蔬菜穴盘苗自动移栽技术与装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移栽技术在蔬菜种植中具有高产稳产、提高土地利用率等诸多优越性。全自动机械化移栽技术能够提高作业效率、降低人工喂苗劳动强度、提高综合经济效益,是蔬菜移栽机械的发展趋势。本文以番茄穴盘苗自动移栽的关键技术与装置为研究对象,在穴盘苗钵体力学性能试验研究的基础上,通过对取苗机构的理论研究与仿真分析,开发了蔬菜穴盘苗自动识别取苗系统,并进行了系统的作业性能检测试验。得到如下结论:
     1.在番茄穴盘苗苗龄期40天,以基质成份体积比、含水率和位移为试验因素,对苗钵抗压性能、蠕变特性和取苗拉拔力进行了试验研究。结果表明:基质成份FNZ(即泥炭和珍珠岩体积比=2:1)、含水率55%时,苗钵抗压能力最强,最大抗压力4.70N、压缩位移13.45mm、取苗所需拉拔力2.67N,最适宜机械取苗作业;含水率55%、受压力5N持续2s的条件下,不同基质成份的苗钵蠕变量均小于0.04mm,对快速夹取钵体的夹紧松弛特性影响可忽略不计;取苗拉拔力受试验因素影响较小,基本在2-3N范围内变化。
     2.提出了“啄木鸟”式取苗轨迹,建立了符合该轨迹要求的五杆-定轴轮系组合式取苗机构理论研究模型,并基于VB.NET开发了计算机辅助分析与优化软件,分析了模型参数变化对机构取苗轨迹和振动的影响,优化得到l1=29mm、l2=90mm、l3=93mm、l4=42mm、l5=180mm、l6=126mm、 xD=74mm、yD=27mm、α10=169°、α40=319°、θ1=165°、θ2=90°,为机构最佳参数组合,通过Inventor三维建模仿真分析,得到此组合下机构取苗轨迹高度239.7mm,入穴取苗段轨迹直线段长度31.2mm,入穴取苗、拔苗段轨迹与穴盘面几乎垂直(为88.2°),验证了理论模型的正确性,并得出取苗频率60株/min-90株/min时机构作业性能较好。
     3.开发了自动识别取苗系统,系统由五杆-定轴轮系组合式取苗机构、供苗机构、秧苗识别传感器及控制系统组成。取苗机构结构参数依据理论模型确定,采用两夹苗指针取苗,夹持苗钵压缩量8mm、入穴取苗两指针夹苗角度16.4°、夹持力4.21N、拉拔力5.31N;供苗机构能够横纵向交替间歇式移盘;采用基于背景抑制漫反射式光电传感器苗茎检测方案和基于PLC的控制系统,实现蔬菜穴盘苗自动准确、高效取苗并减少穴盘缺苗引起的漏栽;系统针对苗茎进行识别,位置约为距离苗盘面15mm、检测距离35mm,在横、纵向供苗过程依靠传感器触发识别穴格有无苗,指导供苗机构动作完成穴盘苗取、供配合作业,取苗频率最高可达到90株/min。
     4.利用自动移栽试验装置完成了自动识别取苗系统的作业性能检测试验。试验结果表明:自动识别取苗系统不仅实现了蔬菜穴盘苗的自动准确、高效取苗,同时基本满足识别取苗要求;当移栽频率60株/min和90株/min时,取苗成功率分别为92.41%和86.48%;漏栽率较未采用识别取苗整体降低约12%,减少了因穴盘缺苗而导致的漏栽。
Transplanting technique has lots of advantages at vegetable cultivation, such as enhance the high and stable yield, and improving the land utilization rate. Automatic transplanter is a most important trends at vegetable transplanting technology, which can promote work efficiency, reduce human-dependent seedlings feeding labor intensity and increase economic benefit. The object of this research were to aim at the key technology and equipment of tomato plug seedlings transplanting, experimental investigate the mechanical properties of plug seedlings, theoretical study and simulation the plug seedlings pick-up mechanism, develop and verify an automatic recognition picking vegetable plug seedlings system. Conclusion was as follows,
     1. The tomato seedlings at40days period were investigated through compressive capacity, creep strain and pullout force testing s base on the factors of morphological characteristics, physical dynamics, and pullout strength. The results showed the best tomato seedlings for the picking seedlings machinery was FNZ substrates (peat/perlite was2:1by volume) at55%moisture content, meanwhile the compressible displacement of seedling pot was13.45mm. When substrates at55%moisture content, the creep strain of seedling pots was pretty small after5N pressure sustaining2s, and the influence of clamping relaxation properties could be neglected while quickly mechanical picking plug seedling. The pullout force was2N-3N, and little affected by experimental factors.
