京:中国农业出版社,1996.
    37.蒲蛰龙主编.昆虫病理学.广州:广东科技出版社,1992.
    38.钦俊德.昆虫与植物的关系—论昆虫与植物的相互作用及其演化.北京:科学出版社,1987.
    39.屈西峰,邵振润,王建强.我国北方农牧区草地螟爆发周期特点及原因剖析.昆虫知识,1999,36(1):11~14.
    40.沈倍奋.分子文库.北京:科学出版社,2001.
    41.申继忠,钱传范,苏云金杆菌杀虫剂增效途径的研究进展.生物防治通报,1994,10 (3) :135-140
    42.宋宏图,李兵,王东,等.野桑蚕羧酸酯酶基因cDNA片段的克隆及序列分析.安徽农业科学,2007,35( 14):4112- 4114.
    43.孙小洁,李朝飞,于航,等.甜菜夜蛾cDNA文库的构建.昆虫知识,2006,43(3):404~407.
    44.孙秀珍,刘昀.霜天蛾cDNA表达文库的构建和初步鉴定.西安交通大学学报,2005,26 (3):244~246.
    45.滕霞,孙曼霁.羧酸酯酶研究进展.生命科学,2003,15(1):32~35.
    46.王春荣,陈继光,宋显东,等.黑龙江省草地螟第三个暴发周期特点及成因分析.昆虫知识,2006,43(1):98~104.
    47.王德解,方宏清,陈宏,等.羧肽酶A/ B亚家族.中国生化药物杂志,2005,26(1):55~58.
    48.王德解,苗林,陈宏,等.鼠羧肽酶原B在毕赤酵母中的表达、纯化与鉴定.生物工程学报,2007,23(1):61~66.
    49.王东,李兵,管京敏,等.棉铃虫羧酸酯酶基因的克隆、序列分析及组织表达.昆虫学报,2008.51(9):979~985.
    50.王来元,王金星,赵小凡,等.家蝇cDNA文库的构建.动物学研究,2001,22(2):159~162.
    51.汪琳,周泽扬,鲁成.龙角蚕中肠组织cDNA文库的构建.蚕学通讯,2001,21(3):1~4.
    52.王少丽,盛承发,乔传令.小菜蛾羧酸酯酶基因的克隆及其序列分析.中国生物工程杂志,2003,23(4):83~85.
    53.王荫长.昆虫生理生化.北京:中国农业出版社.2004,52~53.
    54.温志强,黄必旺,吴小平.无机化学添加剂与Bt混合后对小菜蛾杀虫效果的影响.福建农业大学学报,1999,28(4):315~318.
    55.吴岩,王文兵,许晓风.稻褐飞虱羧酸酯酶基因的克隆与表达.安徽农业大学学报,2006,33(4):513~516.
    56.谢超,赵彤言,陆宝麟.围食膜在蚊虫对登革热Ⅱ型病毒中肠感染屏障中的作用.寄生虫与医学昆虫学报,2002,9 (2):92 ~ 96.
    57.徐莉,杨红,彭建新,等.荧光增白剂对苏云金芽孢杆菌毒力的增效作用及其紫外防护功效.中国生物防治,2001,17(2): 63 ~ 66.
    58.许文耀.添加物对Bt制剂杀灭鳞翅目害虫的增效作用.华东昆虫学报,2002,11 (2):99~104.
    59.严东辉.陈昌洁提高昆虫病毒杀虫效果的荧光增白剂的研究.林业科学, 2003,39(1):153~159.
    60.晏慧君,黄兴奇,程在全.cDNA文库构建策略及其分析研究进展.云南农业大学学报,2006,(1) :1~6.
    61.杨成君,王军.cDNA文库的构建策略及其应用.生物技术通报,2007,(1):6~9.
    62.尹姣,曹雅忠,罗礼智,等.寄主植物对草地螟种群增长的影响.植物保护学报,2004,31(2):173~178.
    63.尹姣,曹雅忠,罗礼智,等.草地螟对寄主植物的选择性及其化学生态机制研究.生态学报,2005, 25(8):1844~1852.
    64.赵善欢,黄炳球,胡美英.川楝素与青虫菌等农药混用对菜青虫增效作用.昆虫学报,1989,32 (2):158~165.
    65.张健,徐文岳,段建华,等.大劣按蚊抗约氏疟原虫感染相关cDNA文库的构建.中国寄生虫病防治杂志,2005,18(03):169~171.
    66.张霞.昆虫中肠围食膜靶标蛋白分离鉴定的研究.保定:河北农业大学博士学位论文.2008.
    67.张严峻,谭军,林玉清.棉铃虫围食膜的结构和组成.浙江农业学报,2000a,12 (3):140~143.
    68.张严峻,谭军,林玉清.低温和几丁质酶处理对棉铃虫围食膜的影响.中国生物防治,2000b,16(4):152~155.