     2. A woodpecker type trajectory of picking seedlings was invention, and a theory model of the five-rod fixed axis gear train combined type plug seedlings pick-up mechanism, which can meet the requirements of picking seedlings trajectory. Then, the computer aided analysis and optimization software of the theory model was developed based on software VB.NET, and the influence law of seedlings pick-up trajectory and mechanism vibration affected by the model parameters was obtained. The optimal parameters combination was l1=29mm, l2=90mm,l3=93mm,l4=42mm,l5=180mm, l6=126mm, xD=74mm,.yD=27mm, α10=169°,玖40=319°,θ1=165°,θ2=90°. Simulated analysis of the mechanism3-D model by software Inventor at the optimal parameters combination showed that the height of seedlings pick-up trajectory was239.7mm, the length of seedlings pick-up trajectory in pot was31.2mm, the angle between seedlings pick-up trajectory in pot and seedlings pot surface was almost vertical. So the correctness of the theory model was verified, and the conditions of the good operation performance of seedlings pick-up mechanism was obtained that the picking seedlings frequency was60strains per minute to90strains per minute.
     3. An automatic recognition picking plug seedlings system was developed which consisted of five-rod fixed axis gear train combined type plug seedlings pick-up mechanism, seedlings feed mechanism, identification sensor of plug seedlings and control system. The seedlings pick-up mechanism parameters were based on theoretical model, using two fingers picking seedlings, and the amount of compression for holding seedlings pot was8mm, the angle of two fingers on plug seedlings pick-up mechanism for clamping seedlings pot was16.4°, the holding force was4.21N, the picking force was5.31N. The plug seedlings could be alternately intermittently fed vertically and horizontally by seedlings feed mechanism. The system was based on background suppression reflected photoelectric sensor and PLC program control to continuously automatically recognizing, picking and feeding the plug seedlings. The system could recognize seedlings stem, and the recognition position was15mm height of seedlings stem, the recognition distance was35mm between the seedlings stem. During the process of feeding seedlings, the identification sensor conducted recognizing plug seedlings in trays. The highest frequency of picking seedlings of the system was90strains per minute.
     4. To verify the work performance of the automatic system, a test device of automatic transplanting vegetable plug seedlings was built. The verify experiment result showed that the automatic recognition picking plug seedlings system could automatic, accurate and high efficient recognize the seedling in tray that satisfy recognition picking plug seedlings requirements. When the transplanting frequency were60strains per minute and90strains per minute, the success rate of the seedlings pick-up were92.59%and87.41%respectively, and the decreased leakage transplanting rate was about12%compare to the transplanter without the automatically picking seedlings control system. The success rate of seedlings pick-up was92.59%as the transplanting frequency at sixty strains per minute, and87.41%as the transplanting frequency at ninety strains per minute. The leakage transplanting rate with automatically recognition picking seedlings control system was12%lower than without the automatically recognition picking seedlings control system.
引文
[1]FAOSTAT. Food and Agriculture Organization of the United Nations. September 2011, .
    [2]国家发展和改革委员会,农业部.全国蔬菜产业发展规划(2011-2020年).January 2012, .
    [3]李崇光,包玉泽.我国蔬菜产业发展面临的新问题与对策.中国蔬菜,2010,(15):1-5.
    [4]赵瑞,葛晓光.我国北方蔬菜种苗产业化及其技术体系的建立.沈阳农业大学学报,2000,31(1):117-119.
    [5]李其昀.机械化育苗移栽的现状与展望.农机化研究,2006,(3):26-27.
    [6]韩占全,封俊.中国旱地栽植机械的现状和发展前景.现代化农业,2000,(8):29-34.
    [7]方宪法.中国旱作移栽机械技术现状及发展趋势.农业机械,2010,(1):35-36.