    69.张云慧,陈林,程登发,等.草地螟2007年越冬代成虫迁飞行为研究与虫源分析.昆虫学报,2008,51(7):720~727.
    70.张振臣,李大伟,张力,等.黄瓜花叶病毒运动蛋白基因及其缺失突变体在大肠杆菌中的表达和表达产物的纯化.植物病理学报,1999,29(2):132~137.
    71.张振臣,李大伟,陈健夫,等.甘薯羽状斑驳病毒外壳蛋白基因在大肠杆菌中的表达及特异抗血清的制备.农业生物技术学报,2000,8(2):177~179.
    72.郑晓飞译.RNA实验技术手册.北京:科学出版社,2004.
    73.祝钦泷,李艳冬,刘光德,等.彩叶草叶片cDNA文库的构建与分析.农业生物技术科学,2007,23(2):60~64.
    74.朱蓉,彭建新,洪华珠.光增白剂对甜菜夜蛾围食膜结构的作用与影响.昆虫学报,2003,46(4):424~428.
    75.朱玉,吴茜,高越峰,等.雪花莲外源凝集素基因的克隆、序列分析和植物表达载体的构建.农业生物技术学报,1997,5 (4):331 ~ 338.
    76. Abedi Z. H. and Brown A.W. A. Peritrophic membrane as a vehicle for DDT and DDE excretion in Aedes aegypti larvae. Ann. Entomol. Soc. Am., 1961, 54: 539~542.
    77. Adang M.J., Miller L.K.Molecular cloning of DNA complementary to mRNA of the baculovirus Autographa californica nuclear polyhedrosis virus: location and gene products of RNA transcripts found late in infection. J. Virol., 1982, 44(3): 782~793.
    78. Adang M.J.,Spence K.D.Biochemical comparisons of the peritrophic membrane formation in the lepidopterans, Orgyia pseudotsugata and Manduca sexta. Comp. Biochem. Physiol., 1982,73B: 645~649.
    79. Ailor E., Betenbaugh M.J. Modifying secretion and post-translation processing in insect cells. Curr. Opin. Biotechnol.,1999,10(2):142~145.
    80. Aloy P., Catasus L., Villegas V. Comparative analysis of the sequences and three-dimensional models of human procarboxypeptidases A1, A2 and B. Biol. Chem., 1998. 379: 149~155.
    81. Andersen J.L. and Planelles V. The role of Vpr in HIV-1 pathogenesis. Curr. HIV Research, 2005, 3 (1): 43~51
    82. Aviles F.X., Vendrell J., Guasch A. Advances in metallo-procarboxypeptidases: Emerging details on the inhibition mechanism and on the activation process. Eur. J. Biochem., 1993, 211: 381~389.
    83. Avital R., Menachem K, Nicolai S, et al. Synergistic activity of a Bacillus thuringiensisδ-endotoxin and a bacterial endochitinase against Spodoptera littoralis Larvae. Appl. Envir. Microbiol.,1996,62 (10) :3581~3586.
    84. Barbehenn R.V. and Stannard J. Antioxidant defense of the midgut epithelium by the peritrophic envelope in caterpillars. J. Insect Physiol., 2004, 50: 783~790.
    85. Beenakkers A.M. Carbohydrate and fat as a fuel for insect flight: A comparative study. J. Insect Physiol., 1969, 15:353 ~361.
    86. Bernays E.A., Chamberlain D.J. A study of tolerance of ingested tannin in Schistocerca gregaria. J. Insect Physiol., 1980, 26:415~420.
    87. Bolognesi R., Ribeiro A.F., Terra W.R.,et al. The peritrophic membrane of Spodoptera frugiperda: secretion of peritrophins and role in immobilization and recycling digestive enzymes. Arch. Insect Biochem. Physiol., 2001, 47(2): 62~75.
    88. Bolognesi R., Terra W.R., Ferreira C. Peritrophic membrane role in enhancing digestive efficiency. Theoretical and experimental models. J. Insect Physiol., 2008, 54(10~11):1413~1422.
    89. Bouma B.N., Marx P.F., Mosnier L. O. Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U). Thrombosis Res., 2001, 101(5): 329~354.
    90. Bown D.P., Wilkinson H.S., Gatehouse J.A. Midgut carboxypeptidase from Helicoverpa armigera (Lepidoptera: Noctuidae) larvae: Enzyme characterization, cDNA cloning and expression. Insect Biochem. Mol. Biol., 1998, 28: 739~749.
    91. Brbehenn R.V.,Martin M.M. Tannin sensitivity in larvae of Malacosoma disstria (Lepidoptera)-roles of the peritrophic envelope and midgut oxidation.J. Chem. Ecol., 1994, 20:1985 ~2001.
    92. Carmbell P.M., Newcomb R.D., Russell R.J., et al. Two different amino acid substitutions in the ali-esterase E3 confer alternative types of organophsphorus insecticides resistance in the sheep blowfly, Lucilia Cuprina. Insect Biochem. Mol. Biol., 1998, 28: 139~150.
    93. Casu R., Eisemann C., Pearson R.,et al. Antibody-mediated inhibition of the growth of larvae from an insect causing cutaneous myiasis in a mammalian host. Proc Natl Acad Sci USA, 1997, 94(17): 8939~8944.
    94. Christeller J.T., Laing W.A., Markwick N.P., Burgess E.P. Midgut protease activities in 12 phytophagous lepidopteran larvae: Dietary and protease inhibitor interactions. Insect Biochem. Mol. Biol., 1992,22: 735~746.
    95. Claudianos C., Kussel R.J., Oakeshott J.G. The same amino acidsubstitution in the orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem. Mol. Biol., 1999, 29: 675~686.
    96. Czapla T.H. and Lang B.A. Effect of plant lectins on the larval development of European corn borer( Lepidoptera:Pyralidae) and southern corn rootworm (Coleoptera:Chrysomelidae). J. Econ. Entomol.,1990, 83:2480~2485.
    97. De Mets R., Jeuniaux C. Surles substances organiques constituant la membrane peritrophique des insects. Arch.Int.Physiol.Biochem.,1962,70:93~96.
    98. Derksen A.C.,Granados R.R. Alteration of a lepidopteran peritrophic membrane by baculoviruses and enhancement of viral infectivity.Viology,1988,167:242~250.
    99. Devenport M., Alvarenga P.H., Shao L et al. Identification of the Aedes aegypti peritrophic matrix protein AeIMUCI as a heme-binding protein. Biochemistry, 2006, 45(31): 9540~9549.
    100.Devenport M., Fujioka H., Donnelly-Doman M. et al. Storage and secretion of Ag-Aper14, a novel peritrophic matrix protein, and Ag-Muc1 from the mosquito Anopheles gambiae. Cell Tissue Res., 2005, 320(1): 175~185.
    101.Devenport M., Fujioka H., Jacobs-Lorena M. Storage and secretion of the peritrophic matrix protein Ag-Aper1 and trypsin in the midgut of Anopheles gambiae. Insect Mol. Biol., 2004, 13(4): 349~358.
    102.Devonshire A.L. The properties of a carboxylesterase from the peachpotato aphid, Myzus persicae (Sulz.), and its role in conferring insecticide resistance. Biochemical Journal, 1977, 167: 675~6831.
    103.Dorner R., Peters W. Localization of suger components of glycoproteins in peritrophic membranes of larval of Diptera(Culicidae, Simuliidae).Entomol.Gen.,1988,14:11~24.
    104.Eisemann C.H., Binnington K.C. The peritrophic membrane: its formation, structure, chemical composition and permeability in relation to vaccination against ectoparasitic arthropods. Inter. J. Parasi., 1994,24:15~26.
    105.Eisemann C.H., Donaldson R .A.,Pearson R.D.,Cadogan L.C.,et al.. Larvicidala ctivity of lectins on Lucilia cuprina: mechanism of action. Entomol.Exp.Appl.,1994, 72:1~10.
    106.Elvin C.,Vuocolo T.,Pearson R., et al.. Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina:cDNA and deduced amino acids equences. J. Biol.Chem., 1996, 271(15):8925~8935.
    107.Endege W.O., Steinmann K.E., Boardman L.A., et al. Representative cDNA libraries and their utility in gene expression profiling. Biotechniques, 1999, 26(3):542~548.
    108.Espionza-Fuentes F.P., Terra W.R. Physiological adaptations for digesting bacteria, Water fluxes and distribution of digestive enzymes in Musca domestica larval midgut. Insect Biochem., 1987, 17: 809~817.
    109.Estebanez-Perpina E., Bayes A., Vendrell J., Jongsma M.A., et al. Crystal structure of a novel mid-gut procarboxypeptidase from the cotton pest Helicoverpa armigera. J. Mol. Biol., 2001,313: 629~638.
    110.Felton G.W., Summers C.B. Antioxident systems in insects. Arch. Insect Biochem. Physiol., 1995, 29:187~197.
    111.Ferreira A.H., Cristofoletti P.T., Pimenta D.C., et al. Structure, processing and midgut secretion of putative peritrophic membrane ancillary protein (PMAP) from Tenebrio molitor larvae. Insect Biochem. Mol. Biol., 2008, 38(2): 233~243.
    112.Ferreira C.,Capella A.N.,Sitnik R., et al. Digestive enzymes in midgut cells,endoperitrophic and ectoperitrophic contens and peritrophic membranes of Spodoptera frugiperda(Lepidoptera)larvae. Arch. Insect Biochem.Physiol.,1994,26:299 ~313.
    113.Field M.L., Williamson S.M., Moores D.G., Devonshire L.A. Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Biochemistry, 1993,294: 569~574.
    114.Forstner G.G. and Forstner J.F. Structure and function of gastrointestinal fluid. In:Desnuelle P, Sjostrom H, Noren O, editors. Molecular and cellular basis of digestion. Ameterdam: Elsevier,1986, 125~143.