    [8]刘效亮,李其昀.育苗移栽机械化发展方向.山东理工大学学报:自然科学版,2003,17(3):108-110.
    [9]耿端阳.我国北方地区机械化育苗移栽技术应用与发展.农机化研究,2001,(3):23-24.
    [10]尹国洪,陈巧敏,张端林.旱地育苗移栽机械现状、发展趋势与前景.中国农机化,1997,(5):9-11.
    [11]封俊.论我国旱地栽植机械的开发前景与方向.中国农机化,2000,(4):11-12.
    [12]陈殿奎.国内外蔬菜穴盘育苗发展综述.中国蔬菜,2000(S1):7-11.
    [13]陈风,陈永成,王维新.旱地移栽机现状和发展趋势.农机化研究,2005,(3):24-26.
    [14]宋元林,何启伟.现代蔬菜育苗.北京:中国农业科技出版社,1989,25-32.
    [15]于红松,张铁中,杨丽.穴盘苗自动移栽机研究现状与发展前景.农业机械,2010,(2):44-45.
    [16]Tamil Nadu Agricultural University. Report of the all India coordinated research project on farm implements and machinery. Coimbatore, India:Department of Farm Machinery and Power, Tamil Nadu Agricultural University,2004.
    [17]Glancey J L. Vegetable production machine design. In Encyclopedia of Agricultural, Food, and Biological Engineering. In:Heldman D R., ed. New York:Marcel Dekker,2003.1105-1115.
    [18]王文明,窦卫国,赵士杰等.我国甜菜移栽机的研究与发展.农村牧区机械化,2003,(1):26-27.
    [19]封俊.国内旱地栽植机械研究的新进展.科研动态,2001,(2):28-29.
    [20]武科,陈永成,毕新胜.几种典型移栽机.新疆农机化,2009,(3):12-14.
    [21]巴慧珍.2ZT-2型纸筒甜菜移栽机的移栽机构.农机与食品机械,1996,(4):16-17.
    [22]高正路.2ZY-2型油菜移栽机的设计.山东农机,2001,(3):10-12.
    [23]冯福海,陈东升,冯艳辉.2ZB-4型杯式钵苗移栽机.现代化农业,2002,(8):32-34.
    [24]韩豹,马守义,韩许,等.2Z-2型玉米钵育苗移栽机的研制.现代化农业,1996,(11):1-3.
    [25]郭晓剑,关向东.2AS-2型蔬菜苗株移栽机研制.新疆农机化,2007,(4):28-29.
    [26]Marr C W. Commercial vegetable production. Manhattan:Kansas State University,1994.
    [27]Saxena S, Dhawan V. Changing scenarios in Indian horticulture. The Netherlands:Plant biotechnology and molecular markers,2006,22-48.
    [28]Sena G A. Adjustable tray size automatic seedling planting apparatus. United States Patent, 7036440,2006-05-02.
    [29]Tagawa K K, Tagawa G H, Tagawa R E. Plant growing system to maximize transplant yield. United States Patent, US6779300B2,2004-08-24.
    [30]Tagawa G H, Tagawa K K, Tagawa R E. Operational system for transplanting growing plants. United States Patent, US6915607B2,2005-07-12.
    [31]封俊,顾世康,曾爱军等.导苗管式栽植机的试验研究(Ⅰ)中国玉米育苗栽植机械化的现状与问题.农业工程学报,1998,13(1):103-107.
    [32]顾世康,封俊,曾爱军等.导苗管式栽植机的试验研究(Ⅲ)导苗管式栽植机的改进设计与试验.农业工程学报,1998,14(3):123-128.
    [33]周德义,孙裕品,马成林.移栽机凸轮摆杆式扶苗机构设计与分析.农业机械学报,2003,34(5):57-60.
    [34]李其的,鲁善文,杨宪武.吊篮式棉花移栽机的研究.农机化研究,2006,(4):69-73.
    [35]李其峋,鲁善文,李丽华.滑道分钵轮式栽植器的试验研究.农业机械学报,2001,32(3):30-33.
    [36]Choi W C, Kim D C, Ryu I H, et al. Development of a seedling pick-up device for vegetable tranplanters. Transactions of the AS AE,2002,45 (1):13-19.