    115.Geysen H.M., Tainer J.A., Rodda S.J., et al. Chemistry of antibody binding to a protein. Science,1987, 235:1184~1190.
    116.Gunn A. and Gatehouse A.G. The development of enzymes involved in flight muscle metabolism in Spodoptera exempta and Mythimna separata. Comp. Biochem.Phys., 1988, 91 (2) : 315 ~ 324.
    117.Guo W., Li G., Pang Y., et al. A novel chitin-binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni. Insect Biochem. Mol. Biol., 2005, 35(11): 1224~1234.
    118. Hamm J.J., Shapiro M. Infectivity of fall armyworm (Lepidoptera: Noctuidae) nuclear polyhedrosis virus enhanced by a fluorescent brightener. J. Econ. Entomol., 1992,85(6):2149~2152.
    119.Hao Z., Aksoy S. Proventriculus-specific cDNAs characterized from the tsetse, Glossina morsitans. Insect Biochem. Mol. Biol., 2002, 32( 12): 1663~1671.
    120.Hardingham Fosang A.J., Dudhia J. Domain structure in aggregating proteoglycans from cartilage. Biochem.Soc.Trans.,1990,18:794~96.
    121.Harper M.S. and Hopkins T.L. Effect of wheat germag glutinin on formation and structure of the peritrophic membrane in E uropean corn borer (Ostrinia nubilalis)larvae. Tissue Cell,1998, 30:166~176.
    122.Hashimoto Y., Corsaro B.G., Granaos R.R. Location and nucleotide sequence of the gene encoding the viral enhancing factor of the Trichoplusia ni granulosis virus. J.Gen.Virol., 1991,72 (11): 2645~2651.
    123.Hayakawa T., Shitomi Y., Miyamoto K., et al. GaINAc Pretreatment inhibits trapping of Bacillus thuringiensis CrylAc on the peritrophic membrane of Bombyx mori. FEBS Letters, 2004, 576:331~335.
    124.Hediger M.A., Romero M.F., Peng J.B., et al. The ABCs of solute carriers: Physiological, pathological and therapeutic implications of human membrane transport proteins: Introduction. Pflugers Arch., 2004, 447 (5): 465~468.
    125.Helfman D.M.,Feramisco J.R., Fiddes J.C., et al. Identification of clones that encode chicken tropomyosin by direct immunological screening of a cDNA expression library. Proc.Natl.Acad.Sci, 1983, 80: 31~35.
    126.Helfman D.M., Hughes S.H. Use of antibodies to screen cDNA expression libraries prepared in plasmid vectors. Methods Enzymol., 1987, 152:451~457.
    127.Hi X., Chamankhah M., Visal-Shah S.,et al.Modeling the structure of the type I peritrophic matrix: characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin binding domains. Insect Biochem. Mol. Biol., 2004, 34(10): 1101~1115.
    128.Hofstetter Vanden J.B. Specific excision of the inserted DNA segment from hybrid plasmids constructed by the ploy (dA). Poly (dT) methods. Biochim. Biophys. Acta., 1976, 454: 587~591.
    129.Huber M., Cabib E., Miller L.H. Malaria parasite chitinase and penetration of the mosquitoperitrophic membrane. Proc. Natl. Acad. Sci. USA, 1991, 88(7): 2807~2810.
    130.Hurst H.C. Immunological screening ofλ-phage cDNA expression libraries. Methods Mol.Biol, 1997, 69: 155~159.
    131.Jackson R.L.,Busch S.J.,Cardin A.D. Glycosaminoglycans: molecular properties, protein interactions and role in physiological processes. Physiol.Rev.,1991,71:481~539.
    132.Jacobs-Lorena M., Oo M.M. The peritrophic membrane of insects. In: Beaty B., Marqquardt W., editors. Biology of disease vectors: a molecular, physiological, and populational approach. 1996, 318~332.
    133.Jank B., Schweyen R.J., Link T.A. et al. PMP47, a peroxisomal homologue of mitochondrial solute carrier proteins. Trends Biochem. Sci., 1993, 18 (11): 427~428.
    134.Karunaratne SHPP., Small G.J., Hemingway J. Characterization of the elevated esterase-associated insecticide resistance mechanism in Nilaparvata lugens Stal and other planthopper species. International Journal of Pest Management, 1999, 45: 225 ~230.
    135.Kino T. and Pavlakis G.N. Partner molecules of accessory protein Vpr of the human immunodeficiency virus type 1. DNA Cell Biol., 2004, 23 (4):193~205.
    136.Klingenberg M. Mechanism and evolution of the uncoupling protein of brown adipose tissue. Trends in Biochemical Sciences, 1990, 15 (3): 108~112.
    137.Kuan J. and Saier J.M. Expansion of the mitochondrial carrier family. Res. Microbiol., 1993, 144 (8): 671~672.
    138.Lawson J.E., Nelson D.R., Klingenberg M. et al. Site-directed mutagenesis of the yeast mitochondrial ADP/ATP translocator. Six arginines and one lysine are essential. J. Mol. Biol., 1993, 230 (4): 1159~1170.
    139.Le R.E., Benichou S. The Vpr protein from HIV-1: Distinct roles along the viral life cycle. Retrovirology, 2006, 2:11.
    140.Lee W.C.,LeeK H. Application of affinity chromategraphy in proteomics. Anal. Biochem.,2004, 324(1):1~1.
    141.Lehane M.J.,Allingham P.G.,Weglicki P. Composition of the peritrophic matrix of the tsetse fly,Glossina morsitans. Cell Tissue.Res.,1996,283:375~384.
    142.Lehane M.J. Peritrophic matrix structure and function. Annu. Rev. Entomol.,1997,42: 525~550.
    143.Lehane M. J. The formation and histochemical struction of the peritrophic membrane in the stable fly, Stomoxys calcitrans. J. Insect Physiol., 1976, 22: 1551~1557.
    144.Lepore L.S., Roelvink P.R.,Granados R.R. Enhancin, the granulosis virus protein that facilitate nucleopoly- hedrovirus(NPV) infection is a metalloprotease. J. Invertebr Pathol.,1996,68:131~140.
    145.Li S., Martin D., Marcelo J.L. The peritrophic matrix of hematophagous insects. Arch. Insect Biochem., 2001,47: 119~125.
    146.Liu H.L., Ho Y., Hsu C.M. Molecular simulations to determine the chelating mechanisms of various metal ions to the His-tag motif:a preliminary study. J. Biomol. Struct. Dyn., 2003, 21(1):31~41.
    147.LuckowV.A., Summers M.D. High level expression of nonfused foreign genes withAutography Californianuclear polyhedrosis virus expression vector. Viorlogy,1989, 170(1):31~39.
    148.Masao M., Katsuyoshi K., Satoshi S., et al. Molecular cloning and characterization of a novel carboxylesterase-like protein that is physiologically present at high concentrations in the urine of domestic cats (Felis catus). Biochem. J., 2003, 370(Pt 1): 101~110.
    149.Morar D., Tijhaar E., Negrea A., et al. Cloning, sequencing and expression of rhinoceros interferon-γand the production of rhinoceros IFN-γspecific antibodies. Vet. Immunol. Immunop., 2007, 115: 146~154.
    150.Merzendorfer H., Zimoch L. Chitin metabolism in insects: structure,function and regulation of chitin synthases and chitinases. J. Exp.Biol., 2003, 206: 4393~4412.
    151.Mierendorf R.C., Percy C., Young P.A. Gene isolation by screeningλgt11 libraries with antibodies. Meth. Enzymol, 1987, 152:458~469.
    152.Miller N., Lehane M. J. Relationship of peritrophic membrane, cell suffice molecular and parasites tropism in insect vectors’body. Foreign Medical Sciences:Parasitoses, 1993,20 (5): 210~211.
    153.Mittapalli O., Sardesai N., Shukle R.H. cDNA cloning and transcriptional expression of a peritrophin-like gene in the Hessian fly, Mayetiola destructor Say. Arch. Insect Biochem. Physiol., 2007, 64(1): 19~29.
    154.Mohan S., Ma P.W., Pechan T., et al. Degradation of the Spodoptera frugiperda peritrophic matrix by an inducible maize cysteine protease. J. Insect Physiol.,2006, 52(1):21~28.
    155.Mohan S., Ma P.W.K., Williams W.P., et al. A Naturally Occurring Plant Cysteine Protease Possesses Remarkable Toxicity against Insect Pests and Synergizes Bacillus thuringiensis Toxin. Plos. one., 2008, 3(3): p1786.
    156.Moskalyk L.A., Jacobs-Lorena M. Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti. Insect Mol Biol., 1996, 5(4): 261~268.
    157.Muller K.M., Amdt K.M., Bauer K. Tandem immobilized metal-ion affinity chromatography immunoaffinity Purification of His-tagged proteins-evaluation of two anti-His-tag monoclonal antibodies. Annal Biochem, 1998, 259(l):54~61.
    158.Nisizawa K.,Yanaguchi T.,Handa N., et al. Chemical nature of a uronic acid-containing polysaccharide in the peritrophic membrane of the silkworm. J. Biochem.(Tokyo),1963,54:419~426.
    159.Okuno S., Takatsuka J., Nakai M., et al. Viral-enhancing activity of various titbene-derived brighteners for a Spodoptera litura (Lepidoptera:Noctuidae) nucleopolyhedrovirus. Biol.Contr., 2003,26:146~152.
    160.Ollis D.L., Cheah E., Cygler M., et al. Theα/βhydrolase fold. Protein Eng., 1992,5: 197~211.
    161.Palmieri F. Mitochondrial carrier proteins. FEBS Letters, 1994, 346 (1): 48~54.