    [37]Thijssen B, Lehto L, Keskilohko A. Method and devise for improving the transplanting of seedlings. United States Patent,6080951,2000-06-27.
    [38]Ueno H, Matsumura N, and Miyaji M. Effects of biodegradable pot on growth and quality of pumpkin seedling. Bulletin Experiment Farm Factory Agricultural Ehime University,2002,24: 19-32.
    [39]Lijon Garcia, Franeisco Gabriel, Bernal Cava. Automatic vegetable plant transplanter. European Patent, EP1077023AI, 2001-08-21.
    [40]Huang B K. Air-Pruning tray/container matrix transfer and transplanting system and methods. United States Patent, US7168375B2,2007-01-30.
    [41]Faulring F W. Method and apparatus for transplanting. United States Patent, US6634306B1, 2003-10-21.
    [42]Geoffrey Allan Williames, Warraqul. Field transplanter. United States Patent, US6327986B1, 2001-11-11.
    [43]Asian Vegetable Research and Development Centre. Vegetable production training manual. Taiwan:Asian World Vegetable Center,1990,18-67.
    [44]Luan J M, Chiliang C, Ju J S. A feeding mechanism of vegetable seedling transplanter. Chinese Elect. Period. Ser.,2006,14(42):35-42.
    [45]Srivastava N S L. Role of agricultural engineering in doubling food production in next ten years. Agricultural Engineering Today,1999,23(1-2):37-49.
    [46]Wright M E, Davis L L, Gros B C. High-speed transplanter for seedlings attached to tape. United States Patent, US6305303B1,2001-10-23.
    [47]Edathiparambil Vareed Thomas. Development of a mechanism for transplanting rice seedlings. Mechanism and Machine Theory,2002,37(4):395-410.
    [48]Tagawa K K, Tagawa G H, Tagawa R E. Plant yield maximization system for growing plants. United States Patent:US7069693B2,2006-07-04.
    [49]Tsuneo Otake, Yasumi Fukuzulni, Tsuneo Onodera. Seedling raising sheet, method of manufacturing same, seedling raising method, culturing method, and transplanter. United States Patent, US6240674B1,2001-06-05.
    [50]年玉宝,郭瑞,营晨光,等.日本CT-4S和CT-ZS型甜菜纸筒苗移栽机的试验示范.中国糖料,2004,(2):32-35.
    [51]Srivastava A K, Goering C E, Rohrbach R P, et al. Engineering Principles of agricultural machines. American Society Agricultural and Biological Engineering,2006,32(10):89-97.
    [52]Takanori F, Hiroshi Y, Hiroyoshi M, et al. Folding paper type biodegradable paper pot. Shizuokaken Nogyo Suisanbu:Kankyo Shinrinbu Norin Suisan Kankei Shiken Kenkyu Seika Joho,2002.
    [53]Yuraka Kaizu, Tsuguo Okamoto, Kenj Imou. Robotic separation of stage Ⅳ micro propagated sugarcane shoots. Transactions of the ASAE,2001,53(4):48-53.
    [54]Lawrence M J, Buckmaster D R, Lamont W J. A pneumatic dibbling machine for plastic mulch. Applied Engineering in Agriculture,2007,23(4):419-424.
    [55]Chen B, Tojo S K. Watanabe. Detection algorithm for traveling routes in paddy fields for automatic managing machines. Transactions of the ASAE,2002,45(1):239-246.
    [56]Brewer H L. Experimental automatic feeder for seedling transplanter. Transactions of the ASAE, 1988,4(1):24-29.
    [57]Bengouth A G, Mackenzie C J, Diggle A J. Relations between root length and root intersections with horizontal and vertical plants using root growth modeling in 3~dimensions. Plant Soil,1992, (145):245-252.
    [58]Lee J M, Kubota C, Tsao S J. Current status of vegetable grafting:Diffusion, grafting techniques, automation. Scientia Horticulturae.2010,127:93-105.
    [59]尚书旗,隋爱娜,张子华.国外钵苗栽植机的几种类型及性能分析.农机与食品机械,1998,(1):30-32.
    [60]Prasanna Kumar G V, Raheman H. Vegetable transplanters for use in developing countries-a review. International Journal of Vegetable Science,2008,14:232-255.