    162.Palmieri F. The mitochondrial transporter family (SLC25): Physiological and pathological implications. Pflug. Arch., 2004, 447 (5): 689~709.
    163.Pande S.V. A mitochondrial carnitine acylcarnitine translocase system. Proc. Natl. Acad. Sci. USA,, 1975, 72(3):883~887.
    164.Pechan T., Cohen A., Williams W.P., et al. Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc. Natl. Acad. Sci. USA, 2002, 99(20): 13319~13323.
    165.Pedro B.P., Sonia S.M., Coll M. Human procarboxypeptidase B: Three-dimensional structure and implications for thrombin-activatable fibrinolysis inhibitor (TAFI). J. Mol. Biol., 2002,321: 537~547.
    166.Peng J.,Zhong J.,Granados R.R. A baculovirus enhancing alters the permeability of a mucosal midgut peritrophic matrix, from lepidopteran larvae. J. Insect Physiol.,1999,45:159~166.
    167.Peters W.,Heitmann S.,Haese J.D. Formation and fine structure of peritrophic membranes in the earwig, Forficula auricularia (Dermaptera:Forficulidae). Entomol. Gen.,1979,5:241~254.
    168.Peters W., Kolb H, Kolb-Bachofen V. Evidence for a sugar receptor(lectin)in the peritrophic membrane of the blowfly larva, Calliphora erythrocephala (Diptera). J. Insect Physiol., 1983,29:275~280.
    169.Peters W., Laka I. Electron microscopic localisation of chitin using colloidal gold labeled wheat germ agglutinin. Histochemistry,1986,84:155~60.
    170.Peters W. Peritrophic membranes. Springer, New York.1992.
    171.Peters W. Vergleichende Untersuchungen der Feinstruktur peritrophischer Membranen von Insekten. Z.Morphol.Okol.Tiere.,1969,64:21~58.
    172.Porath J. Immobilized metal ion affinity chromatography. Prot. Expr. Purif., 1992, 3(4):263~81.
    173.Ramos A., Mahowald A., Jacobs-Lorena M. Gut-specific genes from the black fly Simulium vittatum encoding trypsin-like and carboxypeptidase-like proteins. Insect Mol. Biol., 1993, 1: 149~163.
    174.Rankin M.A. and Burchsted J.C. The cost of migration in insects. Annu. Rev. Entomol., 1992, 37:533~559
    175.Rauer B.L., Gillott C., Hegedus D. Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella. Insect Mol. Biol., 2003, 12(4): 333~343.
    176.Rees J.S., Jarrett P. Ellar D.J. The peritrophic membrane plays an additional role in protecting lepidopteran insects from Bacillus thuringiensis Cry-endotoxins. Insect Sci., 2002, 2: 47~48.
    177.Richards A.G., Richards P.A. The peritrophic membranes of insects. Ann. Rev .Entomol, 1977,22:219~240.
    178.Ross L., Tellam, Gene Wijffels, et al. Peritrophic matrix proteins. Insect Biochem. Mol. Biol.,1999,29:87~101.
    179.Rudall K.M., Kenchington W. The chitin system. Biol.Rev., 1973,48:597~636.
    180.Rupp R.A., Spence K.D. Protein alterations in Manduca sexta midgut and haemolymph following treatment with a sublethal dose of Bacillus thuringiensis crystal endotoxin. Insect Biochem.,1985, 15:147~154.
    181. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, New York. 1989.
    182.Sampson M.N., Gooday G.W. Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology, 1998,144: 2189~2194.
    183.Sandra schorderet, Roger D. Peason, Tony vuocolo, Craig elsemann, George A. Riding, Ross L.Tellam. cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, Peritrophin-48, from the larvae of Lucilia cuprina. Insect Biochem. Mol..Biol.,1998,28(2):99~111.
    184.Sarauer B.L., Gillott C., Hegedus D.Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella. Insect Mol. Biol., 2003, 12(4): 333~343.
    185.Schleif R. DNA binding by proteins. Science,1988,241:1182~1187.
    186.Schorderet S., Pearson R.D., Vuocolo T.,et al.cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, 'peritrophin-48', from the larvae of Lucilia cuprina. Insect Biochem. Mol. Biol., 1998, 28( 2): 99~111.
    187.Schuler G.D. Pieces of the puzzle: expressed sequence tags and the catalog of human genes. J. Mol. Med., 1997, 75: 694~698.
    188.Shapiro M. Enhancement of baculovirus activity on gypsy moth (Lepidoptera:Lymantria dispar) by chitinase. J.Econ.Entomol., 1987,80 (6): 1113~1116.
    189.Shapiro M., Robertson J.L. Enhancement of gypsy moth baculovirus activity by optical brighteners. J. Econ.Entomol., 1992, 85(4):1120~1124.
    190.Shapiro M., Vaughn J.L. Enhancement in activity of homologous baculovirus infectious to cotton bolworm by an optical brightener. Biol. Micro. Contr., 1995,88 (1):265~269.
    191.Shen Z., Jacobs-Lorena M. A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J. Biol. Chem., 1998, 273(28): 17665~17670.
    192.Shen Z., Jacobs-Lorena M. Evolution of chitin-binding proteins in invertebrates. J. Mol. Evol., 1999, 48(3): 341~347.
    193.Shi X., Chamankhah M., Visal-Shah S.,et al. Modeling the structure of the type I peritrophic matrix: characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin binding domains. Insect Biochem. Mol. Biol., 2004, 34( 10): 1101~1115.
    194.Shi X., Karkut T., Chahmanhkah M.,et al.5'-RACEing across a bridging oligonucleotide. Biotechniques, 2002, 32( 3): 480~482.
    195.Singh H., LeBowitz J.H., Baldwin A.S.J., et al. Molecular cloning of an enhancer binding protein: Isolation by screening of an expression library with a recognition site DNA. Cell, 1988,52:415~423.
    196.Singh H. Specific recognition site probes for isolating genes encoding DNA-binding proteins. Meth. Enzymol,1993,218:551~567.
    197.Skidgel R.A., Erdos E.G. Cellurar carboxypeptidases. Immunological Reviews, 1998, 161: 129~141.
    198.Smirnoff W.A. Three years of aerial field experiments with Bacillus thuringiensis plus chitinase formulation against the spruce budworm.J. Invertebr.Pathol., 1974,24: 344~348.
    199.Sobotnik J., Kudlikova-Krizkova I., Vancova M., et al. Chitin in the peritrophic membrane of Acarus siro (Acari: Acaridae) as a target for novel acaricides. J. Econ. Entomol., 2008, 101(3):1028~1033.
    200. Sreerama L., Veerabhadrappa P.S. Purification and properties of carboxylesterase from the midgut of the termite Odontotermes horni W. Insect Biochem.,1994, 21 (8) : 833~844.
    201.Stamm B., D’Haese J., Peters W. SDS gel electrophoresis of proteins and glycoproteins from pertrophic membranes of some Diptera. J. Insect Physiol.,1978,24:1~8.
    202.Summers C. B., Felton G. W. Peritrophic envelope as a functional antioxidant. Arch.Insect Biochem., 1996, 32: 131~142.
    203.Tellam R.L., Eisemann C., Casu R.,et al.The intrinsic peritrophic matrix protein peritrophin-95 from larvae of Lucilia cuprina is synthesised in the cardia and regurgitated or excreted as a highly immunogenic protein. Insect Biochem. Mol. Biol., 2000, 30(1): 9~17.
    204.Tellam R.L. The peritrophic matrix. In:Billingsley P.F.,Lehane M.J.editors. The biology of the insect midgut. London:Chapman and Hall,1996, 86~114.1994,(1):9~10.
    205.Tellam R.L.The peritrophic matrix In The Biology of Insect Midgut, ed Lehane M.J., Billingsley P.F., London: Chapman &Hall.1996.
    206.Tellam R.L., Vuocolo T., Eisemann C., et al.Identification of an immuno-protective mucin-like protein, peritrophin-55, from the peritrophic matrix of Lucilia cuprina larvae. Insect Biochem. Mol. Biol., 2003, 33( 2): 239~252.
    207.Tellam R.L., Vuocolo T., Johnson S.E. Insect chitin synthase: DNA sequences, gene organization and expression. Eur. J. Biochem., 2000,267: 6025-6042.
    208.Tellam R.L., Wijffels G., Willadsen P.Peritrophic matrix proteins. Insect Biochem Mol. Biol., 1999, 29( 2): 87~101.
    209.Terra W.R., Espinoza-fuentes F.P., Ribeiro A.F., et al., The larval midgut of the housefly(Musca domestica):ultrastructure, fluid fluxes and ion secretion in relation to the organization of digestion. J. Insect physiol., 1988, 34: 463~472.
    210.Terra W.R.The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem. Physiol., 2001, 47( 2): 47~61.
    211.Tomomi F., Masakiyo H., Tetsuo S., et al. Synergistic role of specificity proteins and upstream stimulatory factor 1 transactivation of the mouse carboxylesterase 2/microsomal acylcarnitine hydrolase gene promoter. Biochem. J., 2004, 384, 101~110.
    212.Valaitis A.P., Augustin S., Clancy K.M. Purification and characterization of the western spruce budworm larval midgut proteinases and comparison of gut activities of laboratory-reared and field-collected insects. Insect Biochem. Mol. Biol., 1999, 29: 405~415.
    213.Vaughan A. and Hemingway J. Mosquito Carboxylesterase Esta2 (A2). Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Cules quinquefasciatus. J. Biol. Curr., 1995, 270(28): 17044~17049.
    214.Vaughan A., Hawkes N. and Hemingway J. Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide-resistant Culex quinquefasciatus. Biochem. J., 1997, 325: 359~365.