    [61]Yang Y, Ting K C, Giacomelli G A. Factors affecting performance of sliding-needles gripper during robotic transplanting of seedlings. Applied Engineering in Agriculture,1991,7(4): 493-498.
    [62]Prasanna Kumar G V, Raheman H. Development of a walk-behind type hand tractor powered vegetable transplanter for paper pot seedlings. Biosystems Engineering,2011,110:189-197.
    [63]Tsuga K. Development of fully automatic vegetable transplanter. Japanese Agricultural Research Quarterly,2000,34(3):21-28.
    [64]Ryu K H, Kim G, Han J S. Development of a robotic transplanter for bedding plants. Japanese Agricultural Engineering Research,2001,78:141-146.
    [65]Jin X, Li S J, Yang X J, et al. Developments in research on seedling auto-picking device of vegetable transplanter. Applied Mechanics and Materials,2013,364:375-379.
    [66]Sakaue O. Development of automated seedling production and transplanting system using robotics. Acta Hort,1992,319:557-562.
    [67]Brewer H L. Conceptual modeling of automated seedling transfer from growing trays to shipping modules. Transactions American Society Agricultural Engineering,1994,37(5):1043-1051.
    [68]Tetsuo N, Masashi T, Akiyoshi M. Studies of automatic transplanter using chain pot (Part 1): Chain pot seedlings and pulling resistance. Journal of the Japanese Society of Agriculture Machinery,1993,55(2):125-130.
    [69]Pinkepank W R, Shaw L N. An automatic vegetable seedling soil block transfer system. Transactions of the ASAE,1995,42(2):80-87.
    [70]Brewer H L. Automatic cassette feeder for seedling transplanter development. Transactions of the ASAE,1993,35(4):88-97.
    [71]Ting K C, Giacomelli G A, Shen S J. Robot work cell for transplanting of seedlings, part I-Layout and material flow. Transactions of the ASAE,2003,33(3):1005-1010.
    [72]Kim H J, Park S H, Kwak T Y. Development of an automatic transplanter for cabbage cultivation. Korea Automatic Dynamic Analysis of Mechanical Systems Conference,2001,45(8):124-130.
    [73]Suggs C W, Lineberger B M, Mohapatra S C. Automatic feeding transplanter. Acta Hort,1992, 319:511-516.
    [74]Brewer H. L. Performance of an experimental automatic seedling transplanter with static cassetters. Journal of vegetable crop production,1995, (1):37-52.
    [75]何扬清,尹文庆,章士秀.3种旱地移栽机械器的性能分析.安徽农业科学,2006,34(24):6772-6723,6725.
    [76]李其昀,鲁善文,杨宪武.吊篮式棉花移栽机的研究.农机化研究,2006,(4):164-166.
    [77]尹庆文,胡敏娟,胡飞.一种旱地移栽机取苗机构.中国专利,ZL200910029423.5,2010-12-29.
    [78]王文明.2ZT-2型甜菜移栽机栽植过程的计算机辅助分析:[硕士学位论文].呼和浩特:内蒙古农业大学,2004.
    [79]孙裕晶.2ZT型移栽机的研究设计.农机化研究,1992,(1):53-54.
    [80]韩豹,马守义,申建英,等.2Z-6型作物秧苗移栽机的研制.现代化农业,1998,(7):31-33.
    [81]侯林山,胡波,孙红磊.2ZT-2甜菜纸筒育苗移栽机.农村牧区机械化,1997,(1):34-35.
    [82]孙荣国,李成华,张伟.挠性夹盘式移栽机移栽过程中钵苗运动分析.农机化研究,2006,(2):45-47.
    [83]宋建农.水稻钵苗行栽机的试验研究:[博士学位论文].北京:中国农业大学,2005.
    [84]宋建农,黄育仕,魏文军等.水稻钵苗对辊式拔秧机构.江苏大学学报(自然科学版),2006,27(4):291-294.
    [85]孔卓.棉花移栽机的虚拟样机设计:[硕士学位论文].淄博:山东理工大学,2006.
    [86]蔡国华,宫少俊,曾爱军.挠盘式栽植机在大葱移栽上的应用.农机科技推广,2008,(6):47-49.
    [87]李爱华,姜燕飞,王宏章.鸭嘴式蔬菜移栽机的研究设计.农村牧区机械化,2007,(3):11.