    215.Vendrell J., Cuchillo C.M., Aviles F.X. The tryptic activation pathway of monomeric procarboxypeptidase A. J. Biol. Chem., 1990,265(12): 6 949~6 953.
    216.Villani F., White G.B., Curtis C.F. Inheritance and activity of some esterases associated with organophosphate resistance in mosquitoes of the complex Culex pipiens L. (Diptera : Culicidae). B. Entomol. Res., 1983, 73 : 153.
    217.Villegas V., Vendrell J., Aviles F.X. The activation pathway of procarboxypeptidase B from porcine pancreas: Participation of the active enzyme in the proteolytic processing. Protein Sci., 1995,4: 1792~1800
    218.Vinson C.R., LaMarco K.L., Johnson P.E., et al. In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Genes Dev., 1988,2:801~806.
    219.Vuocolo T., Eisemann C.H., Pearson R.D.,et al.Identification and molecular characterisation of a peritrophin gene, peritrophin-48, from the myiasis fly Chrysomya bezziana. Insect Biochem. Mol. Biol., 2001, 31( 9): 919~932.
    220.Walker J.E. The mitochondrial transporter family. Curr. Opin. Struct. Biol., 1992, 2: 519~526.
    221.Wang P., Granados R.R.An intestinal mucin is the target substrate for a baculovirus enhancin. Proc. Natl. Acad. Sci. USA, 1997a, 94(13): 6977~6982.
    222.Wang P., Granados R.R. Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA. J. Biol. Chem., 1997b, 272(26): 1663~1669.
    223.Wang P., Granados R.R.Observations on the presence of the peritrophic membrane in larvalTrichoplusia ni and its role in limiting baculovirus infection. J. Invertebr. Pathol., 1998, 72(1): 57~62.
    224.Wang P., Granados R.R. Calcofluor disrupts the midgut defense system in insects. Insect Biochem. Mo.l Biol., 2000, 30(2): 135~143.
    225.Wang P., Granados R.R. Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch. Insect Biochem., 2001,47: 110~118.
    226.Wang P., Li G., Granados R.R. Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut. Insect Biochem. Mo.l Biol., 2004a, 34( 3): 215~227.
    227.Wang P., Li G.X., Kain W.D. Characterization and cDNA cloning of midgut carboxypeptidases from Trichoplusia ni. Insect Biochem. Mol. Biol., 2004b, 34: 831~843.
    228.Whetstone P.A., Butlin N.G., Corneillie T.M. Elementcoded affiniy tag for peptides and proteins. Bioeonjug Chem., 2004, 15(1):3~6.
    229.Whyard S., Downe A.E., Walker V.K. Isolation of an esterase conferring insecticide resistance in the mosquito Culex tarsalis. Insect Biochem. Mol. Biol., 1994, 24 (8) : 819~827
    230.Whyard S., Downe A.E., Walker V.K. Characterization of a novel esterase conferring insecticide resistance in the mosquito Culex tarsalis. Arch. Insect Biochem., 1995, 29 (4): 329~342
    231.Wijffels G., Eisemann C., Riding G.,et al.A novel family of chitin-binding proteins from insect type 2 peritrophic matrix cDNA sequences, chitin binding activity, and cellular localization. J. Biol .Chem., 2001, 276(18): 1527~1536.
    232.Wirth M.C. Esterase A2 and B2 in Culex quinquefasciatus (Diptera: Culicidae): role in organophosphate resistance and linkage. J. Med. Entomol., 1990, 27 : 202~206.
    233.Wu J., Filutowiez M. Hexahistidine(His6)-tag dependent Protein dimerization: a cautionary tale. Acta Biochem. Pol., 1999, 46(3):591~599.
    234.Yan B., Yang D., Bullock P., et al. Rat serum carboxylesterase. Cloning, expression, regulation, and evidence of secretion from liver. J. Biol.Chem. 1995, 270(32): 19128~19134.
    235.Young P.A. and Davis R.W. Efficient isolation of genes by using antibody probes. Proc .Natl .Acad. Sci ,1983a ,80:1194~1198.
    236.Young P.A., Davis R.W. Gene isolation withλgt11 system. Meth. Enzymol.,1991,194: 230~238.
    237.Young P.A., Davis R.W. Yeast RNA polymeraseⅡg enes: Isolation with antibody probes. Science ,1983b,222:778~782.
    238.Zhu R., Liu K., Peng J.,et al.Optical brightener M2R destroys the peritrophic membrane of Spodoptera exigua (Lepidoptera: Noctuidae) larvae. Pest Manag Sci., 2007, 63(3): 296~300.
    239.Zhuzhikov D. P. Function of the peritrophic membrane in Musca domestica L and Calliphora erythrocephala Meig. J. Insect Physiol.,1964,(10):273~278.
    240.Zieler H., Garon C.F. A tubular network associated with the brush-border surface of the Aedes aegyptimidgut: implications for pathogen transmission by mosquitoes. J. Exp. Biol., 2000, 203:1599~1611.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700