    [88]王永泉,贾代伦,黄馨等.自动移栽机.中国专利,CN201008266Y,2008-01-23.
    [89]徐丽明,张铁中,史志清.玉米自动移栽机取苗机构的设计.中国农业大学学报,2000,5(4):58-60.
    [90]强力慧,张铁中.生菜自动移苗机的设计.黑龙江八一农垦大学学报,2005,17(5):49-52.
    [91]孙廷琮,黄国彦,吴文福等.苗株全自动移栽机,中国专利,CN1078847A,1993-12-01.
    [92]范云翔,杨子万,林玉祥.全自动移栽机落苗系统的计算机仿真.农业机械学报,1994,25(4):26-30.
    [93]陈风.钵苗移栽机输送、分苗系统的研究:[硕士学位论文].石河子:石河子大学,2006.
    [94]董锋,耿端阳,汪遵元.带式喂入钵苗栽植机研究.农业机械学报,2000,31(2):42-45.
    [95]孙裕晶.组合振动导苗筒式移栽机理论与试验研究:[硕士学位论文].长春:吉林工业大学,2000.
    [96]林文进.自走式全自动蔬菜种苗移植机之试验改良:[博士学位论文].台中:国立中兴大学,1997.
    [97]杨丽.组培苗分割移植机器人系统的研究:[硕士学位论文].中国农业大学,2005.
    [98]崔秀敏,王秀峰.蔬菜育苗基质及其研究进展.天津农业科学,2001,7(1):37-42.
    [99]周炜,曲英华,胡文娟,等.工厂化穴盘育苗基质的研究.北方园艺,2005,(6):50-51.
    [100]韩绿化,毛罕平,胡建平,等.穴盘苗自动移栽钵体力学特性试验.农业工程学报,2013,29(2):24-28.
    [101]缪小花,毛罕平,韩绿化,等.黄瓜穴盘苗拉拔力及钵体抗压性能影响因素分析.农业机械学报,2013,44(S1),27-31.
    [102]韩绿化,毛罕平,缪小花,等.基于穴盘苗力学特性的自动取苗末端执行器设计.农业机械学报,2013,44(11):260-265.
    [103]金鑫,李树君,杨学军,等.蔬菜穴盘苗取苗机构分析与参数优化.农业机械学报,2013,44(S1):1-6.
    [104]孙磊.新型穴盘苗旱地自动移栽机关键部件的设计与试验研究:[硕士学位论文].江苏大学,2012.
    [105]俞高红,陈志威,赵匀,等.椭圆-不完全非圆齿轮行星系蔬菜钵苗取苗机构的研究.机械工程学报,2012,48(13):32-39.
    [106]莫文辉,张敏树.滑动丝杠螺母机构的可靠性设计.机械科学与技术,2000,19(1):52-53.
    [107]成大先.机械设计手册(第三卷).北京:化学工业出版社,2008.
    [108]范超毅,范巍.步进电机的选型与计算.机床与液压,2008,36(5):310-313,324.
    [109]冯青青,王秀.穴盘钵苗智能移栽机关键技术研究现状.农机化研究,2013,(11):250-252.
    [110]范云翔,杨子万,Adekola K A.温室全自动移栽机的研究开发.农业工程学报,1996,12(2):111-115.
    [111]王庆有.光电传感器应用技术.北京:机械工业出版社,2007.
    [112]蔡崧.传感器与PLC编程技术基础.北京:电子工业出版社,2005,5-56.
    [113]田素博,邱立春,张诗.基于PLC的穴盘苗移栽机械手控制系统设计.沈阳农业大学学报,2007,38(1):122-124.
    [114]顾文峻,曹卫彬,李卫敏,等.穴盘苗顶杆式取苗机构的自动化控制系统设计.农机化研究,2013,(12):108-111.
    [115]李宝筏.农业机械学.北京:中国农业出版社,2003,108-113.
    [116]胡敏娟.穴盘苗自动移栽关键技术研究:[博士学位论文].南京:南京农业大学,2011.
    [117]封俊,顾世康,曾爱军等.导苗管式栽植机的试验研究(Ⅱ)栽植机的性能评价指标与检测方法.农业工程学报,1998,14(2):73-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700